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Abstract. Alternating sign matrices with a U-turn boundary (UASMs) are a recent generalization of ordinary
alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain
symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama’s
deformation of Weyl’s denominator formula. This bijection yields a formula for the weighted enumeration of
UASMs. In this connection use is made of the link between UASMs and certain square ice configuration matrices.
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1. Introduction

Alternating sign matrices with a U-turn boundary (UASMs) first appeared in a paper by
Tsuchiya [19] but have been given a wider audience by Kuperberg [9] and Propp [14] (who
called them half alternating sign matrices). In this paper we introduce a generalization of
UASMs, called µ-UASMs, that combine the U-turn notion with the µ-generalization of
alternating sign matrices (ASMs) due to Okada [13], where µ is a partition all of whose
parts are distinct. We show that there exists a natural correspondence between µ-UASMs
and the symplectic shifted tableaux of shifted shape µ defined elsewhere [4], and prove that
this correspondence is a bijection.

There exists an important connection between ordinary alternating sign matrices (ASMs)
and square ice that was used to provide a second proof of the alternating sign matrix conjec-
ture by Kuperberg [8]. The square ice model involves two-dimensional grids populated by
frozen water molecules taking up any one of six configurations, see for example the work
of Lieb [11], Bressoud [1] and Lascoux [10]. With a suitable choice of boundary conditions
this model can be linked to UASMs in a bijective manner [9]. Here we extend this to the case
of µ-UASMs. To make this connection explicit it is convenient to introduce square ice con-
figuration matrices. These are then used to provide both x and t-weightings of µ-UASMs,
that are an exact counterpart to corresponding weightings of symplectic shifted tableaux.

The significance of this is that it allows a connection to be made with Weyl’s formula for
characters of irreducible representations of the symplectic Lie algebra sp(2n), or to be more
precise with products of certain t-deformations of such characters with a t-deformation
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of Weyl’s denominator formula [4]. These products are completely determined by the
weighted enumeration of symplectic shifted tableaux, so that thanks to the bijection between
µ-UASMs and symplectic shifted tableaux derived here we are able to provide a general
formula for the weighted enumeration of both µ-UASMs and the UASMs themselves. The
latter correspond to the special cases µ = δ = (n, n − 1, . . . , 1) for some positive integer
n. The most basic corollary of our result is

∑

U A∈UA
2neg(U A) = 2n2

, (1.1)

where UA is the set of 2n × n UASMs and neg(U A) is the number of −1’s in U A. This
result was conjectured by Propp [14] and proved by Eisenkölbl [2] and independently by
Chapman. It is also derivable from Kuperberg [9]. More generally, we show that

∑

U A∈UA
t ssi(U A)+bar(U A)(1 + t)neg(U A) = (1 + t)n2

, (1.2)

where ssi(U A) and bar(U A) are parameters, defined below, associated with each U A ∈ UA.
More generally still, we show that

Dsp(2n)(x ; t) spλ(x ; t) =
∑

U A∈UAλ+δ (2n)

t ssi(U A)+bar(U A) (1 + t)neg(U A) xwgt(U A), (1.3)

where spλ(x ; t) is a t-deformation of the character of the irreducible representation of sp(2n)
specified by the partition λ and Dsp(2n)(x ; t) is a corresponding t-deformation of the denomi-
nator formula in the case of sp(2n). In this formula (1.3) each indeterminate xi can be thought
of as a formal exponential eεi , where the εi for i = 1, 2, . . . , n form a basis of the weight
space of sp(2n). It follows that the x-weighting signified by each contribution xwgt(U A) =
xβ = xβ1

1 xβ2
2 · · · xβn

n serves to define a weight vector β = β1ε1 +β2ε2 +· · ·+βnεn of sp(2n).
The organisation of the paper is such that alternating sign matrices and their U-turn man-

ifestations are introduced in Section 2 and symplectic shifted tableaux in Section 3. It is
pointed out that the latter may be viewed as being constructed from a sequence of ribbon
strips. It is this structure which is exploited in Section 4 to prove the bijective nature of a
map, �, from each sp(2n)-standard shifted tableau ST of shape specified by a partition µ,
all of whose parts are distinct, to a 2n × m µ-UASM U A = �(ST ), where m = µ1,the
largest part of µ.

As a precursor to invoking two independent types of weighting of both µ-UASMs and
symplectic shifted tableaux, square ice graphs and the corresponding square ice config-
uration matrices are introduced in Section 5. These configuration matrices then provide
a natural way to motivate and describe two different types of weighting of µ-UASMs,
namely an x-weighting and a t-weighting. Corresponding weightings are then provided for
symplectic shifted tableaux. As indicated above these latter weightings are those known to
be relevant both to the character theory of sp(2n) [5, 6] and to the deformation of Weyl’s
denominator formula for sp(2n) [4]. This is then exploited in Section 6 to provide a set of
variously weighted enumeration formulae for µ-UASMs, symplectic shifted tableaux and
square ice configuration matrices.
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2. Alternating sign matrices

Alternating sign matrices, ASMs, are square matrices all of whose elements are 0, 1 or −1,
such that the first and last non-zero entries of each row and column are 1’s and the non-zero
entries within each row and column alternate in sign. See, for example, the 4 × 4 ASM A
in equation (2.1). Here and elsewhere we use 1̄ to denote −1.

A =





0 1 0 0

1 1̄ 0 1

0 0 1 0

0 1 0 0



 . (2.1)

The number, A(m), of m × m ASMs is described by the famous formula:

A(m) =
m−1∏

j=0

(3 j + 1)!

(m + j)!
. (2.2)

The first proof of this formula was given by Zeilberger [22]. A second proof is due to
Kuperberg [8], and a complete history is to be found in Bressoud [1].

From the outset of this theory of ASMs it was found convenient by Mills, Robbins and
Rumsey [12] to count them according to the position k of the single 1 that necessarily appears
in the top row of each ASM. Deleting the top row of such an ASM gives a generalisation
of an ASM in the form of an (m − 1) × m matrix in which the row sums are all 1, but the
column sum is 0 for the kth column and 1 for the others. More generally, one encounters
ASMs with more than one column having sum 0. We follow the terminology of Okada [13]
who generalized ASMs by defining a set of n × m µ-alternating sign matrices, µ-ASMs,
associated with each partition µ = (µ1, µ2, . . . , µn) whose parts µ j for j = 1, 2, . . . , n
are all distinct and positive. These µ-ASMs have properties similar to ordinary ASMs, but
have column sums 1 only in those columns indexed by q = µ j for some j and have column
sums 0 in all the other columns indexed by q �= µ j for any j . More formally, for each
partition µ of length �(µ) = n, all of whose parts are distinct, and for which µ1 ≤ m,
an n × m matrix A = (aiq ) belongs to the set Aµ(n) of n × m µ-ASMs if the following
conditions are satisfied:

(O1) aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ n, 1 ≤ q ≤ m;

(O2)
m∑

q=p

aiq ∈ {0, 1} for 1 ≤ i ≤ n, 1 ≤ p ≤ m;

(O3)
n∑

i= j

aiq ∈ {0, 1} for 1 ≤ j ≤ n, 1 ≤ q ≤ m;

(O4)
m∑

q=1

aiq = 1 for 1 ≤ i ≤ n;

(O5)
n∑

i=1

aiq =
{

1 if q = µk for some k

0 otherwise
for 1 ≤ q ≤ m, 1 ≤ k ≤ n.

(2.3)
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The alternating sign matrices with a U-turn boundary, UASMs, are a variation on ordinary
ASMs developed by Kuperberg [9] after a paper of Tsuchiya [19]. UASMs have an even
number of rows. Each column of a UASM is of the same form as that of an ordinary ASM.
Each successive pair of rows of a UASM reading first from right to left across the top row
of the pair and then from left to right across the bottom row of the pair is like a row of an
ASM. Typically we have the 6 × 3 UASM U A

U A =





1 0 0

1̄ 1 0

0 1̄ 1

1 0 0

0 1 0

0 0 0





. (2.4)

The number, AU (2n), of UASMs of size 2n × n is [9]

AU (2n) = 2n(−3)n2
∏

1≤i≤2n+1
1≤k≤n

1 + 6k − 3i

2n + 1 + 2k − i
. (2.5)

Alternatively, thanks to their connection with vertically symmetric ASMs (VSASMs) or
flip symmetric ASMs (FSASMs), and a recurrence relation for the number of the latter due
to Robbins [16], we have

AU (2n) = AU (2n − 2)

(
6n − 2

2n

)/(
4n − 2

2n

)
. (2.6)

with AU (2) = 2. In either case we obtain:

n 1 2 3 4 5 6 · · ·
AU (2n) 2 22 · 3 23 · 26 24 · 646 25 · 45885 26 · 9304650 · · · (2.7)

Here we extend UASMs to the case of µ-alternating sign matrices with a U-turn boundary.
These were first defined in Hamel and King [4] in the context of deformations of Weyl’s
denominator formula for characters of the symplectic Lie algebra sp(2n) and were called
sp(2n)-generalised alternating sign matrices. It is this connection with characters of sp(2n)
and the denominator formula which will allow us to evaluate various weighted sums of
µ-UASMs.

Definition 2.1 Let µ be a partition of length �(µ) = n, all of whose parts are distinct, and
for which µ1 ≤ m. Then the matrix U A = (aiq ) is said to belong to the set UAµ(2n) of
µ-alternating sign matrices with a U-turn boundary if it is a 2n × m matrix whose elements
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aiq satisfy the conditions:

(UA1) aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ 2n, 1 ≤ q ≤ m;

(UA2)
m∑

q=p

aiq ∈ {0, 1} for 1 ≤ i ≤ 2n, 1 ≤ p ≤ m;

(UA3)
2n∑

i= j

aiq ∈ {0, 1} for 1 ≤ j ≤ 2n, 1 ≤ q ≤ m.

(UA4)
m∑

q=1

(a2i−1,q + a2i,q ) = 1 for 1 ≤ i ≤ n;

(UA5)
2n∑

i=1

aiq =
{

1 if q = µk for some k

0 otherwise
for 1 ≤ q ≤ m, 1 ≤ k ≤ n.

(2.8)

In the case for which µ = δ = (n, n − 1, . . . , 1) and m = n, for which (UA5) becomes∑2n
i=1 aiq = 1 for 1 ≤ q ≤ n, this definition is such that the set UAδ(2n) coincides with

the set of U-turn alternating sign matrices, UASMs, defined by Kuperberg [9]. The more
general case is exemplified for the partition µ = (9, 7, 6, 2, 1) and n = 5 by:

U A =





0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0





∈ UAµ(2n) (2.9)

As can be seen the successive column sums reading from right to left are 1, 1, 0, 0, 0, 1, 1,

0, 1, with the 1’s appearing in columns 1, 2, 6, 7, 9 specifying the parts of µ. The individual
row sums reading from top to bottom are 0, 1, 1, 0, 1, 0, 0, 1, 0, 1 so that all the U -turn row
sums for consecutive pairs of rows are 1, as required.

In the proof of the bijection between µ-UASMs and symplectic shifted tableaux in
Section 4 it will be useful to refine the matrix UA. Any µ-UASM U A contains two types of
zeros: zeros for which there is a nearest non-zero element to the right in the same row taking
the value 1 (positive zeros), and all other zeros (negative zeros). We can then define a map
φ from the matrix UA to a signature matrix φ(U A), replacing positive zeros and positive
ones with plus signs, and negative zeros and negative ones with minus signs. It should be
noted that there is no ambiguity in determining which zeros are positive and which are
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negative, so that for each µ-UASM U A the signature matrix φ(U A) is unique. Moreover,
to recover U A from φ(U A) by means of the inverse map φ−1 it is only necessary in each
row to replace each right-most + in a continuous sequence of +’s by 1 and all others +’s
by 0, and the right-most − of any continuous sequence of −’s by −1, provided that its
immediate right-hand neighbour is +, and all other −’s by 0. This is illustrated in the case
of our example (2.9) by

U A =





0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0





⇒ φ(U A) =





− − − − − − − − +
+ − − − − − − − −
+ + + + + + + + −
− + − − + + + − −
+ − − + − − − − −
− − − − + + − − −
− − + + − − − − −
+ + + − − − − − −
− + − − − − − − −
+ − − − − − − − −





(2.10)

3. Symplectic shifted tableaux

Symplectic shifted tableaux are variations on ordinary tableaux and were first introduced
in [4] in the context of a symplectic version of Tokuyama’s formula [18] for the t-deformation
of Weyl’s denominator formula. A partition µ = (µ1, µ2, . . . , µn) is a weakly decreasing
sequence of non-negative integers. The weight, |µ|, of the partition µ is the sum of its
parts, and its length, �(µ) ≤ n, is the number of its non-zero parts. Now suppose all of
the parts of µ are distinct. Define a shifted Young diagram SFµ to be a set of |µ| boxes
arranged in �(µ) rows of lengths µi that are left-adjusted to a diagonal line. More formally,
SFµ = {(i, j) | 1 ≤ i ≤ �(µ), i ≤ j ≤ µi + i − 1}.

For example, for µ = (9, 7, 6, 2, 1) we have

SFµ = (3.1)

It should be noted that the parts of the partition µ′ = (µ′
1, µ

′
2, . . . , µ′

m), with m = µ1,
which is conjugate to µ specify the lengths of successive diagonals of SFµ. In the above
example, µ′ = (5, 4, 3, 3, 3, 3, 2, 1, 1). Quite generally, if all the parts of µ are distinct, it
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follows that successive parts of µ′ differ by at most 1. In fact, in such a case we have

µ′
q+1 =

{
µ′

q − 1 if q = µk for some k

µ′
q otherwise

(3.2)

Each symplectic shifted tableau, ST , is the result of filling the boxes of SFµ with integers
from 1 to n and 1̄ to n̄, ordered 1̄ < 1 < 2̄ < 2 < · · · < n̄ < n, subject to a number of
restrictions. We require a few more definitions. The profile of a shifted tableau is the sequence
of entries on the main diagonal of the shifted tableau. Let A be a totally ordered set, or
alphabet, and let Ar be the set of all sequences a = (a1, a2, . . . , ar ) of elements of A of
length r . Then the general set ST µ(A; a) is defined to be the set of all standard shifted
tableaux, ST , with respect to A, of profile a and shape µ, formed by placing an entry from
A in each of the boxes of SFµ in such that the following five properties hold:

(S1) ηi j ∈ A for all (i, j) ∈ SFµ;

(S2) ηi i = ai ∈ A for all (i, i) ∈ SFµ;

(S3) ηi j ≤ ηi, j+1 for all (i, j), (i, j + 1) ∈ SFµ;

(S4) ηi j ≤ ηi+1, j for all (i, j), (i + 1, j) ∈ SFµ;

(S5) ηi j < ηi+1, j+1 for all (i, j), (i + 1, j + 1) ∈ SFµ.

(3.3)

Informally, we may describe these tableaux as having shifted shape µ and as being filled
with entries from A with profile a such that the entries are weakly increasing from left to
right across each row and from top to bottom down each column, and strictly increasing
from top-left to bottom-right along each diagonal.

The set ST µ(n, n̄) of symplectic shifted tableaux is a specific instance of ST µ(A; a)
given by:

Definition 3.1 Let µ = (µ1, µ2, . . . , µn) be a partition of length �(µ) = n, all of whose
parts are distinct, and let A = [n, n̄] = {1, 2, . . . , n}∪ {1̄, 2̄, . . . , n̄} be subject to the order
relations 1̄ < 1 < 2̄ < 2 < · · · < n̄ < n. Then the set of all sp(2n)-standard shifted
tableaux of shape µ is defined by:

ST µ(n, n̄) = {S ∈ ST µ(A; a) | A = [n, n̄], a ∈ [n, n̄]n with ai ∈ {i, ī}
for i = 1, 2, . . . , n}, (3.4)

where the entries ηi j of each sp(2n)-standard shifted tableau ST satisfy the conditions
(S1)–(S5) of (3.3).

Continuing the above example with n = 5 and µ = (9, 7, 6, 2, 1), we have typically

ST =

1̄ 1 2̄ 2 3̄ 3̄ 4̄ 4 5

2̄ 2̄ 2 3 4̄ 4̄ 4

3 4̄ 4 4 4 4

4 4

5̄

∈ ST 97621(5, 5̄) (3.5)
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Within each symplectic shifted tableau we can identify a further construct, namely, a
ribbon strip [4].

Definition 3.2 The ribbon strips strk(ST ) and strk̄(ST ) consists of all boxes in the sym-
plectic shifted tableau containing k and k̄, respectively, with no two such boxes on the same
diagonal. Each ribbon strip may consist of one or more continuously connected parts.

By way of example, for ST as in (3.5) str4(ST ) and str4̄(ST ) take the form

str4(ST ) =
4

4

4 4 4 4

4 4

str4̄(ST ) =
4̄

4̄ 4̄

4̄

. (3.6)

Each symplectic shifted tableaux is nothing other than a collection of ribbon strips nested
or wrapped around one another so as to produce a diagram of standard shifted shape. It
follows that each ST ∈ ST µ(n, n̄) may be encoded by means of a map ψ from ST to
a 2n × m matrix ψ(ST ), with m = µ1, in which the rows of ψ(ST ), specified by k and
k̄ taken in reverse order from n at the top to 1̄ at the bottom, consist of a sequence of
symbols + or − in the qth column of ψ(ST ), counted from 1 on the left to m on the
right, indicating whether or not strk(ST ) and strk̄(ST ), as appropriate, intersects the qth
diagonal of ST , where diagonals are counted in the north-east direction starting from the
main, first diagonal to which the rows of ST are left-adjusted. Typically, applying ψ to our
example (3.5) for ST gives ψ(ST ) as shown:

ST =

1̄ 1 2̄ 2 3̄ 3̄ 4̄ 4 5

2̄ 2̄ 2 3 4̄ 4̄ 4

3 4̄ 4 4 4 4

4 4

5̄

⇒ ψ(ST ) =





− − − − − − − − +
+ − − − − − − − −
+ + + + + + + + −
− + − − + + + − −
+ − − + − − − − −
− − − − + + − − −
− − + + − − − − −
+ + + − − − − − −
− + − − − − − − −
+ − − − − − − − −





5

5̄

4

4̄

3

3̄

2

2̄

1

1̄

(3.7)

Clearly ψ(ST ) is uniquely determined by ST and vice versa. The inverse map ψ−1

from ψ(ST ) back to ST is accomplished by noting that the elements + in each column of
ψ(ST ) simply signify by virtue of their row label, k or k̄, those entries that appear in the
corresponding diagonal of ST , arranged in strictly increasing order.
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The strips strk(ST ) and strk̄(ST ), whose connected components are well represented by
sequences of consecutive +’s in ψ(ST ), play a key role in establishing the bijection between
symplectic shifted tableaux and alternating sign matrices with a U-turn boundary.

4. The bijection

In Hamel and King [4], we derived a relationship between UASM and symplectic shifted
tableaux by first going through monotone triangles. Here we prove the relationship directly.
We will find it useful to use the refinement of the UASM defined by φ.

Since the image ψ(ST ) of ψ acting on each symplectic shifted tableaux ST is a matrix of
±’s, the inverse φ−1 may be applied to ψ(ST ) to give a matrix of 1’s, 1̄’s and 0’s, which may
or may not be a U-turn alternating sign matrix, U A. In fact the resulting matrix φ−1 ◦ψ(ST )
is always a U-turn alternating sign matrix, and it is shown below in Theorem 4.1 that the
map � = φ−1 ◦ ψ is a bijective mapping from ST µ(n, n̄) to UAµ(2n).

In the case of our example, the outcome of this procedure mapping from ST to ψ(ST ),
identifying ψ(ST ) with φ(U A), and then recovering U A = φ−1 ◦ ψ(ST ) = �(ST ) is
illustrated by:

1̄ 1 2̄ 2 3̄ 3̄ 4̄ 4 5

2̄ 2̄ 2 3 4̄ 4̄ 4

3 4̄ 4 4 4 4

4 4

5̄

⇒





− − − − − − − − +
+ − − − − − − − −
+ + + + + + + + −
− + − − + + + − −
+ − − + − − − − −
− − − − + + − − −
− − + + − − − − −
+ + + − − − − − −
− + − − − − − − −
+ − − − − − − − −





⇒





0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0





(4.1)
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where the rows of the matrices are labelled from top to bottom n = 5, 5̄, 4, 4̄, 3, 3̄, 2, 2̄, 1, 1̄,
and the columns from left to right 1, 2, . . . , 9 = m = µ1.

Theorem 4.1 Let µ = (µ1, µ2, . . . , µn) be a partition of length �(µ) = n whose parts are
all distinct. Then the mapping � = φ−1 ◦ ψ defines a bijection between the set ST µ(n, n̄)
of sp(2n)-standard shifted tableaux ST of shape SFµ, and the set UAµ(2n) of 2n × m
µ-alternating sign matrices U A with a U-turn boundary and m = µ1.

Proof: The Definition 3.1 of ST µ(n, n̄) ensures that each sp(2n)-standard shifted tableau
ST satisfies the properties (S1)–(S5). We need to show, in accordance with the Definition 2.1
of UAµ(2n), that the properties (UA1)–(UA5) hold for the matrix U A = �(ST ) obtained
from ST by means of the map �.

First, it is obvious from the description of the mappings involved that the only possible
matrix elements of U A are 1, −1, and 0. Thus (UA1) holds.

Conditions (S3)–(S5) imply that each diagonal of ST contains no repeated entries, leading
to the observation that ST consists of a union of ribbon strips as described in Definition 3.2.
The map from ST to the matrix ψ(ST ) is then such that reading across each row of the
matrix φ(U A) gives sequences of +’s corresponding to each connected component of the
relevant ribbon strip. The matrix ψ(ST ) is now to be identified with φ(U A) for some U A.
The fact that the right-most + of each sequence of consecutive +’s in φ(U A) is mapped
to an element 1 in U A, and that the right-most − of each sequence of consecutive −’s is
mapped to an element −1, provided that such a − is followed by a +, means that across
each row of the resulting matrix U A we have non-zero entries 1 and −1 that alternate in
sign, with the right-most non-zero entry always 1. This implies the validity of (UA2).

To establish the U-turn nature of U A it is necessary to invoke condition (S2) and the fact
that ST is standard only if the entry ηi i = ai in the i th box of the leading diagonal of ST is
either i or ī . The map from ST to ψ(ST ) is then such that the elements in the first column
of the i th and ī th rows are different, one is always + and the other always −. Identifying
ψ(ST ) with φ(U A), the first non-zero entries, if they exist, in the corresponding i th and ī th
rows of U A must also differ, one being 1 and the other −1. This is sufficient to show that
the U-turn sequence obtained by reading across the i th row from right to left and then back
along the ī th row from left to right is an alternating sequence of 1’s and −1’s. The fact that
in both rows the right-most non-zero element must be 1 then ensures the validity of (UA4)
since this U-turn alternating sign sequence begins and ends with 1. If on the other hand
either i or ī is not present in ST , then the corresponding row of ψ(ST ) will consist wholly of
−’s, and identifying ψ(ST ) with φ(U A) leads to the conclusion that the corresponding row
of U A consists solely of 0’s, containing no non-zero elements and making no contribution
to the U-turn sequence. However, the other row of the pair i and ī in ψ(ST ) must start with
a + thereby ensuring that the first non-zero entry in the corresponding row of U A must
be 1. Since the last non-zero element is also 1, the row sum is 1 and the U-turn condition
(UA4) holds yet again.

To deal with (UA3), we consider the diagonals of ST . To this end the following schematic
diagrams of various portions of the qth and (q + 1)th diagonals of ST will prove to
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be helpful.

D1 =

i b
a b

a b
a b

a b
j

D2 =

i
a b

a b
a b

a b
a j

D3 =
a b

a b
a b

a j

(4.2)

In these diagrams the labels i and j are the actual entries in the corresponding boxes of
ST , which may of course be barred or unbarred, while the rules (S3)–(S5) of (3.3) are such
that the actual entries of ST in the boxes labeled by a are all distinct, as are those in the
boxes labeled by b. Moreover, in each case that we will consider each such entry k will
necessarily be such that i < k < j . We use the notation na and nb to indicate the number
of entries a and b, respectively.

All elements 1 in the qth column of the matrix U A constructed from ST by means of
the map � correspond to connected components of ribbon strips of ST terminating in the
qth diagonal, by virtue of their connection with right-most +’s in continuous sequences of
+’s in the rows of ψ(ST ) = φ(U A). Similarly all elements −1 in the qth column of the
matrix U A correspond to connected components of ribbon strips starting in the (q + 1)th
diagonal, by virtue of their connection with the right-most −’s immediately preceding a +
in the rows of ψ(ST ) = φ(U A). To see that these non-zero elements in the qth column of
U A necessarily alternate in sign, consider two consecutive 1’s and the corresponding boxes
on the qth diagonal of ST . In the schematic diagram D1 above, these have been labeled by
their entries i and j (which could be barred or unbarred entries). They correspond to the
termination of connected components of the strips stri (ST ) and str j (ST ) in the qth diagonal
of ST . All na boxes on the qth diagonal between these i and j boxes, labeled in D1 by a,
must be labeled in ST itself by na distinct entries k with i < k < j . Similarly all nb boxes
on the (q + 1)th diagonal to the right of i and above j , labeled in D1 by b, must also be
labeled in ST by distinct entries k with i < k < j . Since nb = na +1 it follows that at least
one b-label must be distinct from all a-labels. If this label is k, then a connected component
of strk(ST ) must start in the (q + 1)th column with no component in the qth column. This
leads in the kth row of ψ(ST ) to a − followed by a +, and hence to an element −1 in the qth
column of U A, between the two 1’s associated with the boxes i and j . Similarly, between
any two −1’s in the qth column of U A there must exist an element 1. The proof is based
on the diagram D2 above. The details are omitted.

This is not sufficient to prove that (UA3) holds. It is necessary to prove further that the
lowest non-zero entry in every column of U A is 1. The argument is very much as before,
this time using the schematic diagram D3. In combination with the fact that, as we have
proved, the signs of the non-zero elements are alternating in the columns of U A, this serves
to complete the proof that (UA3) holds.
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The final argument in respect of (UA5) based on the use of the following diagrams is
very similar, where the symbol ∗ indicates an empty box to give

D4 =

a b
a b

a b
a b

a ∗
D5 =

a b
a b

a b
a b

a b
∗

(4.3)

This completes the proof that for all ST ∈ ST µ(n, n̄) we haveU A = �(ST ) ∈ UAµ(2n).
Reversing the argument, Definition 2.1 of UAµ(2n) ensures that each U-turn alternating

sign matrix U A satisfies the properties (UA1)–(UA5). We now need to show that these prop-
erties imply, in accordance with the Definition 3.1 ofST µ(n, n̄), that S = �−1(U A) satisfies
(S1)–(S5), with A = {1, 2, . . . , n} ∪ {1̄, 2̄, . . . , n̄} and ai ∈ {i, ī} for i = 1, 2, . . . , n.

First it should be noted that (UA1) guarantees the existence of φ(U A) = ψ(ST ) as a
matrix of +’s and −’s. The fact that U A and hence ψ(ST ) is 2n × m, with rows labelled by
the elements of A, then ensures that (S1) holds, since it is the row labels which determine
the entries in ST .

The U-turn condition embodied in (UA2) and (UA4) then guarantees that each pair of
consecutive rows of φ(U A) counted from the bottom (or top) is such that one of the rows
in the pair starts with a + and the other with a −. In the case of the i th such pair, the row
with + in the first column of ψ(ST ) determines which one of i or ī is the leading entry in
the i th row of ST . This ensures that (S2) holds.

Thereafter, the fact that the entries of ST are built up by adding to the relevant diagonals
all the 1̄’s, then all the 1’s, followed by all the 2̄’s, and so on, ensures that the ordering
conditions (S3)–(S5) are automatically satisfied, provided that at every stage, after the
addition of all entries ≤ i , the shape SFµ(i) of the shifted sub-tableau, S(i), obtained in this
way is regular, for all i = 1̄, 1, 2̄, . . . , n. By regular we mean that the lengths of the rows,
left-adjusted as usual to the leading diagonal, are specified by means of a partition, µ(i),
all of whose non-vanishing parts are distinct. Regularity may be proved inductively using
once again the diagonal structure of the diagrams.

Hence for all U A ∈ UAµ(2n) the conditions (S3)–(S5) apply to S = �−1(U A). Having
already established that (S1) and (S2) also apply, we can conclude that for all U A ∈
UAµ(2n) we have S = �−1(U A) ∈ ST µ(n, n̄).

This completes the proof of Theorem 4 that � provides a bijection between the sp(2n)-
standard shifted tableaux ST ∈ ST µ(n, n̄) and the U-turn alternating sign matrices U A ∈
UAµ(2n) for all partitions µ of length �(µ) = n whose parts are all distinct.

5. Square ice

In order to exploit the above bijection to the full it is necessary to add some x and t-
dependent weightings to both U A ∈ UAµ(2n) and ST ∈ ST µ(n, n̄). Although some such
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weightings have already been provided [4], rather similar but not quite identical weightings
may perhaps be best motivated and described through the connection between µ-UASMs,
symplectic shifted tableaux and the square ice model that has proved to be such an invaluable
tool in the study of alternating sign matrices and their enumeration.

Square ice is a two dimensional grid that models the orientation of molecules in frozen
water, see for example Lieb [11], Bressoud [1], Lascoux [10]. In frozen water the model is
such that each individual molecule, consisting of two hydrogen atoms attached to an oxygen
atom, takes up one of the 6 possible orientations (the six vertex model) shown below.

H H H

↓ ↓ ↓
H → O ← H O H → O O ← H O ← H H → O

↑ ↑ ↑
H H H

W E N S N E SW N W SE

↑ ↓ ↑ ↓ ↑ ↓
→ · ← ← · → → · → ← · ← ← · ← → · →

↓ ↑ ↑ ↓ ↑ ↓

1 −1 0 0 0 0

(5.1)

As indicated in the second line of (5.1), the orientation of each molecule may be specified
by giving the compass directions of the bonds linking each hydrogen atom to the oxygen
atom. Thus WE represents a horizontal molecule, NS a vertical molecule and NE, SW, NW
and SE molecules in which the hydrogen bonds are mutually perpendicular. Alternatively,
each oxygen atom may be associated with a tetravalent vertex with two incoming and two
outgoing edges as shown in the third line of (5.1). At each vertex it is the incoming edges
that are associated with the hydrogen bonds displayed in the first line of (5.1).

Square ice configurations [11] consist of arrangements of the above molecules with an
oxygen atom at each point of a square n × n grid. The corresponding square ice graph [11]
is one in which the internal vertices sit at the grid points specified by the oxygen atoms. The
particular boundary conditions that correspond to ASM were apparently first considered by
Korepin [7]. As we have indicated all the internal vertices are tetravalent, with two incoming
and two outgoing edges. The boundary vertices, including corner vertices, are not usually
drawn. Corner vertices have no edges. Non-corner boundary vertices are of valency one,
but there may be boundary conditions on the edges linking them to the internal vertices.
Conventionally, each left or right non-corner boundary vertex has an edge pointing towards
the adjacent internal vertex, while each top or bottom non-corner boundary vertex has an
edge pointing away from the adjacent internal vertex.
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Each such square ice configuration is then associated with an alternating sign matrix. To
construct the ASM one merely associates each internal vertex of the type shown in equation
(5.1) with the corresponding matrix element 1, −1 or 0 indicated in the bottom line of
(5.1). The fact that the corresponding matrix is an ASM is a consequence of the boundary
conditions and the fact that each hydrogen atom is linked to just one oxygen atom. Using
this association Kuperberg employed known results on square ice to provide a second proof
of the alternating sign matrix conjecture [8].

This natural link between square ice and ordinary ASMs may be generalized slightly so
as to account for the U-turns and zero sum columns of our µ-UASMs. It is only necessary
to modify the boundary conditions. A zero sum in column q corresponds to a square ice
graph with incoming rather than outgoing edges at the top boundary in column q. A U-turn
corresponds to either an outgoing left boundary edge at row 2i − 1 and an incoming left
boundary edge at row 2i , or an incoming left boundary edge at row 2i − 1 and an outgoing
left boundary edge at row 2i as shown in figure 1. With these changes in boundary conditions
we can map the six types of vertices to 1’s, −1’s, and 0’s exactly as before and produce a
µ-UASM U A. However, the 0’s carry less information than is available in the square ice
graph. At an intermediate stage in mapping from the square ice graph to a µ-UASM it is
helpful to map to a square ice configuration matrix, C M , whose matrix elements are just

Figure 1. Square ice with U-turn boundary.
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the labels WE, NS, NE, SW, NW, and SE attached to the six types of vertex in (5.1). To be
precise, we adopt the following

Definition 5.1 Let µ = (µ1, µ2, . . . , µn) be a partition of length �(µ) = n, all of whose
parts are distinct and with largest part µ1 = m. Then the configuration matrix C M belongs
to the set CMµ(2n) if it is the image under the map of its vertices to matrix elements in the
set {W E, N S, N E, SW, N W, SE} defined in (5.1) of a square ice graph on a 2n × m grid
in which each internal vertex has two incoming and two outgoing edges, with all right-hand
edges incoming, all bottom edges outgoing, each left-hand pair of edges a U-turn with one
edge incoming and one outgoing, and all top edges either outgoing or incoming according
as the column number counted from the left is or is not equal to one of the parts of µ.

This is exemplified for the square ice graph of figure 1 by the corresponding configuration
matrix C M given in (5.2).

C M =





N W N W SW SW SW N W N W N S W E

W E N W SW SW SW N W N W N W SW

SE N E SE SE SE N E N E W E SW

N S W E SW N S SE N E W E SW SW

W E SW N S W E SW N W SW SW SW

SW SW N W N S SE W E SW SW SW

SW N S N E W E SW SW SW SW SW

SE N E W E SW SW SW SW SW SW

N S W E SW SW SW SW SW SW SW

W E SW SW SW SW SW SW SW SW





(5.2)

The map χ from this configuration matrix C M to the corresponding µ-UASM U A =
χ (C M) is then accomplished merely by setting WE and NS to 1 and −1, respectively,
and NE, SW, NW and SE all to 0. The example has been chosen so that the result is the
matrix U A appearing in (2.9). It is not difficult to see that for all configuration matrices
C M ∈ CMµ(2n) we have χ (C M) ∈ UAµ(2n). Moreover, χ is a bijection. The inverse
map from U A ∈ Uµ(2n) to C M = χ−1(U A) ∈ CMµ(2n) is such that the image under
χ−1 of each matrix element 1 and −1 of U A is just WE and NS, respectively. The images
of the 0’s are NE, SW, NW and SE according as their nearest non-zero neighbours to the
right and below are (1, 1), (1̄, 1̄), (1̄, 1) and (1, 1̄), respectively, where with some abuse of
notation 1̄ is used to signify either −1 or the absence of any non-zero neighbour in the
appropriate direction. These assignments are precisely what is required to ensure that there
are no ambiguities in the directions of the edges at any vertex and that collectively they are
consistent with the U-turn square ice conditions.

It is convenient to let we(C M), ns(C M), ne(C M), sw(C M), nw(C M), and se(C M)
denote the total number of matrix elements of the configuration matrix C M that are equal
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to WE, NS, NE, SW, NW and SE, respectively, and to refine this with subscripts k and k̄
if the count is restricted to the (2n + 1 − 2k)th and (2n + 2 − 2k)th rows, respectively. In
addition we let neo(C M) and see(C M) denote the total number of matrix elements of C M
equal to NE in the odd rows counted from the top, and equal to SE in the even rows, and let
wgte(C M) denote the total number of matrix elements NE, SE and WE in the even rows.
Thus

neo(C M) =
n∑

k=1

nek(C M);

see(C M) =
n∑

k=1

sek̄(C M); (5.3)

wgte(C M) =
n∑

k=1

(nek̄(C M) + sek̄(C M) + wek̄(C M)).

The significance of these parameters and the fact that χ defines a bijection from C M ∈
CMµ(2n) to U A ∈ UAµ(2n) is that we may refer to the 0’s of any such U A = χ (C M) as
being NE, SW, NW or SE 0’s if under χ−1 they map to NE, SW, NW or SE, respectively.
Then, ne(C M), sw(C M), nw(C M) and se(C M) denote the numbers of such 0’s in U A =
χ (C M). In the same way the number of 1’s and −1’s in U A are given by we(C M) and
ns(C M). Thus the configuration matrix C M = χ−1(U A) is an alternative refinement of U A
to that provided by the signature matrix φ(U A) exemplified in (2.10). In fact the passage
from φ(U A) to C M is effected by replacing the right-most + and right-most − of any
sequence of +’s and −’s in φ(U A) by W E and N S, respectively, with the remaining +’s
replaced by either N E or SE and the remaining −’s by either N W or SW in accordance
with the above rules regarding nearest non-zero neighbours of the corresponding 0’s in U A.

All this allows us to define various weightings and statistics on both U A ∈ UAµ(2n)
and ST ∈ ST µ(n, n̄). First we assign an x–weighting to each µ-UASM. To this end let
mk(U A) and mk̄(U A) be the number of positive zeros and ones in the kth even and the kth
odd row of U A, respectively, counted upwards from the bottom for k = 1, 2, . . . , n. Then

xwgt(U A) = xm1(U A)−m 1̄(U A)
1 xm2(U A)−m 2̄(U A)

2 · · · xmn (U A)−mn̄ (U A)
n . (5.4)

In our running example (2.10) this gives

xwgt(U A) = x1−1
1 x2−3

2 x2−2
3 x8−4

4 x1−1
5 = x−1

2 x4
4 . (5.5)

It should be noted that mk(U A) and mk̄(U A) are just the number of +’s in the (2n+1−2k)th
and (2n + 2 − 2k)th rows of the signature matrix φ(U A), respectively.

Equivalently, in terms of the configuration matrix C M = χ−1(U A) we have

mk(U A) = mk(C M) with mk(C M) = nek(C M) + sek(C M) + wek(C M);

mk̄(U A) = mk̄(C M) with mk̄(C M) = nek̄(C M) + sek̄(C M) + wek̄(C M),
(5.6)
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for k = 1, 2, . . . , n. It follows that

xwgt(U A) = xwgt(C M) with xwgt(C M) =
n∏

k=1

xmk (C M)−mk̄ (C M)
k . (5.7)

There also exists a standard x-weighting of the sp(2n)-symplectic shifted tableaux ST .
To each entry k or k̄ in ST we associate a factor xk or x−1

k . The product of all these factors
for k = 1, 2, . . . , n serves to define, as in [4], the x-weight of ST . Setting mk(ST ) and
mk̄(ST ) equal to the number of entries k and k̄, respectively, in ST for k = 1, 2 . . . , n we
have

xwgt(ST ) = xm1(ST )−m 1̄(ST )
1 xm2(ST )−m 2̄(ST )

2 · · · xmn (ST )−mn̄ (ST )
n . (5.8)

In the example (3.5) this gives

xwgt(ST ) = x1−1
1 x2−3

2 x2−2
3 x8−4

4 x1−1
5 = x−1

2 x4
4 . (5.9)

As can be seen from the bijective mapping from ST to U A = �(ST ) by way of ψ(ST ) =
φ(U A), illustrated in (2.10), we have

mk(ST ) = mk(U A) for k = 1, 2, . . . , n;

mk̄(ST ) = mk̄(U A) for k = 1, 2, . . . , n,
(5.10)

and hence

xwgt(ST ) = xwgt(U A). (5.11)

In addition to the above x-weightings of both U A ∈ UAµ(2n) and ST ∈ ST µ(n, n̄),
we can also assign t-weightings to both U A and ST . In dealing with U A we require
three statistics based on, but not quite identical to those introduced previously [4]. The
first statistic, neg(U A), is defined to be the number of −1’s appearing in U A. The second
statistic, bar(A), is defined to be the total number of positive zeros and ones in the even
rows of U A counted from the top. This statistic can be read off most easily from φ(U A).
For the third statistic we need the following:

Definition 5.2 Let U A be a µ-UASM with matrix elements aiq for 1 ≤ i ≤ 2n and
1 ≤ q ≤ m. Then U A is said to have a site of special interest, an ssi, at (i, q) if:

(SS1) aiq = 0;

(SS2) air = 1 with aip = 0 for q < p < r ≤ m;

(SS3) either i is odd and akq = 1 with a jq = 0 for i < j < k ≤ 2n,

or i is even and akq = −1 with a jq = 0 for i < j < k ≤ 2n,

or i is even and a jq = 0 for i < j ≤ 2n.

(5.12)
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More graphically, each ssi is the site of a 0 of U A whose nearest non-zero right hand
neighbour is 1, and whose nearest non-zero neighbour below the site is 1 for a site in an
odd row counted from the top and either −1 or non-existent for a site in an even row. With
this definition, ssi(U A) is defined to be the number of sites of special interest in U A.

Once again it is perhaps easiest to read off these parameters neg(U A), bar(U A) and
ssi(U A) from the corresponding configuration matrix C M = χ−1(U A). In terms of this
matrix we have

neg(U A) = ns(C M) =
n∑

k=1

(nsk(C M) + nsk̄(C M));

bar(U A) =
n∑

k=1

(nek̄(C M) + sek̄(C M) + wek̄(C M)); (5.13)

ssi(U A) =
n∑

k=1

(nek(C M) + sek̄(C M)).

In the example of (2.10) we have neg(U A) = 7, bar(U A) = 11 and ssi(U A) = 7, where
the seven sites of special interest are indicated by boldface 0’s in U A, and by boldface N E’s
and SE’s in C M = χ−1(U A), as shown below in (5.14).

U A =





0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0





C M =





N W N W SW SW SW N W N W N S W E

W E N W SW SW SW N W N W N W SW

SE NE SE SE SE NE NE W E SW

N S W E SW N S SE N E W E SW SW

W E SW N S W E SW N W SW SW SW

SW SW N W N S SE W E SW SW SW

SW N S NE W E SW SW SW SW SW

SE N E W E SW SW SW SW SW SW

N S W E SW SW SW SW SW SW SW

W E SW SW SW SW SW SW SW SW





(5.14)
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The t-weight to be attached to each element of C M = χ−1(UA) can then be tabulated as
follows

element odd rows even rows
W E 1 t

N S 1 + t 1 + t

N E t t

SW 1 1

N W 1 1

SE 1 t2

(5.15)

Comparison of (5.15) with (5.13) shows that this gives a total t-weight of

t ssi(U A)+bar(U A) (1 + t)neg(U A). (5.16)

Applying (5.15) to (5.14) gives the t-weighting

U A : (1 + t)7 ×





1 1 1 1 1 1 1 1̄ 1

t 1 1 1 1 1 1 1 1

1 t 1 1 1 t t 1 1

1̄ t 1 1̄ t2 t t 1 1

1 1 1̄ 1 1 1 1 1 1

1 1 1 1̄ t2 t 1 1 1

1 1̄ t 1 1 1 1 1 1

t2 t t 1 1 1 1 1 1

1̄ 1 1 1 1 1 1 1 1

t 1 1 1 1 1 1 1 1





= t18 (1 + t)7. (5.17)

Turning now to the t-weighting of an sp(2n)-shifted tableau ST it is convenient, in order
to match contributions to the t-weight of ST more precisely to the above contributions
to the t-weight of U A = �(ST ), to modify slightly our previous t-weighting of sp(2n)-
standard shifted tableaux [4]. This is done as follows. Each entry k in ST belongs to a
ribbon strip strk(ST ) as in Definition 3.2. The t-weight of an entry k is then defined to be
t if the entry immediately above this entry is also in strk(ST ), otherwise its t-weight is 1.
Similarly the t-weight of an entry k̄ is defined to be t2 if the entry immediately to its right is
also in strk̄(ST ), otherwise its t-weight is t . There is an additional t-weighting of (1+ t) for
every connected component of a strip strk(ST ) or strk̄(ST ) that does not start on the main
diagonal. In order to codify this, let str(ST ) be the total number of continuously connected
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components of all strk(ST ) and strk̄(ST ) for k = 1, 2, . . . , n, and let bar(ST ) be the total
number of barred entries in ST . In addition let

var(ST ) =
n∑

k=1

(rowk(ST ) − conk(ST ) + colk̄(ST ) − conk̄(ST )), (5.18)

where rowk(ST ) and colk̄(ST ) are the number of rows and columns of ST containing
a k and k̄, respectively, and conk(ST ) and conk̄(ST ) are the number of continuously
connected components of strk(ST ) and strk̄(ST ), respectively. This statistic var(ST ) rep-
resents a measure of the upward steps in all strk(ST ) and the rightward steps in
all strk̄(ST ). In terms of the parameter hgt(ST ) used in [4], we have var(ST ) = hgt(ST ) +
bar(ST ).

For the strips of (3.6) this t-weighting is illustrated by

1 ·
t

1 1 1 t

1 t

t · ·
· t2 t

t ·
·

× (1 + t)2. (5.19)

More generally, putting all such strips together we obtain the following t-weighting of ST
from (3.5):

ST :

t 1 t t t2 t t 1 1

t2 t 1 1 t2 t t

1 t 1 1 1 t

1 t

t

× (1 + t)7. (5.20)

As we have seen the bijection between ST ∈ ST µ(n, n̄) and U A ∈ UAµ(2n) is such
that the (2n + 1 − 2k)th and (2n + 2 − 2k)th rows of U A are determined by strk(ST ) and
strk̄(ST ), respectively, for k = 1, 2, . . . , n. It is not difficult to see that each entry k of
weight t corresponds to an NE 0 of U A, while those of weight 1 correspond either to a SE
0 or to a WE entry 1 if k is the last entry of a connected component of strk(ST ). In the
same way each entry k̄ of weight t2 corresponds to a SE 0 of U A, while those of weight t
correspond either to a NE 0 or to a WE entry 1 if k̄ is the last entry of a connected component
of strk̄(ST ). The additional weighting factors (1 + t) are associated with the NS −1’s of
U A since it is these −1’s that signal the start of a sequence of positive 0’s ending in a 1. In
terms of the elements of the corresponding configuration matrix, C M = χ−1(U A), arising
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from the square ice model we have

str(ST ) = ns(C M) =
n∑

k=1

(nsk(C M) + nsk̄(C M));

bar(ST ) =
n∑

k=1

(nek̄(C M) + sek̄(C M) + wek̄(C M)); (5.21)

var(ST ) =
n∑

k=1

(nek(C M) + sek̄(C M)).

It follows from (5.13) that for U A = �(ST ) we have

neg(U A) = str(ST ) − n, bar(U A) = bar(ST ), ssi(U A) = var(ST ). (5.22)

The coincidence of the t-weighting of ST and U A is exemplified in the case of our
running example by

ST : (1 + t)7 ×

t 1 t t t2 t t 1 1

t2 t 1 1 t2 t t

1 t 1 1 1 t

1 t

t

⇐⇒

U A : (1 + t)7 ×





0 0 0 0 0 0 0 1̄ 1

t 0 0 0 0 0 0 0 0

1 t 1 1 1 t t 1 0

1̄ t 0 1̄ t2 t t 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ t2 t 0 0 0

0 1̄ t 1 0 0 0 0 0

t2 t t 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

t 0 0 0 0 0 0 0 0





(5.23)

where, in particular, the 3rd and 4th rows of the t-weighting of U A are obtained from the
t-weighting of str4(ST ) and str4̄(ST ) displayed in (5.20). In contrast to (5.17) the NW and
SW 0’s of U A have been mapped to 0 to indicate that they have no counterpart in ST . In
fact they correspond to the diagonals of ST on which the relevant strips have no box, as
indicated for example by the ·’s in (5.19). Ignoring these 0’s, the corresponding t-weight
of both ST and U A is the product of all the displayed powers of t together with the seven
factors (1 + t) arising from the seven continuously connected components of the strips of
ST that do not start on the main diagonal, and equivalently from the seven 1̄’s of U A. It
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should be noted that the sites of special interest in U A correspond to the location of the t’s
and t2’s in the odd and even rows, respectively, of the t-weighted version of U A.

It is perhaps worth summarising the x and t-weighting by pointing out that in terms of
the labelling used in C M = χ−1(U A) the combined x and t-weighting translates to

{
(1 + t)ns(C M) tne(C M) (xk)ne(C M)+se(C M)+we(C M) for row 2n + 1 − 2k;

(1 + t)ns(C M) t se(C M)
(
t x−1

k

)ne(C M)+se(C M)+we(C M)
for row 2n + 2 − 2k,

(5.24)

for k = 1, 2, . . . , n.

6. Weighted enumeration

Propp [15] has provided data for and made a number of conjectures about the weighted
enumeration of UASMs. Eisenkölbl [2] has proved a number of these conjectures, and a
number are derivable from Kuperberg [9]. Here we delineate a new family of weighted
enumerations of UASMs, and more generally of µ-UASMs through their connection with
symplectic shifted tableaux and show their overlap with the results of Propp.

To do this in the greatest generality, we shall also need the notion of ordinary symplectic
tableaux [5,6,17]. Let λ = (λ1, λ2, . . . , λr ) be a partition of length �(λ) = r ≤ n and weight
|λ|. Each such partition specifies a Young diagram Fλ consisting of |λ| boxes arranged in
�(λ) rows of length λi that are left adjusted to a vertical line. For example, for λ = (4, 3, 3)
we have

Fλ = (6.1)

Each symplectic tableau, T , of shape λ is then the result of filling the boxes of Fλ with
integers from 1 to n and 1̄ to n̄, ordered 1̄ < 1 < 2̄ < 2 < · · · < n̄ < n, subject to a number
of restrictions. This time let the profile of a tableau be the sequence of entries obtained by
reading down the first, left-most column. Let A be a totally ordered set, or alphabet, and
let Ar be the set of all sequences a = (a1, a2, . . . , ar ) of elements of A of length r . Then
the general set T λ(A; a) is defined to be the set of all standard shifted tableaux, ST , with
respect to A, of profile a and shape λ, formed by placing an entry from A in each of the
boxes of Fλ in such that the following four properties hold:

(T1) ηi j ∈ A for all (i, j) ∈ Fλ;

(T2) ηi i = ai ∈ A for all (i, 1) ∈ Fλ;

(T3) ηi j ≤ ηi, j+1 for all (i, j), (i, j + 1) ∈ Fλ;

(T4) ηi j < ηi+1, j for all (i, j), (i + 1, j) ∈ Fλ.

(6.2)

These tableaux of shape λ and profile a have entries from A that are weakly increasing
from left to right across each row and are strictly increasing from top to bottom down each
column.
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The set T λ(sp(2n)) of all sp(2n)-standard tableaux of shape λ is a specific instance of
T λ(A; a) given by

Definition 6.1 Let λ = (λ1, λ2, . . . , λr ) be a partition of length �(µ) = r ≤ n, and let
A = [n, n̄] = {1, 2, . . . , n} ∪ {1̄, 2̄, . . . , n̄} be subject to the order relations 1̄ < 1 < 2̄ <

2 < · · · < n̄ < n. Then the set of all sp(2n)-standard tableaux of shape λ is defined by:

T λ(sp(2n)) = {T ∈ T λ(A; a) | A = [n, n̄], a ∈ [n, n̄]r with ai ≥ i for i = 1, 2, . . . , r},
(6.3)

where the entries ηi j of each sp(2n)-standard tableau T satisfy the conditions (T1)–(T4) of
(6.2).

Typically, for n = 5 and λ = (4, 3, 3) we have

T =
1̄ 1̄ 1 5

2 2 4

4 5̄ 5̄

∈ T 433(10). (6.4)

The symplectic Schur function [5, 6, 17], which with a suitable interpretation of the
indeterminates xi for i = 1, 2, . . . , n is the character of the irreducible representation of
the Lie algebra sp(2n) specified by λ, then takes the form

spλ(x) = spλ(x1, x2, . . . , xn) =
∑

T ∈T λ(sp(2n))

xwgt(T ), (6.5)

where the sum is now over all sp(2n)-standard tableaux T of shape λ and

xwgt(T ) = xm1(T )−m 1̄(T )
1 xm2(T )−m 2̄(T )

2 · · · xmn (T )−mn̄ (T )
n , (6.6)

with mk(T ) and mk̄(T ) equal to the number of entries k and k̄, respectively, in T .
It is useful in the present context to generalise this by introducing some t-dependence

and defining

spλ(x ; t) =
∑

T ∈T λ(sp(2n))

t2bar(T ) xwgt(T ), (6.7)

where bar(T ) is the number of barred entries in T , that is

bar(T ) =
n∑

k=1

mk̄(T ). (6.8)

In our example (6.4) we have bar(T ) = 4 and

xwgt(T ) = x1−2
1 x3−0

2 x0−0
3 x2−0

4 x0−2
5 = x−1

1 x3
2 x2

4 x−2
5 . (6.9)
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In this context the t-deformation of the denominator of Weyl’s character formula for
sp(2n) takes the form

Dsp(2n)(x ; t) =
∏

1≤i≤n

xn−i+1
i

∏

1≤i≤n

(1 + t x−2
i )

∏

1≤i< j≤n

(1 + t x−1
i x j )(1 + t x−1

i x−1
j ). (6.10)

In our previous paper [4] we derived the following extension to Tokuyama’s formula [18]
for the expansion of (6.10), namely

Theorem 6.2 Let λ be a partition into no more that n parts and let δ = (n, n − 1, . . . , 1).
Then

Dsp(2n)(x ; t) spλ(x ; t) =
∑

ST ∈ST λ+δ (n,n̄)

tvar(ST )+bar(ST ) (1 + t)str(ST )−n xwgt(ST ), (6.11)

where the summation is taken over all sp(2n)-standard shifted tableaux ST of shape µ =
λ + δ.

Thanks to the bijection between ST ∈ ST µ(n, n̄) and U A ∈ UAµ(2n) and the equiva-
lence between the x and t-weightings of ST and U A this theorem can be recast in terms of
µ-UASMs as follows:

Theorem 6.3 Let λ be a partition into no more than n parts, let δ = (n, n − 1, . . . , 1),
and let m = λ1 + n. Then

Dsp(2n)(x ; t) spλ(x ; t) =
∑

U A∈UAλ+δ (2n)

t ssi(U A)+bar(U A) (1 + t)neg(U A) xwgt(U A), (6.12)

where the summation is taken over all 2n × m UASMs whose non-vanishing column sums
are 1 or 0 according as the column number is or is not a part of µ = λ + δ.

Finally, in terms of the square ice configuration matrices we have

Theorem 6.4 Let λ be a partition into no more than n parts, let δ = (n, n − 1, . . . , 1)
and let m = λ1 + n. Then

Dsp(2n)(x ; t) spλ(x ; t) =
∑

C M∈CMλ+δ (2n)

tneo(C M)+see(C M)+wgte(C M) (1 + t)ns(C M) xwgt(C M),

(6.13)

where the summation is taken over all 2n × m U-turn square ice configuration matrices
C M whose top-most element in each column is either NW or NS if the column number is a
part of µ = λ + δ and is SW or WE otherwise.
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By setting x1 = x2 = x3 = · · · = xn = 1 in these formulae we derive the following
results

Corollary 6.5 Let λ be a partition into no more than n parts, let δ be the partition
(n, n − 1, . . . , 1), and let m = λ1 + n. Then

(1 + t)n2
spλ(1; t) =

∑

ST ∈ST λ+δ (n,n̄)

tvar(ST )+bar(ST ) (1 + t)str(ST )−n,

=
∑

U A∈UAλ+δ (2n)

t ssi(U A)+bar(U A) (1 + t)neg(U A),

=
∑

C M∈CMλ+δ (2n)

tneo(C M)+see(C M)+wgte(C M) (1 + t)ns(C M). (6.14)

Specialising further to the case t = 1 gives

Corollary 6.6 Let λ be a partition into no more than n parts, let δ = (n, n − 1, . . . , 1),
and let m = λ1 + n. Then

2n2
spλ(1) =

∑

ST ∈ST λ+δ (n,n̄)

2str(ST )−n =
∑

U A∈UAλ+δ (2n)

2neg(U A) =
∑

C M∈CMλ+δ (2n)

2ns(C M).

(6.15)

Here spλ(1) = spλ(1; 1) is the dimension of the irreducible representation of sp(2n)
specified by λ, and it is known [3, 20, 21] that this is given by

spλ(1) =
∏

1≤i< j≤n

λi − i − λ j + j

j − i

∏

1≤i≤ j≤m

λi + λ j + n − i − j + 2

n + 2 − i − j
. (6.16)

However, as far as we know, no comparable product formula for spλ(1; t) has yet been
found.

Setting λ = 0, so that µ = δ = (n, n − 1, . . . , 1) in Theorems 6.2–6.4 gives

Theorem 6.7 Let δ = (n, n − 1, . . . , 1) and m = n. Then

Dsp(2n)(x ; t) =
∑

ST ∈ST δ (n,n̄)

tvar(ST )+bar(ST ) (1 + t)str(ST )−n xwgt(ST )

=
∑

U A∈UAδ (2n)

t ssi(U A)+bar(U A) (1 + t)neg(U A) xwgt(U A)

=
∑

C M∈CMδ (2n)

tneo(C M)+see(C M)+wgte(C M) (1 + t)ns(C M) xwgt(C M), (6.17)

where the summations are taken over all sp(2n)-standard shifted tableaux ST of shape δ, all
2n ×n UASMs whose column sums are all 1 and all 2n ×n U-turn square ice configuration
matrices C M whose top-most element in each column is either NW or NS.
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Finally, setting x1 = x2 = · · · = xn = 1 in Corollaries 6.5 and 6.6 gives

Corollary 6.8 Let δ = (n, n − 1, . . . , 1), then

(1 + t)n2 =
∑

ST ∈ST δ (n,n̄)

tvar(ST )+bar(ST ) (1 + t)str(ST )−n,

=
∑

U A∈UAδ (2n)

t ssi(U A)+bar(U A) (1 + t)neg(U A),

=
∑

C M∈CMδ (2n)

tneo(C M)+see(C M)+wgte(C M) (1 + t)ns(C M). (6.18)

and

Corollary 6.9 Let δ = (n, n − 1, . . . , 1), then

2n2 =
∑

ST ∈ST δ (n,n̄)

2str(ST )−n =
∑

U A∈UAδ (2n)

2neg(U A) =
∑

C M∈CMδ (2n)

2ns(C M). (6.19)
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