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Abstract. We introduce toric complexes as polyhedral complexes consisting of rational cones together with a
set of integral generators for each cone, and we define their associated face rings. Abstract simplicial complexes
and rational fans can be considered as toric complexes, and the face ring for toric complexes extends Stanley and
Reisner’s face ring for abstract simplicial complexes [20] and Stanley’s face ring for rational fans [21]. Given a
toric complex with defining ideal I for the face ring we give a geometrical interpretation of the initial ideals of I
with respect to weight orders in terms of subdivisions of the toric complex generalizing a theorem of Sturmfels in
[23]. We apply our results to study edgewise subdivisions of abstract simplicial complexes.
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1. Introduction

The aim of this paper is to define and study toric complexes. An embedded toric complex is
a rational fan together with a distinguished set of generators, consisting of lattice points, for
each cone. Since an abstract simplicial complex with d vertices corresponds to a simplicial
fan whose rays are spanned by the elements of the standard basis for R

d , an abstract
simplicial complex can be considered as an example of a toric complex. Generalizing the
Stanley-Reisner ideal of a simplicial complex and the toric ideal of a configuration of lattice
points, we establish a connection between binomial ideals in a polynomial ring and toric
complexes. Our main result shows that a regular subdivision of a toric complex corresponds
to the radical of an initial ideal of the associated binomial ideal. As an application of this
correspondence we consider edgewise subdivisions of simplicial complexes and we describe
the associated deformations of Veronese subrings of Stanley-Reisner rings.

Let us go more into detail. K denotes a noetherian commutative ring. A finite sub-
set F of Z

d determines a (non-normal) affine toric variety X F = Spec(K [MF ]). Here
MF is the submonoid of Z

d generated by F and K [MF ] is the subring of K [Zd ] =
K [t1, . . . , td , t−1

1 , . . . , t−1
d ] generated by monomials of the form ta = ∏d

i=1 tai
i for a =

(a1, . . . , ad ) ∈ F . In the classical situation, where MF is the set of lattice points in the
set cone(F) ⊆ R

d of positive real linear combinations of elements of F , the variety X F

is a normal affine toric variety. A regular subdivision of cone(F) supported on F , called
projective subdivision in [15, p. 111], is a rational fan of the form � = {cone(G) : G ∈ �}
for a set � of subsets of F with cone(F) = ∪G∈� cone(G) satisfying that there exist linear
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forms αG : R
d → R such that the restrictions αG : cone(G) → R assemble to a continuous

convex function f : cone(F) → R. As explained for instance in [15, pp. 28–30] such regu-
lar subdivisions correspond to coherent sheaves on X F , and there exists a regular subdivision
of cone(F) such that the fan � defines a resolution of singularities X (�) → X F .

Our main result in Section 5 generalizes the correspondence established by Sturmfels in
[22] and [23] between regular subdivisions of cone(F) and initial ideals of the kernel IF

of the homomorphism from the polynomial ring K [F] = K [xa : a ∈ F] to K [Zd ] taking
xa to ta .

More precisely, a function ω : F → R defines a weight order on K [F] with ω(xu) =∑
a∈F u(a)ω(a) for a monomial xu = ∏

a∈F xu(a)
a . The initial ideal inω(IF ) of IF with

respect to ω is the ideal generated by the initial polynomials inω( f ) = ∑
ω(u)=ω( f ) fu xu

where f = ∑
u fu xu is non-zero in K [F] and ω( f ) = max{ω(u) ∈ R : fu �= 0}.

The function ω also defines a collection �sdω T (F) of subsets of F . Given G ⊆ F let C
denote the minimal face of cone(F) containing G and let G ′ = F ∩C . The subset G of F is
in �sdω T (F) if and only if there exists a linear form αG on R

d with αG(a) ≤ ω(a) for a ∈ G ′

such that equality holds precisely if a ∈ G. This collection � = �sdω T (F) of subsets of Z
d is

an embedded toric complex sdω T (F), that is, it satisfies firstly that for H ⊆ G with G ∈ �

we have that H is in � if and only if cone(H ) is a face of cone(G) with cone(H ) ∩ G = H
and secondly that if G and H are in �, then their intersection is an element of �. The fan
� = {cone(G) : G ∈ �} is a regular partial subdivision of cone(F) in the sense that the
restrictions αG : cone(G) → R assemble to a continuous function f : ∪G∈� cone(G) → R

whose restriction to any face of cone(F) contained in ∪G∈� cone(G) is convex.
We carry the above idea one step further. Given an embedded toric complex T consisting

of the collection �T of subsets of Z
d and a function of the form ω : Gen(T ) = ∪G∈�T G →

R, we have the embedded toric complex sdω T (F) for every F ∈ �T . The embedded toric
complex sdω T is defined to consist of the collection �sdω T = ⋃

F∈�T
�sdω T (F). This is the

regular partial subdivision of T induced by ω.
In analogy with the Stanley-Reisner ideal of an abstract simplicial complex (see [20]

for details) there is a square-free monomial ideal JT in K [Gen(T )] such that a monomial
xu = ∏

a∈Gen(T ) xu(a)
a is not in JT if and only if there exists F ∈ �T such that supp(xu) ⊆ F .

Here supp(xu) is the support of xu , that is, the set of elements a ∈ Gen(T ) with u(a) �= 0.
Let IF ⊂ K [Gen(T )] denote the ideal generated by the image of IF ⊂ K [F] under the
inclusion K [F] ⊆ K [Gen(T )] for F ∈ �T and let IT = ∑

F∈�T
IF + JT . As observed in

[10, Proposition 4.8] the face ring K [T ] = K [Gen(T )]/IT of the embedded toric complex
T agrees with the face ring of the rational fan {cone(F) : F ∈ �T } considered in [21, Section
4] in the case where MF = cone(F) ∩ Z

d for every F ∈ �T . Restricted to embedded toric
complexes, the statement of our main result in Section 5 is:

Theorem 1.1 If Gen(sdωT ) = Gen(T ) and ∪F∈�T cone(F) = ∪G∈�sdω T cone(G), then the
radical ideal rad(inω(IT )) of inω(IT ) agrees with the ideal IsdωT .

The face ring K [T ] of an arbitrary toric complex T , as defined in 4.1, is a K -algebra of
the form K [X ]/IT where K [X ] is a polynomial ring and IT is a binomial ideal, that is, an
ideal generated by binomials of the form xu − xv and by monomials xu . In the case where
K is a field every binomial ideal I in K [X ] gives rise to a toric complex T (I ). In general
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it will not be possible to represent the toric complex T (I ) as an embedded toric complex.
Theorem 4.4 contains a precise criterion on I classifying the ideals for which the face ring
K [T (I )] is isomorphic to K [X ]/I .

Simplicial toric complexes as defined in 3.4 correspond to abstract simplicial complexes in
a strong sense. In particular, there is an abstract simplicial complex associated to a simplicial
toric complex, and there is a simplicial toric complex associated to every abstract simplicial
complex. The face ring of a simplicial toric complex agrees with the Stanley-Reisner ring
of the associated abstract simplicial complex. Thus the ideals associated to simplicial toric
complexes are monomial, so on the level of ideals, simplicial toric complexes correspond
to the binomial ideals that happen to be monomial. It is hence very restrictive to require a
toric complex to be simplicial.

In order to subdivide a toric complex T we must have enough generators to be able to
obtain additional faces. If T is simplicial, there are not enough generators to do this. The
solution to this problem is to add generators in a controlled way. In 4.9 we present a process
of multiplying a toric complex by a natural number, and for r ≥ 2 the multiple rT of a
toric complex T has enough generators to possesses subdivisions. On the level of face rings,
multiples of toric complexes roughly correspond to Veronese subrings of graded K -algebras,
and their subdivisions correspond to deformations of the Veronese ring. The underlying fan
of a multiple rT of an embedded toric complex T agrees with the underlying fan of T itself,
and the underlying fan of a subdivision of rT is a subdivision of the underlying fan of T .

For the simplicial toric complex T (�) constructed from an abstract simplicial com-
plex � (see Example 3.3) we define a particularly nice regular subdivision esdr (T (�)) =
sdω(rT (�)) of rT (�). The toric complex esdr (T (�)) is simplicial and the associated ab-
stract simplicial complex is the r-fold edgewise subdivision esdr (�) of � defined in 6.1.
We show that the initial ideal inω(IrT (�)) of the defining ideal IrT (�) of the face ring of
rT (�) is generated by square-free monomials, and we specify a Gröbner basis for IrT (�)

with respect to any monomial order < refining the weight order ω.
Some ideas presented in this paper can be found elsewhere in different contexts. First

of all the concept of a toric complex is a variation on the polyhedral complexes defined in
[15], and regular subdivision appears there under the name projective subdivision. There
is a natural toric complex associated to simplicial fan, and this toric complex plays an im-
portant rôle in the work of Cox on the homogeneous coordinate ring of a toric variety [7].
The work of Cox has motivated the concept of stacky fans, corresponding to a kind of toric
complexes consisting of subsets F of a finitely generated abelian group instead of subsets of
Z

d , considered in [3]. The idea of considering arbitrary finite subsets F of Z
d was promoted

by Sturmfels and his coauthors, for example in [14] and [23]. They occasionally call F a
vector configuration. In [22] and [23] Sturmfels identified the radical of the initial ideal
inω(IF ) of IF with the defining ideal of a Stanley-Reisner ring in the case where ω defines a
triangulation of cone(F) using Gröbner bases and integer programming methods. We make
a different approach using direct geometric arguments that allows us to extend Sturmfels’
theorem to subdivisions of toric complexes and face rings over commutative rings instead
of over fields. The results of Section 4 where we examine the face ring of a toric complex
are motivated by the paper [10] of Eisenbud and Sturmfels. Finally, edgewise subdivision
has been studied by many people. The basic idea is to subdivide a triangle along its edges:
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As observed by Freudenthal in [11], as opposed to barycentric subdivision, the pieces of
iterated edgewise subdivision do not become long and thin. Knudsen and Mumford studied
variations of edgewise subdivision of polyhedral complexes in [15]. The name edgewise
subdivision was introduced by Grayson in [13] where edgewise subdivision of simplicial
sets is used to obtain operations in higher algebraic K -theory. Edgewise subdivision of
cyclic sets is essential for the construction of topological cyclic homology [2].

The paper is organized as follows: in Section 3 we give our definition of a toric complex
together with some examples, and we characterize elementary properties of toric complexes.
In Section 4 we define the face ring of a toric complex, and in the case where K is a field we
characterize the K -algebras occurring as face-rings. Furthermore we show that the face ring
is compatible with gluing of toric complexes and we give a construction on toric complexes
corresponding to the Veronese subring of a graded ring. In Section 5 we introduce regular
subdivisions of toric complexes and we prove our main result Theorem 5.11. In Section 6
we discuss a particular regular subdivision of the toric complex associated to an abstract
simplicial complex, which we call the edgewise subdivision.

The authors are grateful to Prof. W. Bruns for inspiring discussions on the subject of the
paper.

2. Prerequisites

In this section we fix some notation and recall some standard definitions. Let F be a finite
subset of R

d . A convex combination of elements of F is a sum
∑

a∈F raa with 0 ≤ ra for
a ∈ F and

∑
a∈F ra = 1. The set of convex combinations conv(F) of elements of F is

called the convex hull of F . Similarly, a positive linear combination of elements of F is a
sum

∑n
a∈F raa with ra ∈ R+ = {x ∈ R : x ≥ 0} for a ∈ F . The set cone(F) of positive

linear combinations of elements of F is called the cone generated by F . By convention
cone(∅) = {0} and conv(∅) = ∅.

To a linear form α on R
d and c ∈ R we associate the affine hyperplane Hα(c) = α−1(c)

and the half-space H−
α (c) = α−1((−∞, c]). An intersection P = ⋂n

i=1 H−
αi

(ci ) of finitely
many half-spaces is called a polyhedron. A face of a polyhedron P is the intersection
of P with an additional hyperplane Hβ(d) with the property that P ⊆ H−

β (d). A poly-
tope is a bounded polyhedron. The set conv(F) is a polytope for every finite subset F
of R

d and every polytope is of this form. The polytope conv(F) is a simplex if every el-
ement in conv(F) has a unique representation as a convex combination of the elements
of F . A cone is a finite intersection of half-spaces of the form H−

αi
(0). The set cone(F)

is a cone for every finite subset F of R
d and every cone is of this form. For the theory
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of polyhedrons and related things we refer to the books of Schrijver [18] and Ziegler
[24].

Given a commutative monoid M , the monoid algebra K [M] is the set of functions
f : M → K with finite support with ( f +g)(m) = f (m)+g(m) and ( f g)(m) = ∑

m1+m2=m
× f (m1)g(m2) for m ∈ M . Given a finite set F , the free commutative monoid on F is the
monoid N

F consisting of functions u : F → N, and with (u + v)(a) = u(a) + v(a) for
u, v ∈ N

F and a ∈ F . The polynomial ring K [F] is the monoid algebra K [NF ]. A
monomial in K [F] is a function of the form xu : N

F → K with xu(u) = 1 and xu(v) = 0
for v �= u, and a polynomial f ∈ K [F] can be represented as the sum f = ∑

u∈NF fu xu

where fu = f (u) ∈ K . For a ∈ F we let ua : F → N denote the function defined by
ua(a) = 1 and ua(b) = 0 for b �= a and we let xa = xua . If G ⊆ F , then we let xG be the
square-free monomial

∏
a∈G xa .

Given a function f : F → G of finite sets, the homomorphism f∗ : K [F] → K [G] is
defined by f∗(xa) = x f (a) for xa ∈ K [F], and the homomorphism f ∗ : K [G] → K [F]
is defined by f ∗(xb) = ∑

f (a)=b xa for xb ∈ K [G]. Here a sum indexed on the empty set
is zero by convention. The r -th Veronese subring of a Z-graded ring R = ⊕i∈Z Ri is the
Z-graded ring R(r ) = ⊕i∈Z Rri .

3. Toric complexes

In this section we introduce toric complexes, the objects studied in this paper.

Definition 3.1 A toric complex T consists of:

(a) A finite partially ordered set (�T , ⊆) consisting of finite sets, ordered by inclusion,
(b) for every F ∈ �T an injective function TF : F → Z

dF \ {0} for some dF > 0,
(c) for every pair F, G ∈ �T with F ⊆ G an injection TFG : Z

dF → Z
dG of abelian groups,

subject to the following conditions:

(i) if F, G ∈ �T , then F ∩ G ∈ �T ,
(ii) for all F, G ∈ �T with F ⊆ G and a ∈ F we have TFG(TF (a)) = TG(a),

(iii) for every triple F, G, H ∈ �T with F ⊆ G ⊆ H we have TG H ◦ TFG = TF H ,
(iv) if G ∈ �T and F ⊆ G, then F ∈ �T if and only if cone(TG(F)) is a face of

cone(TG(G)) satisfying TG(F) = cone(TG(F)) ∩ TG(G).

The set of generators of T is the union Gen(T ) = ∪F∈�T F and the faces of T are the
elements F ∈ �T . If F and G are faces of T with F ⊆ G we say that F is a face
of G in T . For a face F ∈ �T we define the monoid homomorphism TF : N

F → Z
dF ,

TF (u) = ∑
a∈F u(a)TF (a).

A toric complex T is embedded if there exist d ∈ N such that TFG is the identity on R
d

for every F, G ∈ �T with F ⊆ G. In particular, we have TF (a) = TG(a) for a ∈ F . Note
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that for a toric complex T the collection {cone(F) : F ∈ �T } is a polyhedral complex as
considered for example in [15] consisting of rational cones. If T is embedded, then this is
a fan in the lattice Z

d .
Whenever appropriate we shall consider a partially ordered set � as a category with

objects set equal to the underlying set of � and with morphism sets �(F, G) consisting of
exactly one element F → G if F ≤ G and with �(F, G) empty otherwise. We let �op

denote the opposite category of � with the same set of objects as � and with �op(G, F) =
�(F, G).

Given a toric complex T and elements F ⊆ G of �T , there are continuous injective maps
conv(TF (F)) → conv(TG(G)) and cone(TF (F)) → cone(TG(G)) induced by the injective
homomorphism TFG . Thus we can consider F �→ conv(TF (F)) and F �→ cone(TF (F)) as
functors from �T to the category of topological spaces. We define the spaces |T | and ||T ||
as the colimits:

|T | = lim−→
F∈�T

conv(TF (F)) and ||T || = lim−→
F∈�T

cone(TF (F)).

Observe that if T is embedded, then the topological spaces |T | = ⋃
F∈�T

conv(TF (F)) and
||T || = ⋃

F∈�T
cone(TF (F)) are unions of subspaces of R

d .

Example 3.2 A subset G of Z
d gives rise to an embedded toric complex T (G). The

function T (G)G is the inclusion of G in Z
d and �T (G) consist of those subsets F of G

satisfying axiom (iv) of Definition 3.1.
This type of toric complexes correspond to vector configurations as studied for example

in [14] or [19].

Example 3.3 Let � be an abstract simplicial complex on the vertex set V = {1, . . . , d+1},
i.e. � is a set of subsets of V and F ⊆ G ∈ � implies F ∈ �. Let e1, . . . , ed+1 denote the
standard generators of Z

d+1 and define ιV : V → Z
d+1 by ιV (i) = ei + ei+1 + · · · + ed+1

for 1 ≤ i ≤ d + 1. We associate an embedded toric complex T (�) to � as follows:

(a) �T (�) is the partially ordered set �,
(b) for F ∈ � we let T (�)F denote the restriction of ιV to F ⊆ V ,

Observe that |T (�)| is homeomorphic to the usual geometric realization of �.

Definition 3.4 Let T be a toric complex.

(i) T is Z-graded if TFG : Z
dF → Z

dG preserves the last coordinate for all F, G ∈ �T

with F ⊆ G.
(ii) T is N-graded if it is Z-graded and the last coordinate of TF (a) is positive for all a ∈ F

and F ∈ �T .
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(iii) T is standard graded if it is Z-graded and the last coordinate of TF (a) is 1 for all a ∈ F
and F ∈ �T .

(iv) T is pointed if ∅ ∈ �F .
(v) T is simplicial if �T is an abstract simplicial complex.

Observe that the toric complex T (�) of Example 3.3 is simplicial.

Example 3.5 Let � be a rational fan in a lattice N , that is, � is a finite collection of
rational polyhedral cones σ in NR = N ⊗Z R, satisfying: every face of a cone in � is
also a cone in �, and the intersection of two cones in � is a face of each. Choosing a set
Gσ ⊆ N \ {0} of generators for each cone σ in � and an isomorphism ϕ : N → Z

d we can
construct an embedded toric complex T (�, (Gσ )σ∈�, ϕ) as follows: for σ ∈ � we let Fσ

denote the union of the sets ϕ(Gγ ) of images of generators of faces γ of σ under ϕ and we
define �T (�,(Gσ )σ∈�,ϕ) to be the collection of subsets of Z

d of the form Fσ for σ ∈ �.
There is a preferred toric complex associated to a simplicial fan, namely the one where

we take Gρ to be the set of unique generators ρ ∩ N if ρ is a ray in �, and where Gσ

is the union over the rays ρ in σ of the sets Gρ . On the other hand, the underlying fan
{cone(TF (F)) : F ∈ �T } of an embedded toric complex T is simplicial if T is simplicial.
If we want to subdivide T (�, (Gσ )σ∈�, ϕ), it is necessary to choose the sets Gσ different
from the preferred ones described above. In Definition 4.9 below we present a way to do
this.

Example 3.6 Lattice polyhedral complexes in the sense of [5, Definition 2.1] correspond to
the subclass of the class of standard graded toric complexes consisting of toric complexes T
with the property that F is the set of vertices of the polytope conv(TF (F)) for every F ∈ �T .
For a concrete example of a non-embeddable toric complex we refer to [5, Proposition 2.3].

Lemma 3.7 Let T be a toric complex.
(i) T is pointed if and only if zero is a vertex of cone(TF (F)) for every F ∈ �T .

(ii) If T is N-graded, then it is pointed.
(iii) T is simplicial if and only if for all F ∈ �T the elements TF (a) for a ∈ F are linearly

independent.

Proof: We only prove (iii). Assume that for all G ∈ �T the elements TG(a) for a ∈ G
are linearly independent. If F ⊆ G and G ∈ �T , then it is easy to see that cone(TG(F)) is
a face of cone(TG(G)) and TG(F) = TG(G) ∩ cone(TG(F)). Since T is a toric complex this
implies F ∈ �T and thus �T is a simplicial complex.

On the other hand, suppose that �T is an abstract simplicial complex and let G ∈ �T .
Assume that the elements of TG(G) are linearly dependent. Thus for some a ∈ G there
is a relation TG(a) = ∑

b∈G,b �=a λbTG(b) with λb ∈ R. By our assumption F = G \ {a}
generates a proper face cone(TG(F)) of cone(TG(G)) with TG(F) = cone(TG(F))∩ TG(G).
Choosing a linear form α on R

dG with cone(TG(F)) = α−1(0) ∩ cone(TG(G)) we get the
contradiction 0 �= α(TG(a)) = ∑

b∈F λbα(TG(b)) = 0. Hence the elements in TG(G) are
linearly independent.
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Definition 3.8 We call S a subcomplex of a toric complex T and write S ⊆ T if S is a
toric complex with �S ⊆ �T such that SF = TF and SFG = TFG for F, G ∈ �S with
F ⊆ G.

Observe that by the definition of a toric complex we have for G ∈ �S and F ⊆ G that
F ∈ �S if and only if F ∈ �T .

4. The face ring of a toric complex

Stanley associated in [21] a K -algebra to a rational fan. In this section we translate Stanley’s
definition to the situation of toric complexes. Recall the notation introduced in Sections 1
and 2 which will be used in the following.

Definition 4.1 Let T be a toric complex. The face ring K [T ] is the K -algebra K [T ] =
K [Gen(T )]/IT , where IT = JT + ∑

F∈�T
IF . Here JT is the monomial ideal such that a

monomial xu is not in JT if and only if there exists F ∈ �T with supp(xu) ⊆ F . For F ∈ �T

the ideal IF is generated by the image of the kernel IF ⊆ K [F] of the homomorphism
K [F] → K [ZdF ] induced by TF under the inclusion K [F] → K [Gen(T )].

Recall that an ideal in a polynomial ring over K is binomial, if it is generated by binomials
xu − xv and monomials xu . Such binomial ideals are strict in the sense that we do not allow
the generators to have coefficients different from 1. A monomial ideal is an ideal generated
by monomials.

Observe that the ideal IT of a toric complex is binomial, because for every F ∈ �T the
ideal IF is generated by the binomials xu − xv where u, v : F → N satisfy that TF (u) =
TF (v) (e.g. see [23, Lemma 4.1]). Note that if IF is a monomial ideal, then IF = 0. If T is
Z-graded, then K [T ] inherits a Z-grading, and K [T ] is N-graded if T is N-graded. If T is
standard graded, then K [T ] is generated by elements of degree one.

Theorem 4.2 Let S be a subcomplex of a toric complex T and let i : Gen(S) → Gen(T )
denote the inclusion of the generators of S in the generators of T .
(i) The homomorphism i∗ : K [Gen(T )] → K [Gen(S)] induces a surjective homomor-

phism i∗
ST : K [T ] → K [S] with

Ker(i∗
ST ) = (xF : F ⊆ Gen(T ) is not contained in any G ∈ �S).

(ii) The homomorphism i∗ : K [Gen(S)] → K [Gen(T )] induces an injective homomor-
phism iST ∗ : K [S] → K [T ] with i∗

ST ◦ iST ∗ = idK [S].

Proof: To prove that i∗
ST is well defined we need to check that i∗ maps the ideal IT =

JT + ∑
F∈�T

IF into the ideal IS = JS + ∑
G∈�S

IG .
Clearly JT is mapped into JS . For F ∈ �T the ideal IF is generated by binomials xu − xv

where xu and xv have support contained in F and satisfy that TF (u) = TF (v). For G ⊆ F
such that cone(TF (G)) is a face of cone(TF (F)) we have supp(xu) ⊆ G if and only if
TF (u) ∈ cone(TF (G)). Thus supp(xu) ⊆ G if and only if supp(xv) ⊆ G. The element
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i∗(xu) is not in JS if and only if there exists a G ∈ �S such that supp(xu) ⊆ G. Hence
i∗(xu) is not in JS if and only if the same is the case for i∗(xv). Now if i∗(xu) and i∗(xv)
are in JS we are done. Otherwise there exists G ∈ �S such that supp(xu) and supp(xv) are
contained in G and therefore i∗(xu − xv) is in IG . We conclude that i∗(IT ) ⊆ IS and we get
the induced homomorphism i∗

ST : K [T ] → K [S]. This homomorphism is clearly surjective
and has the described kernel.

Analogously one shows that iST ∗ : K [S] → K [T ] is an injective homomorphism with
i∗

ST ◦ iST ∗ = idK [S]. This concludes the proof.

We need the following variation of Corollary 2.4 in [10].

Lemma 4.3 Let K be a field and let P be a prime ideal in K [F] generated by binomials
xu − xv for some finite set F. There exists a unique direct summand L P of Z

F such
that the composition K [F] = K [NF ] ⊆ K [ZF ] → K [ZF/L P ] induces an embedding
K [F]/P ⊆ K [ZF/L P ].

Proof: Since xm+n − 1 = xm(xn − 1) + (xm − 1) the elements m ∈ Z
F satisfying

xm − 1 ∈ P K [ZF ] form a lattice L P with P K [ZF ] contained in the kernel I (L P ) of the
homomorphism γ : K [ZF ] → K [ZF/L P ]. Since P = P K [ZF ] ∩ K [NF ], it suffices to
prove that the homomorphism δ : K [ZF ]/P K [ZF ] → K [ZF/L P ] is an isomorphism and
that L P is a direct summand of Z

F . If δ is an isomorphism, then L P must be a direct
summand of Z

F because P K [ZF ] is a prime ideal.
An element f = ∑

u∈ZF fu xu is mapped to

γ ( f ) =
∑

v+L P ∈ZF /L P

(
∑

m∈L P

fv+m

)

xv+L P .

We have that γ ( f ) = 0 if and only if
∑

m∈L P
fv+m = 0 for all v + L P ∈ Z

F/L P and
this implies that

∑
m∈L P

fv+m xm is in the ideal generated by the xm − 1. Thus we see
that the ideal I (L P ) is generated by the elements xm − 1 for m ∈ L P . We conclude that
I (L P ) ⊆ P K [ZF ], and that the homomorphism δ in question is an isomorphism. This
concludes the proof.

Let I ⊂ K [x1, . . . , xn] be a binomial ideal. For a subset F ⊆ {1, . . . , n} let PF =
I ∩ K [F]. As in [10, Cor. 1.3] we see that PF is a binomial ideal in K [F]. Let �T (I ) denote
the collection of subsets F of {1, . . . , n} such that PF is a prime ideal not containing any
monomial and such that the projection K [x1, . . . , xn] → K [F] induces a homomorphism
K [x1, . . . , xn]/I → K [F]/PF .

Theorem 4.4 Let K be a field, X = {1, . . . , n} and I ⊂ K [X ] = K [x1, . . . , xn] be
a binomial ideal. There exists a toric complex T (I ) with face set �T (I ) and K [T (I )] ∼=
K [X ]/

⋂
F∈�T (I )

(PF + (xi : i /∈ F)). In particular, I = ⋂
F∈�T (I )

(PF + (xi : i /∈ F)) if and
only if the natural homomorphism K [X ]/I → K [T (I )] is an isomorphism.
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Proof: Let us first construct an abstract toric complex T ′(I ) in the sense that the targets
for the maps T ′

F for F ∈ �T ′(I ) = �T (I ) are abstract finitely generated free abelian groups
instead of abelian groups of the form Z

dF . For every F ∈ �T (I ) there is an isomorphism
K [X ]/I + (xi : i /∈ F) ∼= K [F]/PF . Let L PF be as in Lemma 4.3 and let T ′

F denote
the composition F ⊆ N

F ⊆ Z
F → Z

F/L PF . If F ⊆ G, then the inclusion Z
F ⊆ Z

G

and the fact PF = PG ∩ K [F] induce an inclusion T ′
FG : Z

F/L PF → Z
G/L PG . Choosing

isomorphisms Z
F/L PF

∼= Z
dF and applying [6, Theorem 6.1.7] it is straightforward to

check that we obtain a toric complex T (I ).
In order to identify K [T (I )] we assume without loss of generality that Gen(T (I )) = X .

Note that for F ∈ �T (I ) the ideal PF agrees with the kernel IF of the homomorphism
K [F] → K [ZdF ] induced by TF . Considering the inclusions of toric complexes T (F) ⊆
T (I ), Theorem 4.2 ensures that i∗i∗( f ) ∈ IF for f ∈ IT (I ). Since f − i∗i∗( f ) ∈ (xi : i /∈ F)
and f was arbitrary, we get that IT (I ) is contained in (PF + (xi : i /∈ F)). Thus IT (I ) is
contained in

⋂
F∈�T (I )

(PF + (xi : i /∈ F)).
Let f ∈ ⋂

F∈�T (I )
(PF + (xi : i /∈ F)) and let F1, . . . , Fm be the maximal faces of T (I ).

Recall that the inclusion i of F1 in X induces homomorphisms i∗ : K [X ] → K [F1] and
i∗ : K [F1] → K [X ]. The element f −i∗i∗( f ) ∈ K [X ] is in the ideal (

⋂
F∈�T (I )

(PF+(xi : i /∈
F))) ∩ (xi : i /∈ F1) because i∗i∗( f ) ∈ IF ⊆ IT (I ). Proceeding by induction on m we find
an element g of IT (I ) such that f − g ∈ ⋂

1≤ j≤m(xi : i /∈ Fj ) = JT (I ) ⊆ IT (I ). Hence
f ∈ IT (I ) and it follows that IT (I ) = ⋂

F∈�T (I )
(PF + (xi : i /∈ F)) and that K [T (I )] =

K [X ]/
⋂

F∈�T (I )
(PF + (xi : i /∈ F)). The last claim of the theorem is a consequence of this

fact.

If a toric complex T is simplicial, then all the ideals IF = 0 for F ∈ �T because
the linear independence of the elements of TF (F) implies that the ring K [MTF (F)] is a
polynomial ring. Hence IT = JT is a square-free monomial ideal and the face ring K [T ]
coincides with the so-called Stanley-Reisner ring of the abstract simplicial complex �T .
(See for example [20] for more details on this subject.) We show that the converse is also
true.

Proposition 4.5 A toric complex T is simplicial if and only if IT is a monomial ideal. In
this case K [T ] is the Stanley-Reisner ring of the abstract simplicial complex �T .

Proof: If a toric complex T is simplicial, then IT is a monomial ideal as shown above.
Therefore assume that IT is a monomial ideal. Given F ∈ �T we consider the toric

subcomplex T (F) of Example 3.2. Let i : F = Gen(T (F)) → Gen(T ) be the inclusion.
Since IT is monomial, so is the ideal IT (F) = i∗(IT ). It follows that IT (F) = 0, because
K [F]/IT (F) is an affine monoid ring. Thus the elements of TF (F) are linearly independent.
By 3.7 (iii) we conclude that T is simplicial. Then IT = JT and K [T ] is the Stanley-Reisner
ring of �T .

Given a toric complex T and subcomplexes Q, S ⊂ T , there is a subcomplex R = Q ∩ S
of T defined by letting �R = �Q ∩ �S . One can show that the space |R| = |Q ∩ S|
is isomorphic to |Q| ∩ |S|. We write T = Q ∪ S if �T = �Q ∪ �S . Since there are
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homomorphisms i∗
RQ : K [Q] → K [R] and i∗

RS : K [S] → K [R] we can consider the fiber
product K [Q] ×K [R] K [S].

Observe that the homomorphisms iST ∗ and i∗
ST are twins in the sense of Notbohm and

Ray [16], that is iQT
∗iST ∗ = iRQ∗iRS

∗ and iST
∗iQT ∗ = iRS∗iRQ

∗. The face ring of T and
the face rings of Q and S are related as follows:

Proposition 4.6 If T = Q ∪ S, then the homomorphism

(i∗
QT , i∗

ST ) : K [T ] → K [Q] ×K [Q∩S] K [S]

is an isomorphism.

Proof: As above let R = S∩Q. We prove that the additive homomorphismβ : K [Q]×K [R]

K [S] → K [T ] defined by β(a, b) = iQT ∗(a) + iST ∗(b) − iRT ∗(iRQ
∗(a)) for (a, b) ∈

K [Q] ×K [R] K [S] is a homomorphism of rings. Using the fact that iST ∗ and i∗
ST are twins

we see that β is an additive inverse to (i∗
QT , i∗

ST ).
The only thing left to check is that β(a, b)β(a′, b′) = β(aa′, bb′). Since the support

supp(xu) of a monomial xu in the polynomial (iQT ∗(a)−iRT ∗i∗
RQ(a)) satisfies that supp(xu)∩

(Gen(Q) \ Gen(R)) �= ∅, and since supp(xv) ∩ (Gen(S) \ Gen(R)) �= ∅ for a monomial xv

in the polynomial (iST ∗(b′) − iRT ∗i∗
RS(b′)) we have that

(iQT ∗(a) − iRT ∗i∗
RQ(a))(iST ∗(b′) − iRT ∗i∗

RS(b′)) ∈ JT .

Similarly we see that (iST ∗(b)−iRT ∗i∗
RS(b))(iQT ∗(a′)−iRT ∗i∗

RQ(a′)) ∈ JT , and we compute
that

β(aa′, bb′) = β(aa′, bb′) + (iQT ∗(a) − iRT ∗i∗
RQ(a))(iST ∗(b′) − iRT ∗i∗

RS(b′))
+ (iST ∗(b) − iRT ∗i∗

RS(b))(iQT ∗(a′) − iRT ∗i∗
RQ(a′))

= iQT ∗(aa′) + iST ∗(bb′) − iRT ∗i∗
RQ(aa′) + iQT ∗(a)iST ∗(b′)

− iQT ∗(a)iRT ∗i∗
RS(b′) − iRT ∗i∗

RQ(a)iST ∗(b′)
+ iRT ∗i∗

RQ(a)iRT ∗i∗
RS(b′) + iST ∗(b)iQT ∗(a′) − iRT ∗i∗

RS(b)iQT ∗(a′)
− iST ∗(b)iRT ∗i∗

RQ(a′) + iRT ∗i∗
RS(b)iRT ∗i∗

RQ(a′)
= iQT ∗(a)iQT ∗(a′) + iQT ∗(a)iST ∗(b′) − iQT ∗(a)iRT ∗i∗

RQ(a′)
+ iST ∗(b)iQT ∗(a′) + iST ∗(b)iST ∗(b′) − iST ∗(b)iRT ∗i∗

RQ(a′)
− iRT ∗i∗

RQ(a)iQT ∗(a′) − iRT ∗i∗
RQ(a)iST ∗(b′)

+ iRT ∗i∗
RQ(a)iRT ∗i∗

RQ(a′)
= (iQT ∗(a) + iST ∗(b) − iRT ∗i∗

RQ(a))(iQT ∗(a′) + iST ∗(b′) − iRT ∗i∗
RQ(a′))

= β(a, b)β(a′, b′).

This concludes the proof.

Proposition 4.6 can be generalized to the following situation.
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Theorem 4.7 Let T be a toric complex, T1, . . . , Tr be subcomplexes of T such that
T = T1 ∪ · · · ∪ Tr and let P(r ) denote the partially ordered set consisting of all subsets
of {1, . . . , r} ordered by inclusion. Given I ∈ P(r ) we let TI denote the subcomplex
TI = ∩i∈I Ti of T . Then the natural homomorphism

K [T ] → lim←−
I∈P(r )

K [TI ]

is an isomorphism.

Proof: We prove the lemma by induction on r , the case r = 1 being obvious. Assume
that the lemma holds for r − 1. In particular, the homomorphisms

K [T1 ∪ · · · ∪ Tr−1] → lim←−
I∈P(r−1)

K [TI ] and K [(T1 ∪ · · · ∪ Tr−1) ∩ Tr ] → lim←−
I∈P(r ),r∈I

K [TI ]

are isomorphisms. Since T = (T1 ∪ · · · ∪ Tr−1) ∪ Tr there is a chain of isomorphisms

K [T ] ∼= K [T1 ∪ · · · ∪ Tr−1] ×K [(T1∪···∪Tr−1)∩Tr ] K [Tr ]
∼= lim←−

I∈P(r ),r /∈I

K [TI ] × lim←−
I∈P(r ),r∈I

K [TI ] K [Tr ]

∼= lim←−
I∈P(r )

K [TI ].

where the first is the isomorphism of 4.6, the second isomorphism is induced by the iso-
morphisms that hold by the inductive hypothesis and the third isomorphism uses the fact
that the objects in question have the same universal property.

For F ∈ �T consider the complex T (F) of Example 3.2. The face ring of T (F) has the
form K [T (F)] = K [F]/IF whereIF is the kernel of the homomorphism K [F] → K [ZdF ].
The following corollary was proved in [10, Prop. 4.8] by considering the limit as a subset
of a product.

Corollary 4.8 Let T be a toric complex. Then

K [T ] ∼= lim←−
F∈�

op
T

K [T (F)]

Proof: Note that T (F)∩ T (G) = T (F ∩G) and apply 4.7 to the family {T (F)}F∈�T .

Thus we have another representation of the face ring of a toric complex. For example this
implies easily that K [T ] is reduced, because K [T (F)] is reduced for F ∈ �T and the limit
of reduced rings is reduced. The next goal will be to interpret the Veronese subrings of the
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face ring of a standard graded toric complex. The following construction will be used later
to subdivide simplicial toric complexes.

Definition 4.9 Given a toric complex T and r ≥ 1 we let rT consist of the data:

(a) �rT is the partially ordered set consisting of the sets

r F =
{

u ∈ N
F :

∑

a∈F

u(a) = r

}/

∼

where F ∈ �T and u ∼ v if TF (u) = TF (v).
(b) For r F ∈ �rT and u ∈ r F let rTr F (u) = TF (u).
(c) For r F, rG ∈ �rT with r F ⊆ rG let rTr F,rG = TF,G .

Proposition 4.10 Let T be a toric complex and r ≥ 1 a positive integer. Then rT is a
toric complex.

Proof: The sets r F ∈ �rT are all subsets of the set {u : Gen(T ) → N}/ ∼ where
u ∼ v if there exists G ∈ �T such that both supp(u) and supp(v) are contained in G and
TG(u) = TG(v). By construction rTr F : r F → Z

dF \ {0} is injective and rTr FrG = TFG

is an injection of abelian groups. We have to verify conditions (i)–(iv) of the definition
of a toric complex. Condition (i) holds because we have that r F ∩ rG = r (F ∩ G) for
F, G ∈ �T . Conditions (ii) and (iii) are satisfied by construction, and condition (iv) holds,
because cone(TF (F)) = cone(rTr F (r F)) for F ∈ �T .

Clearly if T is a toric complex and S is a subcomplex of T then r S is a subcomplex of
rT .

Theorem 4.11 Let T be a standard graded toric complex and r ≥ 1 a positive number.
Then K [rT ] = K [T ](r ) is the r-th Veronese ring of K [T ].

Proof: We compute

K [rT ] ∼= lim←−
r F∈�

op
rT

K [(rT )(r F)] ∼= lim←−
F∈�

op
T

K [T (F)](r ) ∼= K [T ](r )

where the second isomorphism follows from the definition of the toric complex rT .

5. Subdivisions of toric complexes

In this section we introduce and study subdivisions of toric complexes. In particular, we
will relate the face rings of a toric complex and its regular subdivisions.
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Definition 5.1 Let S and T be a toric complexes.

(i) S is a partial subdivision of T if the following is satisfied:

(a) Gen(S) ⊆ Gen(T ),
(b) for all F ∈ �S there exists a face of T containing F ,
(c) SF (a) = TF ′ (a) for all F ∈ �S and a ∈ F where F ′ = ⋂

F⊆G, G∈�T
G,

(d) for F, G ∈ �S with F ⊆ G we have SF,G = TF ′G ′ .

(ii) S is a subdivision of T if S is a partial subdivision of T satisfying that cone(TG(G)) =⋃
F∈�S ,F⊆G cone(TG(F)) for G ∈ �T .

(iii) S is a triangulation of T if S is simplicial and a subdivision of T .

In particular, if S is a subdivision of T , then

||T || = lim−→
G∈�T

cone(TG(G)) = lim−→
G∈�T

⋃

F∈�S ,F⊆G

cone(TG(F)) ∼= lim−→
F∈�S

cone(SF (F)) = ||S||,

and similarly we see that |T | ∼= |S|.

Example 5.2 Given F ⊆ Z
d\{0} and a ∈ F we construct an embedded toric complex

T (F, a) such that T (F, a) is a subdivision of the toric complex T (F) of Example 3.2 with
Gen(T (F, a)) = Gen(T (F)). A subset G of F is in �T (F,a) if there exists a face H of F in
T (F) such that a /∈ H and G = cone(H ∪{a}) ∩ F or G = H . We leave it as an instructive
exercise for the reader to check that T (F, a) is a subdivison of T (F).

Example 5.3 Let T be an embedded toric complex and let a ∈ Gen(T ). For a face
F of T with a ∈ F we have defined the subdivision T (F, a) of T (F). If a /∈ F we let
T (F, a) = T (F). The embedded toric complex S with �S = ∪F∈�T �T (F,a) is a subdivision
of T . In the case where T = T (�, (Gσ )σ∈�, ϕ) for a fan � in N as in Example 3.5, the
subdivision S of T is well-known [12, p. 48].

The following construction is inspired by the way Sturmfels [23] subdivides the cone
generated by a finite subset F of Z

d . We have modified Sturmfels’ construction slightly so
that the subdivision of a toric complex is again a toric complex.

Definition 5.4 Let T be a toric complex and ω : Gen(T ) → R. Then the ω-subdivision
sdω T of T is given by the following data:

(i) A subset F of Gen(T ) is in �sdω T if there exists a face of T containing F and let-
ting F ′ = ⋂

F⊆G∈�T
G there exists a linear form αF on R

dF ′ such that F = {a ∈
F ′ : αF (TF ′ (a)) = ω(a)} and αF (TF ′ (a)) ≤ ω(a) for every a ∈ F ′,
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(ii) (sdω T )F (a) = TF ′ (a) for F ∈ �sdω T and F ′ = ⋂
F⊆G∈�T

G,
(iii) (sdω T )FG = TF ′G ′ .

If sdω T is a subdivision (triangulation) of T , we say that sdω T is a regular subdivision
(triangulation) of T .

A standard example of a non-regular triangulation is given in [23, Example 8.2]. Let
e1, . . . , ed+1 be the standard basis for R

d+1. A face F of a cone C ⊂ R
d+1 is called a lower

face if for all x ∈ F and r > 0 we have that x − r · ed+1 �∈ F . It is easy to see that F
is a lower face if and only if it is the intersection of C with a hyperplane Hα(0) such that
α(ed+1) < 0 and C ⊆ H−

α (0).

Remark 5.5 Observe that (i) of Definition 5.4 can be reformulated as follows: A sub-
set F of Gen(T ) is in �sdω T if cone(sdω TF ′ (F)) is the projection of a lower face of
cone((TF ′ (b), w(b)) : b ∈ F ′) ⊂ R

dF ′ +1 with respect to the last coordinate.

Proposition 5.6 sdω T is a partial subdivision of T for every toric complex T and every
ω : Gen(T ) → R.

Proof: (a), (b) and (c) of the definition of a toric complex are clearly satisfied. It remains
to verify conditions (i)–(iv). (ii) and (iii) are fulfilled by definition.

(i): Let F, G ∈ �sdω T . Choose F ′ = ∩F⊆F ′′∈�T F ′′, αF : R
dF ′ → R and G ′ = ∩G⊆G ′′∈�T

G ′′, αG : R
dG′ → R as in Definition 5.4. F ′ ∩ G ′ is an element of �T . Via the inclusion of

R
dF ′∩G′ in R

dF ′ induced by TF ′∩G ′ F ′ the linear form αF on R
dF ′ induces a linear form βF on

R
dF ′∩G′ such that βF (TF ′∩G ′ (a)) ≤ ω(a) for all a ∈ F ′ ∩ G ′ and

F ∩ G ′ = {a ∈ F ′ ∩ G ′ : βF (TF ′∩G ′ (a)) = ω(a)}.

Analogously there exists a linear form βG on R
dF ′∩G′ such that βG(TF ′∩G ′ (a)) ≤ ω(a) for all

a ∈ F ′ ∩ G ′ and

F ′ ∩ G = {a ∈ F ′ ∩ G ′ : βG(TF ′∩G ′ (a)) = ω(a)}.

Let αF∩G := (βF + βG)/2: R
dF ′∩G′ → R. Then

αF∩G(TF ′∩G ′ (a)) ≤ ω(a) for all a ∈ F ′ ∩ G ′

and

F ∩ G = {a ∈ F ′ ∩ G ′ : αF∩G(TF ′∩G ′ (a)) = ω(a)}.

Hence F ∩ G ∈ �sdω T and this shows (i).
(iv): Assume that F ⊆ G ∈ �sdω T . If F ∈ �sdω T , then choose F ′, αF : R

dF ′ → R and G ′,
αG : R

dG′ → R as in the proof of (i). Note that F ′ ⊆ G ′. Therefore cone(TG ′ (F ′)) = Hγ (0) ∩
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cone(TG ′ (G ′)) is a face of cone(TG ′ (G ′)) for some linear form γ on R
dG′ , cone(TG ′ (G ′)) ⊆

H−
γ (0) and TG ′ (F ′) = cone(TG ′ (F ′)) ∩ TG ′ (G ′). We have the inclusion R

dF ′ → R
dG′ and

we extend αF arbitrarily to a linear form on R
dG′ .

Now choose t � 0 such that forβF = αF + t ·γ we have that F = {a ∈ G ′ : βF (TG ′ (a)) =
ω(a)} and βF (TG ′ (a)) ≤ ω(a) for every a ∈ G ′. Thus β = βF − αG is a linear form
such that cone(TG ′ (F)) = Hβ(0) ∩ cone(TG ′ (G)) is a face of cone(TG ′ (G)) and TG ′ (F) =
cone(TG ′ (F)) ∩ TG ′ (G).

Conversely, assume that F ⊆ G ∈ �sdω T , G ′, αG : R
dG′ → R are chosen as above and

cone(TG ′ (F)) = Hβ(0) ∩ cone(TG ′ (G)) is a face of cone(TG ′ (G)) defined by some linear
form β on R

dG′ and TG ′ (F) = cone(TG ′ (F))∩TG ′ (G). Define βF = αG + t ·β. For a suitable
t ≥ 0 we have that F = {a ∈ G ′ : βF (TG ′ (a)) = ω(a)} and βF (TG ′ (a)) ≤ ω(a) for every
a ∈ G ′. This implies that F ∈ �sdω T and we are also done in this case.

Hence sdω T is a toric complex which is a partial subdivision of T by construction.

If S is a subcomplex of a toric complex T , then a map ω : Gen(T ) → R induces a map
ω : Gen(S) → R.

Corollary 5.7 Let T be a toric complex, ω : Gen(T ) → R and S a subcomplex of T .
Then sdω S is a subcomplex of sdω T and if sdω T is a regular subdivision (triangulation)
of T , then sdω S is a regular subdivision (triangulation) of S.

Proof: This follows from Definition 5.4 since the property to be a regular subdivision is
defined on the faces of a toric complex.

A subcomplex of a toric complex inherits regular subdivisions as noted in 5.7. The
corresponding face rings are related as follows.

Corollary 5.8 Let T be a toric complex, ω : Gen(T ) → R such that sdω T is a regular
subdivision of T and S a subcomplex of T . Then

K [sdω S] ∼= K [sdω T ]/(xF : F ⊆ Gen(sdω T ) is not contained in any G ∈ �sdω S).

Proof: By Corollary 5.7 the toric complex sdω S is a regular subdivision of S and a
subcomplex of sdω T . The isomorphisms follow from Proposition 4.2.

The toric complex sdω T is not always a subdivision of T . As an illustration let F denote
the finite set F = {−1, 1} ⊆ Z, let ω : F → R be the constant function with value −1 and
consider the toric complex T (F) of Example 3.2. Then ||T (F)|| = R and || sdω T (F)|| = ∅,
because �sdω T (F) is the empty set.

Proposition 5.9 Let T be a toric complex and ω : Gen(T ) → R. Then sdω T is a regular
subdivision of T if one of the following conditions is satisfied:
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(i) All values ω(a) of ω are positive.
(ii) T is an N-graded toric complex.

Proof: In both cases it remains to show that

cone(TG(G)) =
⋃

F∈�sdω T ,F⊆G

cone(TG(F))

for G ∈ �T , because by 5.6 we know already that sdω T is a partial subdivision of T . Let
G ∈ �T and 0 �= x ∈ cone(TG(G)). Consider the cone

C = cone((TG(b), ω(b)) : b ∈ G) ⊂ R
dG+1 and P = {(x, t) : t ∈ R} ⊂ R

dG+1.

Since x ∈ cone(TG(G)) we have that C ∩ P �= ∅. If one of the conditions (i) or (ii) is
satisfied there exists

s = inf{t ∈ R : (x, t) ∈ P ∩ C} > −∞.

Then (x, s) is an element of a lower face F of C and by Remark 5.5 there exists a linear form
α on R

dG and F ′ ∈ �T such that αF (TF ′ (a)) ≤ ω(a) for every a ∈ F ′ with x ∈ cone(F)
and F = {a ∈ F ′ : αF (TF ′ (a)) = ω(a))}.

Example 5.10 Let T be a toric complex and consider the function ω : Gen(2T ) → R

with ω(2χa) = 2 for a ∈ Gen(T ) and ω(u) = 1 if u is not of the form 2χa . Here χa

is the indicator function on a with χa(a) = 1 and χa(b) = 0 for b ∈ Gen(T )\{a}. In
the case, where T = T (�, (Gσ )σ∈�, ϕ) for a rational fan �, the toric complex 2T is
of the form 2T = T (�, (Hσ )σ∈�, ϕ), where Hσ = {a + b : a, b ∈ Gσ } and the fan
{cone(TF (F)) : F ∈ �sdω(2T )} is a subdivision of the fan �.

Next we construct a homomorphism

ϕ : K [Gen(T )]/ inω(IT ) → K [sdω T ] ∼= lim←−
F∈�

op
sdω T

K [T (F)].

If we show that for all F ∈ �sdω T the projection i∗ : K [Gen(T )] → K [F] induced by the
inclusion F ⊆ Gen(T ) induces a homomorphism ϕF : K [Gen(T )]/ inω(IT ) → K [T (F)],
then ϕ exists by the universal property of the limit.

Given F ∈ �sdω T we let F ′ = ⋂
F⊆G∈�T

G ∈ �T as above. By the construction of
sdω T , there exists a linear form αF on R

dF ′ such that F = {a ∈ F ′ : αF (TF ′ (a)) = ω(a)}
and αF (TF ′ (a)) ≤ ω(a) for a ∈ F ′. Note that ω induces a weight order on K [F ′]. For
xu ∈ K [F ′] we have that

ω(u) =
∑

a∈F ′
u(a)ω(a) ≥

∑

a∈F ′
u(a)αF (TF ′ (a)) = αF (TF ′ (u)),
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and equality holds precisely if supp(u) ⊆ F . Let xv ∈ K [F ′] with TF ′ (u) = TF ′ (v). If

∑

a∈F ′
u(a)ω(a) =

∑

a∈F ′
v(a)ω(a),

then supp(u) ⊆ F if and only if supp(v) ⊆ F .
Let g ∈ IF ′ ⊂ K [F ′]. We show that the projection of inω(g) to K [F] is an element of

IF . The ring K [F ′] is Z
dF ′ -graded by giving xa the degree TF ′ (a) for a ∈ F ′ and IF ′ is

homogeneous with respect to this grading. Thus without loss of generality we may assume
that there exists z ∈ Z

dF ′ such that g = ∑
u cu xu and TF ′ (u) = z for cu �= 0.

By the above discussion either inω(g) = g or for all monomials xu in inω(g) we have
supp(u) �⊆ F . In the first case the image of inω(g) = g under the projection i∗ : K [F ′] →
K [F] is in IF . In the second case i∗(inω(g)) = 0. We obtain that i∗K [F ′] → K [F] induces
a homomorphism ϕF F ′ : K [F ′]/ inω(IF ′ ) → K [F]/IF . The following diagram of natural
projections commutes for F ∈ �sdω T :

K [Gen(T )] −−−−→ K [Gen(sdω T )] −−−−→ K [Gen(sdω T )]/Isdω T










K [Gen(T )]/ inω(IT ) −−−−→ K [F ′]/ inω(IF ′ )
ϕF F ′−−−−→ K [F]/IF .

Taking limit with respect to F we get a commutative diagram of the form:

K [Gen(T )] −−−−→ K [Gen(sdω T )] −−−−→ K [Gen(sdω T )]/Isdω T



 ∼=






K [Gen(T )]/ inω(IT ) K [Gen(T )]/ inω(IT ) −−−−→ lim←−
F∈�

op
sdω T

K [F]/IF .

Thus the projection K [Gen(T )] → K [Gen(sdω T )] induces a homomorphism ϕ from
K [Gen(T )]/ inω(IT ) to K [sdω T ]. Since K [sdω T ] is reduced we obtain a homomorphism
� : K [Gen(T )]/ rad(inω(IT )) → K [sdω T ].

Theorem 5.11 For every toric complex T and ω : Gen(T ) → R such that sdω T is a
regular subdivision of T the homomorphism � : K [Gen(T )]/ rad(inω(IT )) → K [sdω T ] is
an isomorphism.

Proof: Recall that Isdω T = Jsdω T + ∑
F∈�sdω T

IF and IT = JT + ∑
G∈�T

IG .
We start by showing that the inclusion i∗ : K [Gen(sdω T )] → K [Gen(T )] maps Isdω T

into inω(IT ). We identify monomials in K [Gen(sdω T )] with the corresponding ones in
K [Gen(T )]. For every F ∈ �sdω T there exists F ′ ∈ �T with F ⊆ F ′, and a linear from
αF on R

dF ′ with αF (TF ′ (a)) = ω(a) for a ∈ F and αF (TF ′ (a)) < ω(a) for a ∈ F ′\F .
The (image of a) binomial xu − xv ∈ IF is an element of IF ′ . (Recall that these binomials
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generate IF .) Since supp(u), supp(v) ⊆ F we have

ω(u) =
∑

a∈F

u(a)ω(a) =
∑

a∈F

u(a)αF (TF ′ (a)) = αF (TF ′ (u)) = αF (TF ′ (v))

=
∑

a∈F

v(a)αF (TF ′ (a)) =
∑

a∈F

v(a)ω(a) = ω(v),

thus xu − xv is an element of inω(IF ′ ) ⊆ rad(inω(IT )).
If xu ∈ Jsdω T , then either xu is in JT and we are done, or there exists an G ∈ �T such

that supp(xu) ⊆ G. Suppose that xu ∈ Jsdω T and that supp(xu) ⊆ G ∈ �T . Since sdω T
is a subdivision of T and TG(u) ∈ cone(TG(G)) there exists F ∈ �sdω T with F ⊆ G such
that TG(u) ∈ cone(TG(F)). We may assume that G = F ′ and then there exists a linear from
αF on R

dF ′ with αF (TF ′ (a)) = ω(a) for a ∈ F and αF (TF ′ (a)) < ω(a) for a ∈ F ′\F .
Since TF ′ (u) ∈ cone(TF ′ (F)) there exists a map λ : F → R+ such that TF ′ (u) =∑
a∈F λ(a)TF ′ (a). Using for example that Farkas lemma holds over both R and Q, we

may assume that λ takes values in Q+, and thus there exists v : F → N and n ∈ N such
that TF ′ (nu) = TF ′ (v). Now consider xnu − xv ∈ IF ′ . There exists at least one a ∈ supp(u)
with αF (TF ′ (a)) < ω(a) since xu ∈ Jsdω T . Since supp(v) ⊆ F we have

ω(nu) > αF (TF ′ (nu)) = αF (TF ′ (v)) = ω(v).

We conclude that xnu ∈ inω(IF ′ ) ⊆ inω(IT ). Hence xu ∈ rad(inω(IT )). This finishes the
proof of the fact that the inclusion i∗ : K [Gen(sdω T )] → K [Gen(T )] maps Isdω T into
rad(inω(IT )).

We denote by � : K [Gen(sdω T )]/Isdω T → K [Gen(T )]/ rad(inω(IT )) the map induced
by i∗. It is immediate that �◦� = idK [sdω T ]. We need to prove that � ◦� is the identity, or
equivalently that � is onto. Since sdω T is a subdivision of T there exists for every G ∈ �T

and a ∈ G an F ⊆ G with F ∈ �sdω T such that TG(a) ∈ cone(TG(F)). Again we may
assume that G = F ′ and αF ′ : R

dF ′ → R is chosen as above. If xa is not in the image of the
inclusion i∗ : K [Gen(sdω T )] → K [Gen(T )], then a is not in F and αF (TF ′ (a)) < ω(a).
Writing n · TF ′ (a) = ∑

b∈F v(b)TF ′ (b) for n ∈ N and v : F → N as above, we compute that
xn

a − xv ∈ IF ′ , and ω(na) > αF (n · TF ′ (a)) = αF (TF ′ (v)) = ω(v). Hence xn
a ∈ inω(IF ′ ).

It follows that xa ∈ rad(inω(IF ′ )) ⊆ rad(inω(IT )) for every a ∈ Gen(T )\ Gen(sdω T ). This
finishes the proof of the theorem.

Theorem 5.11 generalizes a result of Sturmfels [23, Theorem 8.3]:

Corollary 5.12 Let T be a toric complex and ω : Gen(T ) → R such that sdω T is a
regular subdivision of T . Then

(i) rad(inω(IT )) is a square-free monomial ideal if and only if sdω T is a regular triangula-
tion of T . In this case the abstract simplicial complex induced by rad(inω(IT )) coincides
with �sdω T .

(ii) Given ω′ : Gen(T ) → R such that sdω′ T is a subdivision of T we have that sdω T =
sdω′ T if and only if rad(inω(IT )) = rad(inω′ (IT )).
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Proof: (i): By Theorem 5.11 Isdω T is a monomial ideal if and only if rad(inω(IT )) is a
square-free monomial ideal. Hence it follows from 4.5 that rad(inω(IT )) is a square-free
monomial ideal if and only if sdω T is a regular triangulation of T and that the abstract
simplicial complex induced by rad(inω(IT )) coincides with �sdω T .

(ii): We only show that rad(inω(IT )) = rad(inω′ (IT )) implies that sdω T = sdω′ T since
the other implication is a direct consequence of 5.11. Observe that by 5.11 we have that
rad(inω(IT )) = rad(inω′ (IT )) if and only if Gen(sdω T ) = Gen(sdω′ T ) and Isdω T = Isdω′ T .
The result follows from the fact that for a monomial xu the support of u is contained in a
face of sdω T if and only if xu /∈ Isdω T .

Recall that given a subset L of Z
d we let ML denote the submonoid of Z

d generated
by L . Let L ⊆ L ′ be subsets of Z

d . We say that ML is integrally closed in ML ′ if for all
x ∈ ML ′ with n · x ∈ ML for some n ∈ N we have that x ∈ ML . It is easy to see that this is
equivalent to the fact that cone(L) ∩ ML ′ = ML .

The following proposition can be extracted from the proof of Theorem 5.11:

Proposition 5.13 Let T be a toric complex and ω : Gen(T ) → R. If Gen(sdω T ) =
Gen(T ) and TG(F) is integrally closed in TG(G) for all F ∈ �sdω T and G ∈ �T with
F ⊆ G, then the ideal inω(IT ) is a radical ideal.

6. Edgewise subdivision of a simplicial complex

In this section � denotes an abstract simplicial complex on the vertex set V = {1, . . . , d+1},
i.e. � is a set of subsets of V and F ⊆ G for G ∈ � implies that F ∈ �. Let K [�] =
K [V ]/I� be the Stanley-Reisner ring of � where I� = (xF : F ⊂ {1, . . . , d + 1}, F �∈ �)
is the Stanley-Reisner ideal of �. Observe that K [�] = K [T (�)] where T (�) is the toric
complex of 3.3. By Theorem 4.11 the ring K [rT (�)] = K [T (�)](r ) is the r -th Veronese
subring of K [T (�)]. Given an element m of Z

d+1 we let m j denote its j-th coordinate for
1 ≤ j ≤ d + 1.

Guided by the regular subdivision introduced by Knudsen and Mumford [15, pp. 117–
123] and the edgewise subdivision of simplicial sets (see for example [2, 8] or [13]) we
define the following simplicial complex.

Definition 6.1 Let � be an abstract simplicial complex with vertex set V , let r ≥ 1
and ιV : V → Z

d+1 as in Example 3.3. Let ιV also denote the map N
V → Z

d+1, u �→∑d+1
i=1 u(i)ιV (i). The r-fold edgewise subdivision of � is the abstract simplicial com-

plex esdr (�) consisting of the subsets F ⊆ r V = {u ∈ N
V :

∑
i∈V u(i) = r} with⋃

u∈F supp(u) ∈ � satisfying that for u, u′ ∈ F we either have that 0 ≤ (ιV (u)−ιV (u′)) j ≤ 1
for every j ∈ {1, . . . , d +1} or that 0 ≤ (ιV (u′)− ιV (u)) j ≤ 1 for every j ∈ {1, . . . , d +1}.

The name r -fold edgewise subdivision comes from the fact that the edges of � are
subdivided in r pieces. The goal of this section will be to relate K [esdr (�)] to the r -th
Veronese subring of the Stanley-Reisner ring K [�].



SUBDIVISIONS OF TORIC COMPLEXES 443

Observe that we have required that the coordinate-wise partial order on Z
d+1 induces a

total order on ιV (F) for every F ∈ esdr (�). If m(F) denotes the minimal element of ιV (F) in
this order, then we also require that the set ιV (F) ⊆ Z

d+1 is a subset of m(F)+({0, 1}d ×{0}),
the vertices of a d-dimensional lattice cube.

Given an element σ of the symmetric group �d let

�σ = conv
(
0, eσ (1), eσ (1) + eσ (2), . . . , eσ (1) + eσ (2) + · · · + eσ (d)

) ⊆ R
d+1,

and denote by �d the abstract simplex on the vertex set V . For every maximal face F of
esdr (�d ) the polytope conv(ιV (F)) is a simplex of the form m(F) + �σ (F) for a unique
σ (F) ∈ �d . Conversely, for every m ∈ Z

d+1 and σ ∈ �d such that m + �σ is contained
in conv(ιV (r V )) = r conv(ιV (V )), the set F corresponding to the vertices of m + �σ is a
maximal element of esdr (�d ).

Given k with 0 < k < r and y ∈ R
d+1 we define:

α
i j
k (y) =

{
r (yi − y j ) + kyd+1 for 1 ≤ i < j < d + 1,

r yi − kyd+1 for 1 ≤ i < j = d + 1.

The following easy and well-known result implies that the linear form α
i j
k : R

d+1 → R has
the property that conv(ιV (F)) = m(F) + �σ (F) is contained in either its positive- or its
negative associated halfspace for every F ∈ esdr (�d ). For a proof we refer to Knudsen [15,
Lemma 2.4].

Lemma 6.2 The hyperplanes Hi j
k = (αi j

k )−1(0) induce a triangulation of the simplex
conv(ιV (r V )) into simplices of the form m + �σ .

The above lemma in particular implies that after choosing a total order on r V we have
that |T (esdr (�d ))| ∼= conv(ιV (r V )) ∼= �e where e ∈ �d is the neutral element.

Definition 6.3 Let � be an abstract simplicial complex and let r ≥ 1. Define esdr (T (�))
to be the (embedded) toric complex with �esdr (T (�)) = esdr (�), with esdr (T (�))F given by
the restriction of ιV : r V → Z

d+1 to F for F ∈ �esdr (T (�)) and with esdr (T (�))FG = idZd+1

for F, G ∈ �esdr (T (�)) with F ⊆ G.

Define the convex function f : R
d+1 → R by

f (y) =
∑

1≤i< j≤d+1
0<k<r

∣
∣α

i j
k (ιV (y))

∣
∣

and let ω = f ◦ ιV : r V → R. Lemma 6.2 implies that for every F ∈ esdr (�d ) there
exists a linear form αF : R

d+1 → R such that αF (y) = f (y) for every y ∈ m(F) + �σ (F).
Since the convex function f agrees with αF on an open subset of R

d+1 we have that
αF (y) ≤ f (y) for y ∈ R

d+1, and because m(F) + �σ (F) is a simplex in the triangulation
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induced by the Hi j
k , equality holds precisely if y ∈ conv(esdr (T (�d ))F (F)). This implies

that esdr (�d ) ⊆ �sdω rT (�d ). On the other hand if F is a maximal face of sdω(rT (�d )), then
by 6.2 conv(esdr (T (�d ))F (F)) is of the form m(F) + �σ (F). As in the discussion after 6.1
we see that F ∈ esdr (�d ).

Proposition 6.4 For every abstract simplicial complex � with vertex set V we have that
sdω rT (�) = esdr (T (�)) is a regular triangulation of rT (�).

Proof: We have just proved the result in the case � = �d . Since �sdω rT (�) = �sdω rT (�d )∩
{F ⊆ r V :

⋃
u∈F supp(u) ∈ �} and �esdr T (�) = �esdr (T (�d )) ∩{F ⊆ r V :

⋃
u∈F supp(u) ∈

�} it follows that sdω rT (�) = esdr (T (�)). Applying Corollary 5.7 we get that sdω rT (�)
is a regular triangulation of rT (�).

Corollary 6.5 We have that

K [esdr (�)] = K [esdr (T (�))] = K [sdω(rT (�))] ∼= K [r V ]/ inω(IrT (�)).

Proof: Only the last isomorphism does not follow directly from the definitions. By
Theorem 5.11 the face ring K [sdω(rT (�))] is isomorphic to K [r V ]/ rad(inω(IrT (�))). Since
for every F ∈ �sdω rT (�) the set ιV (F) is a subset of the vertices of a simplex of the form
m + �σ for m ∈ Z

d × {r} and σ ∈ �d , the set ιV (F) can be extended to a basis for Z
d+1.

By Proposition 5.13 we conclude that inω(IrT (�)) is a radical ideal.

Let ψ : V r → r V be the surjective map taking v = (v1, . . . , vr ) to the function
ψ(v) : V → N with ψ(v)(i) = |{l ∈ {1, . . . , r} : vl = i}|. Restricting ψ to the sub-
set W of V r consisting of tuples of the form v = (v1, . . . , vr ) with 1 ≤ v1 ≤ v2 ≤
· · · ≤ vr ≤ d + 1 we obtain a bijection ψ : W → r V . Note that (ιV (ψ(v))) j is given
by the cardinality of {l ∈ {1, . . . , r} : 1 ≤ vl ≤ j} for 1 ≤ j ≤ d + 1. Given a subset
F of W we have that ψ(F) ∈ esdr (�) if and only if the following two conditions are
satisfied:

(i) there exists an ordering F = {v1, . . . , vs} of the elements of F with vi = (vi1, . . . , vir )
∈ W such that

1 ≤ v11 ≤ v21 ≤ · · · ≤ vs1 ≤ v12 ≤ v22 ≤ · · · ≤ v1r ≤ v2r ≤ · · · ≤ vsr ≤ d + 1,

(ii) the set {vi j : 1 ≤ i ≤ s, 1 ≤ j ≤ r} is a face of �.

Let K [W ] denote the polynomial ring on the set W . We have a natural surjection
�rT (�) : K [W ] → K [�](r ) defined by �rT (�)(x(v1,... ,vr )) = xv1 · · · xvr and we write I ′

rT (�)
for the kernel of �rT (�). Note that �rT (�) induces an isomorphism �rT (�) : K [W ]/I ′

rT (�) →
K [�](r ) = K [rT (�)] = K [r V ]/IrT (�).
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A monomial xu ∈ K [W ] is of the form xu = ∏s
i=1 xui for ui = (ui1, . . . , uir ) ∈ W .

There exists a unique matrix of the form









v11 v12 · · · v1r

v21 v22 · · · v2r

...
...

...
...

vs1 vs2 · · · vsr









with

1 ≤ v11 ≤ v21 ≤ · · · ≤ vs1 ≤ v12 ≤ v22 ≤ · · · ≤ v1r ≤ v2r ≤ · · · ≤ vsr ≤ d + 1.

and
∏s

i=1

∏r
j=1 xui j = ∏s

i=1

∏r
j=1 xvi j ∈ K [V ]. Let sort(xu) = ∏s

i=1 x(vi1,...,vir ). Motivated
by Sturmfels [23, 14.2] we call the monomial xu ∈ K [W ] sorted if xu = sort(xu).

If xu = x(u11,... ,u1r )x(u21,... ,u2r ), then ψ(u11, . . . , u1r ) and ψ(u21, . . . , u2r ) are connected
by an edge in esdr (T (�d )) if and only if xu is sorted.

Let ω′ = ω ◦ ψ : W → R where ω = f ◦ ιV as above. The following is essentially
Theorem 14.2 in Sturmfels [23] (see Hibi-Ohsugi [17] for related Gröbner bases).

Proposition 6.6 The initial ideal inω′ (I ′
rT (�d )) is generated by the initial polynomials of

the set G consisting of the binomials

x(u11,... ,u1r )x(u21,... ,u2r ) − sort
(
x(u11,... ,u1r )x(u21,... ,u2r )

)
.

The initial polynomial of xu − sort(xu) is xu.

Proof: Since the case r = 1 is trivial, assume r ≥ 2. Observe that by the discussion above
for every non-face F ⊆ r V of esdr (�d ) there exists a non-face G ⊆ F of esdr (�d ) with
|G| = 2.

Since K [ψ] : K [W ] → K [r V ] takes I ′
rT (�d ) to IrT (�d ), it follows from Corollary 6.5

that inω′ (I ′
rT (�d )) is generated by square-free quadratic monomials of the form x(u11,... ,u1r )

x(u21,... ,u2r ) where {ψ(u11, . . . , u1r ), ψ(u21, . . . , u2r )} is not a face in esdr (�d ), that is, the
vertices ψ(u11, . . . , u1r ) and ψ(u21, . . . , u2r ) are not connected by an edge in esdr (T (�d )).
It follows that x(u11,... ,u1r )x(u21,... ,u2r ) ∈ inω′ (I ′

rT (�d )) if and only if there exists i, j, k such that
the real numbers α

i j
k (ιV (ψ(u11, . . . , u1r ))) and α

i j
k (ιV (ψ(u21, . . . , u2r ))) are non-zero and

have opposite signs. Therefore

ω′(u11, . . . , u1r ) + ω′(u21, . . . , u2r )

= ω(ψ(u11, . . . , u1r )) + ω(ψ(u21, . . . , u2r ))

> ω(ψ(u11, . . . , u1r ) + ψ(u21, . . . , u2r ))
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On the other hand, since x(v11,... ,v1r )x(v21,... ,v2r ) = sort(x(u11,... ,u1r )x(u21,... ,u2r )) is sorted we have
that

ω′(v11, . . . , v1r ) + ω′(v21, . . . , v2r ) = ω(ψ(v11, . . . , v1r ) + ψ(v21, . . . , v2r )).

It follows that x(u11,... ,u1r )x(u21,... ,u2r ) − x(v11,... ,v1r )x(v21,... ,v2r ) ∈ I ′
rT (�d ) with initial polynomial

x(u11,... ,u1r )x(u21,... ,u2r ). This concludes the proof.

Next we deal with an arbitrary abstract simplicial complex �.

Theorem 6.7 The ideal inω′ (I ′
rT (�)) is generated by the initial polynomials of the union G ′

of the binomials in G and the sorted square-free monomials xu with ψ(supp(u)) a non-face
of esdr (�).

Proof: The bijection ψ : W → r V induces an isomorphism ψ : K [W ] → K [r V ] with
ψ(xu) = ∏

w∈W xu(w)
ψ(w). It follows from 4.2 that

K [W ]/ inω′
(
I ′
rT (�)

)

∼= K [r V ]/ inω

(
IrT (�)

)

= K [r V ]/ inω

(
IrT (�d )

) + (
ψ(xu) : supp(ψ(xu)) �∈ �sdω rT (�)

)

∼= K [esdr (�d )]/
(
ψ(xu) : xu square-free and sorted, supp

(
ψ(xu)

) �∈ �sdω rT (�)
)
.

Observe that for a sorted monomial xu = ∏s
i=1 x(ui1,...,uir ) ∈ K [W ] we have that supp(ψ(xu))

�∈ �sdω rT (�) if and only if {uir : 1 ≤ i ≤ s, 1 ≤ j ≤ r} �∈ �. This is exactly the case if
supp(ψ(xu)) is not a face of esdr (�) = �sdω rT (�). Hence

K [W ]/ inω′ (I ′
rT (�)) ∼= K [esdr (�)].

For the rest of this section K denotes a field. For a Z-graded K -algebra R we denote
with H (R, n) = dimK Rn for n ∈ Z the Hilbert function of R. If R = K [W ]/L for a
graded ideal L ⊂ K [W ] and for a finitely generated graded module M we denote with
proj dimR(M) = sup{i ∈ N : TorK [W ]

i (R, K ) �= 0} the projective dimension of M and with
regR(M) = sup{ j ∈ Z : TorK [W ]

i (R, K )i+ j �= 0 for some i ≥ 0} the Castelnuovo-Mumford
regularity of R. A standard graded K -algebra R is said to be Koszul if regR(K ) = 0 where
K is regarded as an R-module. For the Cohen-Macaulay and Gorenstein property of rings
see for example [6]. The next corollary lists some algebraic consequences for the face rings.

Corollary 6.8 Let � be an abstract simplicial complex on {1, . . . , d + 1} and let K be a
field. We have:

(i) Hilb(K [esdr (�)], n) = Hilb(K [�](r ), n) for n ≥ 0.

(ii) K [�](r ) is Cohen-Macaulay, Gorenstein or Koszul if K [esdr (�)] has one of these
properties.
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(iii) proj dimK [W ](K [esdr (�)]) ≥ proj dimK [W ](K [�](r )).
(iv) regK [W ](K [esdr (�)]) ≥ regK [W ](K [�](r )).

Proof: Using the fact that every weight order ω can be refined to a monomial order this
follows from standard arguments. See for example Bruns and Conca [4].

Remark 6.9 By a theorem of Backelin and Fröberg [1] (see also Eisenbud, Reeves and
Totaro [9]) one knows that the r -th Veronese algebra of K [�] is Koszul for r � 1. One
could hope that this property is inherited for esdr (�) for r � 1. This is however not the case.
Let for example � be the set of subsets F ⊂ {1, 2, 3, 4} such that F �= {1, 2, 3, 4}. Then
x(1,4,4,... ) · x(2,4,4,... ) · x(3,4,4,... ) = 0 in K [esdr (�)]. But the elements x(1,4,4,... ) · x(2,4,4,... ),

x(1,4,4,... ) · x(3,4,4,... ) and x(2,4,4,... ) · x(3,4,4,... ) are all non-zero in K [esdr (�)]. Hence x(1,4,4,... ) ·
x(2,4,4,... ) · x(3,4,4,... ) belongs to a minimal system of generators for the defining ideal of
esdr (�), but is not a quadratic monomial. The Koszul property would imply that the defining
ideal of esdr (�) is generated by quadratic monomials. Hence K [esdr (�)] is not Koszul for
any r ≥ 1.
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