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Abstract. Let V be a finite dimensional vector space over the two element field. We compute orbits for the linear
action of groups generated by transvections with respect to a certain class of bilinear forms on V. In particular, we
compute orbits that are in bijection with connected components of real double Bruhat cells in semisimple groups,
extending results of M. Gekhtman, B. Shapiro, M. Shapiro, A. Vainshtein and A. Zelevinsky.
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1. Introduction

Let V be a finite dimensional vector space over the two element field ', with an [F,-
valued bilinear form Q(u, v). For any non-zero vector a € V such that Q(a,a) = 0,
the transvection t, is the linear transformation defined as 7,(x) = x 4+ Q(x, a)a for all
x € V.If the form € is alternating, i.e. Q2(a,a) = 0 for all a € V, then 7, preserves 2,
ie. Qx,y) = Q(t,(x), 7,(¥)); in this case 7, is called a symplectic transvection. Since
we work over [F,, each transvection t, is an involution, i.e. taz(x) = x. For a linearly
independent subset B of V, we denote by I'p the group generated by transvections t;, for
b € B. We define Gr(B) as the graph whose vertex set is B and b;, b; in B are connected
if Q(b;, bj) = 1or Q(b;, b;) = 1. In this paper, we study the linear action of I' in V' for
a linearly independent subset B such that Gr(B) is connected. For €2 which is alternating,
a description of I' g-orbits were obtained in [2, 15,24] for B such that Gr(B) contains the
Dynkin graph E¢ as a subgraph (see figure 1). We give a description of the I' g-orbits for
the remaining linearly independent subsets (Theorems 2.9, 2.13, 2.15). Furthermore, we
compute I"z-orbits corresponding to a certain class of non-skew-symmetric bilinear forms
(Theorem 2.16) extending the results of [8].

There is a rich literature on groups generated by symplectic transvections over F.
McLaughlin obtained a classification of irreducible linear groups generated by symplec-
tic transvections [18, 19]. In our set-up given above, McLaughlin’s classification reads
as follows: for a non-degenerate €2, the group I'p is one of the following: a symplectic
group, a symmetric group or an orthogonal group (see also [14]). In [26], McLaughlin’s
results are related to polar geometry via a classification of a particular type of graphs
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(see also [21, 25]). McLaughlin’s results also give a classification of simple J-systems,
which may be considered as analogues of finite root systems for the theory of Lie al-
gebras in characteristic 2 [12, 20]. On the other hand, Hall obtained a classification of
a class of 3-transposition groups which include certain groups generated by symplectic
transvections [10, 11]. Furthermore, Hall extended Shult’s classification of certain partial
linear spaces in polar geometry [3, 10, 11]. Hall also gave some group theoretical prop-
erties of symplectic transvections and discussed applications to the topology of surfaces
and mapping class groups [9]. Janssen extended McLaughlin’s classification to degenerate
cases in [15]. Independently, Brown and Humphries obtained some of the results given by
Janssen [2, 15]. Humphries also obtained a combinatorial characterization of symplectic
transvection groups which are isomorphic to symmetric groups [14].

Although symplectic transvection groups are classified, orbits of their linear actions have
not been completely understood. In this paper, we give an explicit description of such orbits
in the set-up given above. A description of the I"z-orbits for a basis B such that Gr(B) is a
tree was given in [2]. We extend this description to an arbitrary group of the form I'p for a
given linearly independent subset B which is not necessarily a basis (Theorems 2.9, 2.13,
2.15). We also obtain a combinatorial characterization of a class of graphs Gr(B) such that
the group I'p is, in general, not isomorphic to an orthogonal group (Theorem 2.7 and [2,
Theorem 8.5]).

Our interest in groups I'p and their orbits comes from the study of double Bruhat cells
initiated in [7,17]. A double Bruhat cell in a simply connected connected complex semisim-
ple group G is the variety G*'* = BuB N B_vB_, where B and B_ are two opposite Borel
subgroups, and u, v any two elements of the Weyl group W. They provide a geometric
framework for the study of total positivity in semisimple groups. They are also closely
related to symplectic leaves in the corresponding Poisson-Lie groups, see e.g. [13,16] and
references therein. A reduced double Bruhat cell L is the quotient G*>¥/H under the
right or left action of the maximal torus H = B N B_. It was shown in [24] and [28§]
that the connected components of the real part L*”(R) are in a natural bijection with the
I"py-orbits in 7', where i is a reduced word (of length m = [(u) 4 [(v)) for the pair (u, v)
in the Coxeter group W x W, and B(i) is the corresponding set of i-bounded indices as
defined in [24]. The I' g(j)-orbits for simply laced (resp. non-simply-laced) groups have been
computed in [24] (resp. in [8]) under the assumption that Gr(B(i)) contains the graph Eg
(figure 1). Our results are general enough to compute I' ) -orbits that are related to real
double Bruhat cells in semisimple groups.

The groups I'p also appeared earlier in singularity theory. To be more precise, let us
assume that B is a basis and €2 is an alternating form on V. Our connectedness assumption
on Gr(B) implies, in particular, that B is contained in a I" g-orbit, which is denoted by A. In
the language of singularity theory, the orbit A is called a skew-symmetric vanishing lattice
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Figure 1. The Dynkin graph Es.
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with monodromy group I'g, c.f. [15]. The main example of a skew-symmetric vanishing
lattice is the Milnor lattice of an odd dimensional isolated complete intersection singularity,
seee.g. [6]. A classification of monodromy groups of such lattices is givenin [15]. According
to this classification, if the graph Gr(B) contains E¢ as a subgraph, then the group I'p has
precisely two non-trivial I" g-orbits which are the sets le(l) and QE' (0), here Qp is the
associated quadratic form [15]. To extend this results to an arbitrary basis B (not necessarily
containing E¢), we introduce a functiond : V — {0} — Z- given by

d(x) =min{s : x = x; +---+ x;, for some x; € A}.

We prove that, for arbitrary B, non-trivial I"g-orbits are precisely the level sets of d
(Theorem 2.6). We also give an explicit description of the function d in terms of the graph
Gr(B) for any basis B (Theorems 2.6, 2.13). Furthermore we extend this realization to a
linearly independent set B which is not a basis and give an explicit description of the orbits
(Theorem 2.15) extending the results of [24].

To study the action of I' g, we use combinatorial and algebraic methods. Our main com-
binatorial tool is a class of graph transformations generated by basic moves. More precisely,
for every two elements a, ¢ € B such that Q(a, ¢) = 1, the basic move ¢, , replaces ¢ with
7,(c) and leaves other elements of B unchanged. The essential feature of those moves is
to preserve the associated group ', i.e. if B’ is obtained from B by a sequence of basic
moves, then I'p = I'p'. Basic moves were suggested to me by A. Zelevinsky; however it
was brought to my attention that they had been introduced in [1]. (We thank the anonymous
referee for pointing this out). It is important, e.g. in the theory of double Bruhat cells, to be
able to recognize whether a given graph can be obtained from another using basic moves.
Our Theorems 2.9, 2.10, 2.11, 2.13 solve this recognition problem for the classes of graphs
that do not contain the subgraph Ej.

2. Main results

In this section, we recall some statements from [1,2, 15] and state our main results. As in
Section 1, V denotes a finite dimensional vector space over the 2-element field IF,. Unless
otherwise stated, 2 denotes an [F;-valued alternating bilinear form on V. For a subspace
U of V, we denote by Uy the kernel of the form Q in U, ie. Uy = {x € U : Q(x,u) =
0, forany u € U}. We assume that B is a linearly independent subset whose graph Gr(B)
is connected. By some abuse of notation, we will sometimes denote Gr(B) by B. By a
subgraph of Gr(B), we always mean a graph X obtained from Gr(B) by taking an induced
subgraph on a subset of vertices. If B is a basis, then there is a one-to-one correspondence
x — Gr(B, x) between V and subgraphs of Gr(B) defined as follows: Gr(B, x) is the
subgraph of Gr(B) on vertices b;,, ..., b;, where x = b; + - - - + b;, is the expansion of
x in the basis B. By some abuse of notation, we sometimes denote Gr(B, x) by x. We say
that a vector u is contained in Gr(B, x) if Gr(B, u) is contained in Gr(B, x).

Definition 2.1 [1, Definition 3] Let a, ¢ be in B such that Q(a, ¢) = 1. The basic move
@c.q 1s the transformation that replaces ¢ € B by 7,(c) = ¢ + a and keeps other elements
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Figure 2. The graph D, x.

the same, i.e. ¢ ,(c) = ¢ + a and ¢, ,(b) = b for b # c. We call two linearly independent
subsets B and B’ equivalent if B’ is obtained from B by a sequence of basic moves. If B
and B’ are equivalent, then their graphs Gr(B) and Gr(B’) are also said to be equivalent.

We note that this equivalence relation is well-defined because ¢, (c).a9c.«(B) = B. We also
note that the basic move ¢, , changes Gr(B) as follows: suppose that p and g are the vertices
that represent the basis vectors a and c¢ respectively. The move ¢, , connects g to vertices
that are connected to p but not connected to g. At the same time, it disconnects vertices
from ¢ if they are connected to p. It follows that, for any basis B’ which is equivalent to
B, the graph Gr(B’) is connected. Furthermore, 'y = I'p [1, Proposition 3.1]. Also, there
exists a basis B’ equivalent to B such that Gr(B’) is a tree [2, Theorem 3.3].

Definition 2.2  Let m, k be integers such that m > 2, k > 1. A graph of the form in
figure 2 is said to be of type D,, .

We note that the graph D,, | is the Dynkin graph of type A,,; while D,, , is the Dynkin
graph of type D, 47.

2.1. Orbits of groups generated by symplectic transvections of a basis

To describe such orbits we need to recall some basic facts from the theory of quadratic
forms over F,. A quadratic form Q is an [F-valued function on V having the following

property:
OQu+v)y=0w)+ Q)+ glu,v), (for allu,veV)

where g : V x V — [, is an alternating bilinear form. It is clear that the quadratic form
QO completely determines the associated bilinear form g. Recall (see e.g. [5]) that there
exists a symplectic basis {eq, fi,...,e., fr,h1,..., h,} in V such that g(e;, f;) = & ;,
and the rest of the values of g are 0; here §; ; is the Kronecker symbol. Let us write
Vo={xeV:gx,v)=0, foranyv € V}. If Q(Vy) = {0}, then the Arf invariant of Q is
defined as

Arf(Q) =) 0(e)Q(f)

It is well known from the theory of quadratic forms that Arf(Q) is independent of the
choice of the symplectic basis [5].
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Two quadratic forms Q and Q' on V are isomorphic if there is a linear isomorphism
T:V — V such that Q(T'(x)) = Q'(x) for any x € V. According to [4, 5], isomorphism
classes of quadratic forms {Q} on V are determined by their Arf invariants and their re-
strictions {Q]y,}. More precisely, for fixed dimensions of V and V), there exist at most 3
isomorphism classes of quadratic forms {Q} and each isomorphism class is determined by
precisely one of the following:

» 0(Vo)=0,Arf(Q)=1
(i) Q(Vo) =0,Arf(Q)=0
(i) Q(Vo) =

Let us now assume that B is a basis of the F,-space V equipped with an alternating
form Q2. We denote by Qp the unique quadratic form associated with 2 and B as follows:
Opu+v)=0pw)+ 0p()+(u,v),(u,v € V),and Qp(b) = 1 forall b € B.Itis easy
to see that Q p is ['g-invariant, i.e. Q p(7,(x)) = Qp(x) foralla € B. This also implies that
quadratic forms are invariant under basic moves; i.e. if B and B’ are equivalent bases, then
Qp(x) = Qp/(x) for any x € V. Furthermore, the function Q g completely determines the
['g-orbits in V — V; when the graph Gr(B) contains a subgraph equivalent to Eg:

Theorem 2.3 [2, Theorem 4.1; 15, Theorem 3.8] Let V and Vy have dimensions 2n + p
and p respectively. Suppose that B is a basis whose graph Gr(B) is equivalent to a tree
which contains E¢ as a subgraph. Then Gr(B) is equivalent to one of the trees in figure 3,
figure 4 or figure 5, depending on Q (Vo) and Arf(Qp). Furthermore, the group I'p has
precisely two orbits in V. — V. They are intersections of V. — V, with the sets QEI(O) and

05" (D).

Proposition 2.4 [2, Theorem 4.2] Suppose that dim(V)> 3 and let B be a tree that does
not contain E¢. Then it is equivalent to a tree of type Dy, 1, i.e. a tree of the form in figure 2,
for some m > 2, k > 1. Furthermore, B is not equivalent to any tree B’ that contains Eg.

az a3z a4 _0as Q2n _16
o 1
L]
a1l °
Cp+1

Figure 3. Arf(Qp) = 1if n = 2,3 mod(4), Arf(Qp) = 0if n = 0,1 mod(4), Vy = linear span of {c; +
Cp+1,C2+ Cpilynne, Cp +C]7+l}, 0p(Vo) =0.

as aa as ae a2n—1c
o 1
L]
L
a2 Cp+1
a1

Figure 4. Arf(Qp) = 1ifn = 0,1 mod4), Arf(Qp)
ferteprr,catCptryanns cp+cprt), @p(Vo) =0.

0ifn = 2,3 mod (4), Vp = linear span of
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a2 as a4 as a2n
C1
.
.
d
al Cp

Figure 5. Qp(Vy) = 2, Vo = linear span of {c] +c¢p,c2 +¢p, ..., Cp—1+Cp,ar +ax + as}.

Thus the trees given in Figures 2—5 form a complete set of representatives for equivalence
classes of graphs. For a basis B whose graph is a tree of type D, x, there is the following
description of I"z-orbits.

Theorem 2.5 [2, Theorem 7.2] Let V be an F;-space with dim(V) > 3 and let B be a
basis whose graph is a tree of type Dy, k., i.e. atree of the form in figure 2, withm > 2,k > 1.
Then, two vectors x,y in V. — V lie in the same T g-orbit if and only if Gr(B, p(x)) and
Gr(B, p(y)) have the same number of connected components, where p is the linear map
onV defined as p(a;) = a; foralli =1,...,m,p(c;)=ciforj=1,... k.

Our next result gives a unified description of ' orbits.

Theorem 2.6 Let B be an arbitrary basis in V such that Gr(B) is connected and let
d .V — Z. be the function defined as

d(x) =min{s : x = x; +---+ x;, for some x; € A}

where A is the I g-orbit that contains B. Let x, y be vectors in V. — V. Then x and y lie
in the same I g-orbit if and only if d(x) = d(y). Furthermore, if B is equivalent to a tree
which contains Eg¢, then d(x) =2 — Qp(x) forany x € V — V.

In Theorem 2.13, we will obtain an explicit expression of the function d for an arbitrary
basis B which is equivalent to a tree that does not contain Eg. Our next result allows one to
recognize such bases easily.

Theorem 2.7 A connected graph B is equivalent to a tree of type Dy,  withm > 2, k > 1
if and only if it does not contain any subgraph which is equivalent to E¢. Furthermore, the
graph B is equivalent to a tree of type D,, | if and only if it does not have subgraphs of the
following form:

a tree of type D »,
two triangles sharing a common edge,

any cycle whose length is greater than or equal to 4. 2.1

Corollary 2.12 also provides an alternate method to recognize a graph which is equivalent
to a tree that does not contain Eg.
Our next theorem introduces an important class of vectors which are fixed by I'p.

Theorem 2.8 Let B be an arbitrary basis in V such that Gr(B) is connected and let A
denote the T g-orbit that contains B. Let Vi be the set that consists of vectors y in Vj
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such that y = x| + x, for some x1, xo € A. Then Vi is a vector subspace of V and every
['g-orbitin V — Vy is a union of cosets in 'V | Vooo. Furthermore, we have dim(Vy/ Vo)< 1.

Our next results allow one to locate all of the vectors in Vg for a basis whose graph does
not contain Eg.

Theorem 2.9 Let B be a basis whose graph is equivalent to a tree of type Dy, ; with
m > 2, k > 1. Suppose that X is a subgraph which is one of the types in (2.1). Then
F5X' N Vooo # {0}, where F is the linear span of the vectors contained in X. Furthermore, if
X = [x1,x2, ..., x,]is acycle whose length r is greater than or equal to 5, then Fé‘ N Vooo
is spanned by the vector x| + x, + - - - + Xx,.

Theorem 2.10 The conditions in Theorem 2.9 characterize a graph which is equivalent
to a tree of type D,y for some m > 3, k > 1. More precisely, suppose that B is a
basis whose graph Gr(B) has the following property: for any subgraph X which is of one
of types in (2.1), we have FY N Voo # {0}. Then Gr(B) is equivalent to a tree of type
Dyx,m>3,k>1.

Theorem 2.11 Let B be a basis whose graph is equivalent to a tree of type D, x with
m > 2,k > 1. If dim(V)> 3, then Vooo = Dy IFé( N Vooo where X runs through the
subgraphs in (2.1).

Corollary 2.12 Let B be a basis whose graph is equivalent to a tree of type D,, ; with
m > 2,k > 2. Suppose that b is an arbitrary vertex contained in Gr(B, u) for some
u € Vooo. Then the graph Gr(B — {b}) is connected and it is equivalent to a tree of type
Dm,k—l-

Our next result gives an explicit expression for the function d defined in Theorem 2.6.

Theorem 2.13  Let B be a basis which is equivalent to a tree of type D,, x withm > 2, k >
1. Suppose that x € V. — V,y and let X be any minimal representative in the coset x + Voo,
i.e. Gr(B, X) does not contain any non-zero vector in Vooy. Then

dx)=c®+ Y ([1Al/21-1) (2.2)

A:[A]>3
where c(X) is the number of connected components of X and A runs through the set of

maximal complete subgraphs of X and |A| is the number of vertices in A.

2.2.  Orbits of groups generated by symplectic transvections of a linearly independent
subset which is not a basis

We first recall the following statement from [24].

Theorem 2.14 [24, Theorem 6.2] Let B be a linearly independent subset which is not
a basis in V and let U denote the linear span of B. Suppose that Gr(B) is connected. If



456 SEVEN

Gr(B) contains a subgraph which is equivalent to E¢, then I'g has precisely two orbits in
(v+U)— VT8, where V5 is the set of vectors which are fixed by T . They are intersections
of (v + U) — V' with the sets Q,,,(0) and Q7 (D).

Our next result is a counterpart of Theorem 2.14 for graphs that do not contain Eg.

Theorem 2.15 Let B be a linearly independent subset which is not a basis in V. Suppose

that Gr(B) is connected and does not contain a subgraph which is equivalent to E¢. Suppose

also that dim(U) > 2 where U denotes the linear span of B. Then we have the following

statements:

1) If Qv, Uggo) # {0}, then there are precisely two I"B orbits in v + U. They are inter-

sections of v+ U with the sets QBU (O) and QBU (D).

(i) If (v, Ugpp) = {0} then I g-orbits in v + U are lntersectlons of v+ U with the " pujuy-
orbits in the linear span of B U {w} for some w € v + U such that Gr(B U {w}) does
not contain any subgraph which is equivalent to Eg.

2.3.  Orbits of groups generated by non-symplectic transvections

Let us first recall that, for an arbitrary bilinear form €2 on V and a linearly independent set B,
we define its graph Gr(B) as the graph whose vertex setis B and b;, b; in B are connected if
Q(b;, bj) = 1or Q(bj, b;) = 1. The following result is a generalization of [8, Theorem 3]:

Theorem 2.16 Suppose that 2 is a non-alternating bilinear form on the F,-space V. Let
B be a linearly independent subset whose graph is connected. Suppose that there exists
a disjoint collection of connected graphs By, ..., B, with B = UB; such that Q|F§, is
alternating and, for any b; € B;, bj € Bj with i # j, we have Q(b;, b;) = 1if and only if
j =i+1.Supposethatx € V is notﬁxedby I'gandlet L = mln{] x is not fixed by I'p, }.
Then the I"g-orbit of x coincides with the set T'g, (w(x)) +F, REE where I'p, (7w (x)) is
the I, -orbit of the vector w (x); here 1y, is the standard projection onto IFBL

3. Orbits of groups generated by symplectic transvections of a basis

In this section, we prove Theorems 2.6-2.13. It will be convenient for us to prove, first,
Theorem 2.8. Let us keep the notation of Section 2 and recall that Vyyy is the set that consists
of vectors y in Vj such that y = x| +x, for some x;, x, € A. We also introduce the subspace
Voo = {y € Vo : Op(y) = 0} where Qp is the (unique) quadratic function associated with
B (c.f. Section 2). We note that Voo C Vip.

3.1.  Proof of Theorem 2.8

To prove the theorem, it is enough to show that forany x € V —Vyand u € Vyo, the vectors
x and x + u lie in the same I"g-orbit. Let us assume that u = u; + u,, where u, u, € A.
Since B lies in A, we may also assume, without loss of generality that, u; € B. We note
that Q(uy, up) = 0 since uy + u, € Vj.
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We claim that there exists y € I'g suchthat Q(y (x), u;) = 1. Suppose that Q(y (x), u;) =
0 for all y € I'g. Then Q(x, y(u1)) = 0 for all y € I'g. This implies, in particular, that
Q(x,b) = 0 for all b € B, because u; € B lies in the orbit A. This would imply that
x € Vp, resulting in a contradiction because x ¢ V. We note that Q2(y (x), u;) = 1 because
u=u+uyeV.

Let us now consider y‘lruzt,,l y. This automorphism is in I'p because t,, € I'p by [1,
Proposition 3.1]. Then y"ruztuly(x) =X+ u; +u, = x + u, hence x and x + u are
contained in the same I' g-orbit.

We obtain the remaining part of Theorem 2.8 from the following explicit description of
Vo, Voo, Vooo-

Proposition 3.1 The spaces Vi, Voo and Voo have the following descriptions in terms of
the trees in figures 2-5.
(1) Suppose that B is of type D,, x withm > 2,k > 1 indexed as in figure 2.
If m is odd, then Vy = Vyp = Voo = linear span of {c; + ¢, ¢; +c¢3, ..., ¢c1 + ¢k}
Ifm =2, then Vy = Vo = Voo = linear span of {a; +c¢1, c1+¢2, c1+¢3, ..., c1+
ce}. Ifm > 2and m = 2 mod(4), then Voo = linear span of {c;+c, c1+c3,...,c1+
ci} and Vo = Vo = linear span of Vogo U {a; + a3 +--- + am—1 +c1}.
If m > 2 and m = 0 mod(4), then Voo = Voo = linear span of {c| + ¢2,¢; +
C3,...,C1 + ¢k} and Vo = linear span of (Vooo U {a; + a3+ -+ an—1 +c1}).
(i) If B is as in figure 3 or figure 4, then Vy = Vo = Voo = linear span of {c; + ¢2, c; +
c3,...,C1 + ¢}
(iii) If B is as in figure 5, then Voo = Voo = linear span of {c¢; + ¢3,¢1 4¢3, ..., c1 + ¢}
and V = linear span of Vyoo U {a; + a» + a4}.

Corollary 3.2 For any basis B whose graph is equivalent to a tree of type Dy, ; with
m > 2,k > 1, we have the following:
1) Ifm > 2, then dim(Vooo) = k — 1. If m = 2, then dim(Vy) = dim(Voy) = k.
(ii) The number of fixed points of U'g in 'V is 2=V if m is odd, and 2% if m is even.
(iii) The number of T g-orbits which are not fixed points is (m + 1)/2 if m is odd, and m /2
if m is even.

We record the following trivial statement for later use.
Proposition 3.3 Suppose that C = [c1, ¢z, ..., ¢kl k > 3, is a linearly independent
subset whose graph is a cycle. Let W be the subspace spanned by C. Then the vector

i +cy+ -+ € Wono. If k = 4, then, for any c; and c; which are not connected to
each other (in Gr(C)), we have c¢; + ¢; € Wypo.

3.2.  Proof of Theorem 2.6

Let us first introduce some terminology. For a vector x € V, we say that x = x; 4+ --- + x;
is a A-decomposition of x if xq,...,x; € A and Q(x;,x;) = Oforalli,j =1,...,s,
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here A denotes the I g-orbit that contains B (and any basis equivalent to it). If Qg(x) =1
(resp. Qp(x) = 0), then any A-decomposition of x has an odd (resp. even) number of
components. Let us also note that

d(x) = min{s: x has a A-decomposition x = x; + - - - + x,}.

We first prove the existence of a A-decomposition for an arbitrary x € V — Vj. Since any
connected graph is equivalent to a tree, we may assume that B is a tree. Let By, ..., By be
the connected components of Gr(B, x) and let x, .. ., x; be the corresponding vectors in
V. We claim that x = x; + - - - 4+ x, is a A-decomposition for x. We note that Q(x;, x;) =0
forall i # j. To show that x; € Afori = 1,...,s, it is enough to show, without loss of
generality, that x; € A. Letus assume x; = by +---+ by, b; € B. Since Gr(B, x1) is a tree,
it has a leaf, i.e. a vertex, say by, which is connected to precisely one vertex in Gr(B, x).
Then Gr(B, 5,(x)) is a tree with k — 1 vertices. By induction, we obtain y € I' such that
y(x1) € B,i.e. x; € A.

Let us also note that, for any A-decomposition x = x; +---+ x;and any y € I', we
have a A-decomposition y(x) = y(x1) + - - - + y(x,). Thus, we have

d(x) =d(y(x)) forany y € T. (3.1

Lemma 3.4 Suppose that B is equivalent to a tree that contains E¢. Then, for any x €
V — Vi, we have the following:

(i) d(x) =1lifand only if Qp(x) =1
(1) d(x) =2 ifand only if Qp(x) =0

The “only if” parts are clear. To prove the “if” parts, let us first assume Qp(x) = 1.
Then x € A, by Theorem 2.3, hence d(x) = 1. Let us now assume that Qg(x) = 0 and
let x = x; 4+ --- 4+ xo, be a A-decomposition. Then there exist j € {l,...,2[} such
that x + x; ¢ Vp (otherwise x = > (x + x;) € Vp). Since x = (x + x;) + x;, and
Op(x +x;) = Op(x;) = 1, we have d(x) = 2 and we are done.

To complete the proof of the theorem let us now assume that B is equivalent to a tree
B’ which is of type D,, x. We claim that, for any x € V — V,, the number d(x) is equal
to the number of connected components of Gr(B’, p(x)), where p is the function defined
in Theorem 2.5. In view of Theorem 2.8 and (3.1), this claim follows from the following
stronger statement.

Lemma 3.5 Let B be a basis equivalent to a tree B" of type Dy, x withm > 2 and k > 1.
Suppose that x € V and let x = x1 +Xx; - - -+ x4 be a A-decomposition, i.e. x1,...,Xx; € A
and Q(x;, x;) =0foralli, j =1,...,d. Suppose also that

foranyi # j, we have x; + x; ¢ Vooo. (3.2)

Then there exists a € I'p such that a(x) = y + y, + - - - + yq, where y; = a(x;) € B'.
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Let us assume that B’ is indexed as in figure 2. Applying if necessary an element of I'g,
we may assume that x; = a;. By our assumption in (3.2), all x; for i > 2 are contained in
{as, ..., an, c;} (Theorem 2.5, Proposition 3.1). Our claim follows by induction on d. This
completes the proof of Theorem 2.6.

3.3. Proof of Theorem 2.7
We will first prove that

a graph B is equivalent to a tree of type D,, ; if and only if it does not have
subgraphs of the form in (2.1) (3.3)

Let us denote by F the set that consists of the graphs in (2.1). Since B is equivalent to
atree T of type D, 1, there exist a sequence of basic moves ¢, 4., - - ., Pcy.ar5 Pey.a; SUCh
that B = @¢,.q, 0+ 0 @cyar © Pey .0, (T). We will show by induction on r that each graph
Bi = ¢¢a--Per.an®ei.a(T), 1 < i < r,in particular B = B,, contains a subgraph that
belongs to F. The basis of the induction is the fact that any tree of type D,,; does not
contain any subgraph that belongs to F'. The induction follows from the following lemma:

Lemma 3.6 Ifa graph G contains a subgraph X € F, then, for any basic move ¢, ,, the
graph ¢. .(G) contains a subgraph X' which belongs to F.

Since the basic move exchanges ¢ by ¢ + a and fixes the other elements of G, we may
assume that c is in X. It follows from a direct check that

ifa € X, then ¢, ,(G) contains a subgraph X’ which belongs to F. (3.4)

If a ¢ X and it is not connected to any vertex v in X such that v # ¢, then the graph
¢.4(X) = X isin F. Let us now assume that @ ¢ X and it is connected to a vertex v # ¢
in X. By (3.4), we may also assume that a is not contained in any subgraph which is in
F. Then the subgraph Xa with the vertices X U {a} is of the form in figure 6 as could be
verified easily. We note that the graph X’ = ¢ ,(Xa) belongs to F.

We complete the proof of Theorem 2.7 by the following lemma.

Lemma 3.7 Let G be a connected graph that contains a subgraph X which is equivalent
to E¢. Then, for any a, c in G suchthat Q(a, c) = 1, the graph ¢. .(G) contains a subgraph
X' which is equivalent to Es.

Ifc ¢ X, then we may take X' = X.If c € X anda € X, then we may take X' = ¢, ,(X).
Let us now assume that c € X and a ¢ X. We write Xa to denote the (connected) graph

with the vertices in X U {a} and denote by U the linear span of Xa. We will show that

the graph ¢, ,(Xa) contains a subgraph X’ which is equivalent to Eg. (3.5)
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v c

Figure 6. The vertex a is connected to the cycle without being contained in a subgraph which is of the form in

(2.1).

By Theorem 2.3, the graph Xc is equivalent to a tree of the form in figure 3 or figure 5.
Let us first assume that Xa, hence ¥ = ¢, ,(Xa), is equivalent to a tree of the form in
figure 3. Then dim(Uy) = 1 by Proposition 3.1. Let y in Uy be such that y # 0, and
let b be a vertex in Gr(Y, y) such that X’ = Y — {y} is connected. Then Arf(Qx) = 1,
so X' is equivalent to E¢ by Theorem 2.3. Let us now assume that Xa is equivalent to a
tree of the form in figure 5. We will show, using a case by case analysis, that the graph
Y = ¢...(Xa) contains a subgraph X’ which is equivalent to E¢, and this will complete the
proof of Lemma 3.7.

For the remaining part of the proof, we assume that Y = {by, by, ..., bs, b7}. We denote
by U the linear span of Y. We note that dim(Uy) = 1 and dim(Uyy) = dim(Upp) = 0. We
also recall that we always assume a subgraph to be an induced subgraph.

Case 1 Y is acycle of length 7.

Any cycle C of length » > 4 is equivalent to a tree of type D,_,». Since Xa, hence Y, is
equivalent to a tree that contains Eg, this case is not possible (Proposition 2.4).

Case 2 Y contains a cycle C of length 6.

Let us assume without loss of generality that C = [by, bs, ..., bg]. Since dim(Uyy) =
0, the vertex b; is connected to an odd number of vertices in C (otherwise the vector
by +by+---+beisin Uy, c.f. Proposition 3.3). Thus Y is one of the graphs in figures 7-9.
We note that each of the graphs in figures 7-9 contains a subgraph equivalent to E¢ which
is marked by thick lines.

Case 3 Y contains a cycle C of length 5.

Let us assume without loss of generality that C = [by, by, . .., bs]. Since dim(Uy) = 0,
there is a vertex, say bg, in Y that is connected to an odd number of vertices in C (otherwise
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Figure 7. The vertex b7 is connected to an odd number of vertices in the cycle of length 6, forming a subgraph

equivalent to Es.
AN AN
b7 /. b7 /.
/ /

Figure 8. The vertex b7 is connected to 3 vertices in the cycle of length 6, forming a subgraph equivalent to Eg.

AN
b7 /.
/

Figure 9. The vertex b7 is connected to 5 vertices in the cycle of length 6, forming a subgraph equivalent to Es.

the vector by + by + - - - + bs is in Uy). Then the subgraph with the vertices {by, b, . .., bg}
is one of the graphs in figure 10 or figure 11. We note that each of the graphs in figures 10
and 11 is equivalent to Ej.

Case 4 Y contains a cycle C of length 4.

Let us assume, without loss of generality, that C = [by, b,, b3, bs]. We note there is a
vertex which is not in C but connected to an odd number of vertices in C (Proposition 3.3).

Subcase 4.1 There is a vertex v ¢ C such that v is connected to precisely 3 vertices in C.

Let us assume, without loss of generality, that v is connected to the vertices by, by, bs3.
Since dim(Uy) = 0, there is a vertex v’ # v such that v ¢ C and connected to precisely
one vertex, say by, in {by, b3} (otherwise b; + b3 in Uy).
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by
bs

Figure 10. Each graph is equivalent to Es.

T

Figure 11. Each graph is equivalent to Es.

[ ]
=
N

by b3

Figure 12. Each graph is equivalent to E¢.

Subsubcase 4.1.1 V' is not connected to any vertex in {b,, bs}. Then the subgraph X" with
the vertices C U {v, v’} is one of the graphs in figure 12 and it is equivalent to Eg.

Subsubcase 4.1.2 V' is connected to precisely one vertex in {b;, bs}.
Let X’ be the subgraph with the vertices C U {v, v'}. Then we have the following:

(i) If v’ is not connected to v, then the graph X’ is one of the graphs in figure 13 which are
equivalent to Eg.
(ii) If v’ is connected to v, then (i) applies to ¢, p, (X), thus X’ is equivalent to Eg.
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- b

by b3

Figure 13. Each graph is equivalent to E¢.

Figure 14. Each graph is equivalent to Es.

Subsubcase 4.1.3 V' is connected to precisely two vertices in {by, bs}. Let X' be the
subgraph with the vertices C U {v, v'}. Then Subcase 4.1.1 applies to ¢, 5, (X'), so X' is
equivalent to Eg.

Subcase 4.2  Subcase 4.1. does not hold. Since dim(Uy) = 0, there are vertices v, v’ ¢ C
which are connected to adjacent vertices in C. Then the graph X’ with the vertices C U{v, v’}
is one of the graphs in figure 14 which are equivalent to Eg.

Case 5 Y contains two adjacent triangles sharing precisely one common edge.

Let T = {bi, by, b3, by} be the subgraph formed by the adjacent triangles sharing the
common edge [b,, b3]. We note that the graph T’ = ¢, 5,(T) is a cycle of length 4. By our
analysis in Case 4, the graph T" is contained in a graph E which is equivalent to E¢. Then
T is contained in X' = ¢, 4,(E).

Case 6 'Y contains a subgraph D of the form D; ;.

Let D = {ay, az, c1, ¢} be indexed as in figure 2. We note that the graph D’ = ¢,, ,(D)
is formed by two adjacent triangles. By our analysis in Case 5, the graph D’ is contained in
a graph E which is equivalent to E¢. Then D is contained in X' = ¢, 4,(E).

Case 7 None of the above cases happen.

Then Y is equivalent to a tree of type D,, | by (3.3), which contradicts to our assumption
that Y is equivalent to a tree that contains E¢ (Proposition 2.4). This completes the proof
of Theorem 2.7.
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3.4.  Proof of Theorem 2.9

Let us first assume that X has precisely 4 vertices. Then X is equivalent to a cycle X' =
[c1, €2, c3, 4] (such that Q(cy, c3) = Q(ca, ¢4) = 0). We claim that

there is x € {¢1 + ¢2 + ¢3 + ¢4, ¢1 + ¢3, ¢ + ¢4} such that x € Vyg (3.6)

Suppose that (3.6) is not satisfied. Then there is a vector v ¢ X’ such that Q(v, c; +c2 +
c3 + c4) = 1. We may assume, without loss of generality, that Q(v, ¢; + c4) = 0. Then
there is also a vector v’ ¢ X’ such that Q(v’, ¢; + ¢4) = 1 (because we assume that (3.6) is
not satisfied). Then the subgraph with the vertices X’ U {v, v’} is equivalent to E¢ (by our
analysis in Case 4 of the proof of Lemma 3.7). This contradicts Proposition 2.4.

Let us now assume that X has at least 5 vertices, i.e. X = [cy, ..., ¢,] is a cycle whose
length r is greater than or equal to 5. We claim that x = ¢; + ¢; + - -+ + ¢, is in Vjqo.
Let B = ¢.,_, ., (B). Then Gr(B’, x) is a cycle of length r — 1. Then the claim follows by
induction on r. (Here we note the following: if r = 5 then Gr(B’, x) = [c1, ¢2, ¢3, ¢4 + ¢5]
is a cycle of length 4 such that ¢y 4+ ¢3,¢c2 + ¢4 + ¢s ¢ Voo because Qc; + ¢3,¢5) =
1, 2(cr +c4+c5,¢5) = 1.)

The remaining part of Theorem 2.9 follows from Lemma 3.5.

3.5.  Proof of Theorem 2.10

We will show that, for any B which is equivalent to a tree that contains Ejg, there is a
subgraph X of the form in (2.1) such that F5 N Vgoo = {0}. For such a B, there is a subgraph
E C B which is equivalent to Eg (Theorem 2.7). Let us denote by U the linear span of
vectors contained in E. Then dim(Uy) = 0 by Proposition 3.1. Since E is not equivalent to
any tree of type D,, | (Proposition 2.4), it contains a subgraph X such that X is of the form
in (3.1) (Theorem 2.7). Then IF§ N Voo = {0} because dim(Uy) = 0 and IF%‘ N Vooo C Up.
This completes the proof of the theorem.

3.6.  Proof of Theorem 2.11

For any basis B which is equivalent to a tree of type D,, ; we denote by Bggo the set that
consists of vectors x € Vyoo such that Gr(B, x) is contained in a subgraph of the form in
(3.1). Then Theorem 2.11 is equivalent to the following statement:

for any basis B which is equivalent to a tree of type D,, ¢, the set Byoy spans Vooo.
(3.7

Let us first note that (3.7) holds for B which is a tree of type D,, ; (Proposition 3.1).
Thus, to prove (3.7), it is enough to prove the following statement:

if x in Bogo, then, for any basis B’ = ¢. ,(B), the vector x is in the linear span of Byy,.
(3.8)
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It follows from a direct check that
if a, ¢ are in Gr(B, x), then (3.8) is satisfied. (3.9

Let us now assume, without loss of generality, that c € Gr(B, x),and a ¢ Gr(B, x). We
will establish (3.8) using a case by case analysis.

Case 1 Gr(B, x) has precisely two vertices.

In this case Gr(B, x) is contained in a subgraph X which is a tree of type D, ; or a cycle
of length 4. Let x = ¢ + b be the expansion of x in the basis B. We note that a is connected
to both ¢ and b because x € V;. Then Gr(B’, x) is the triangle with the vertices {c +a, a, b}
and it is in B{,.

Case 2 Gr(B, x) has precisely three vertices

We note that in this case Gr(B, x) is a triangle. Let x = ¢ + b + b, be the expansion of
x in the basis B. Then Gr(B’, x) is the cycle with vertices {c + a, by, b,, a}. In particular
it is in By,

Case 3 Gr(B, x) has precisely 4 vertices
We note that in this case Gr(B, x) is a cycle of length 4. Let us assume that x =
¢ + by + by + bj is the expansion of x in the basis B.

Subcase 3.1 a is connected to precisely one vertex, say b, in {by, by, b3}. If b is connected
to ¢, then Gr(B’, x) is a cycle of length of 5 so x € B,. Let us now assume that b is
not connected to c. We may also assume that b = b, (see figure 15(i)). Then the vectors
x; = by +aand x, = by + b3 + ¢ + a are in Vypp by Theorem 2.9. They are also in the
linear span of Bj, by (3.9), sois x = x| + x».

Subcase 3.2 a is connected to all of the vertices in {bi, by, b3}. In this case, the vectors
X1 =c+a+b;and x, = by + a + b3 are in Vg9 by Theorem 2.9 (see figure 15.(ii)). They
are also in the linear span of By, by (3.9), sois x = x; + x».

b c bs c

b2 b1 b2 1
(i) (ii)

Figure 15. The vector x = by + by + b3 + ¢ is in Vygp.
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by 3 by 03
(i) (i)

Figure 16. The vector x = by + by + b3 + bsg + ¢ is in Vygo.

Case 4 Gr(B, x) contains precisely 5 vertices.
In this case Gr(B, x) = [c, by, by, b3, bs] is a cycle of length 5.

Subcase 4.1 a is connected to precisely one vertex, say b, in {by, b,, b3, bs}.

If b is connected to ¢, then Gr(B’, x) is a cycle of length 5, so x € B,. Let us now
assume that b is not connected to c. We may also assume, without loss of generality, that
b = b, (see figure 16(i)). Then the vectors x; = b; +a, x; = c+a + by + b3 + by are in
Vooo by Theorem 2.9. They are also in the linear span of B{, by (3.9), sois x = x| + x».

Subcase 4.2 a is connected to precisely three vertices in {by, by, b3, bs}.

In this case, we may assume that Gr(B, x) is as in figure 16(ii). We note that x; =
c+by+aand x, = a = by + b3 + by are in Vypo. They are also in the linear span of By,
by (3.9), sois x = x; + x3.

Case 5 Gr(B, x) has at least 6 vertices.

We note that the graph Gr(B, x) = [c, by, ..., b,] is acycle of length r, r > 6.

Subcase 5.1 a is connected to precisely one vertex, say b in by, by, b3, by, bs.

If b is connected to c, then Gr(B’, x) is a cycle of length of r + 1, so x € B, Let us now
assume that b is not connected to ¢ and denote the graph with the vertices Gr(B, x)U {a} by
Xa. One could easily check the following: if Xa does not contain a cycle of length 4 then
it contains a subgraph which is E¢, contradicting to our assumption that B does not contain
a subgraph equivalent to E¢ . If Xa contains a cycle of length 4, then it is of the form in
figure 17. By the same arguments as in Case 5, one could show that x is in the linear span
of Bjy,-

Subcase 5.2 Let us now assume that a is connected to (an odd number) k vertices in
by, by, ..., b, with k > 1. One could easily check that Xa contains a subgraph equivalent
to Eg unless it is of the form in figure 18. By the same arguments as in Case 5, one could
show that x is in the linear span of B,.
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[ ]
a [ ]
°
Figure 17. The graph does not contain any subgraph equivalent to Eg.
° °
° a °
° °

Figure 18. The graph does not contain any subgraph equivalent to Eg.

3.7.  Proof of Theorem 2.13

Let us first introduce some notation. For any vector v € V, we denote by C(B, v) the set of
connected components of Gr(B, v). We denote by M (B, v) the set of maximal complete
subgraphs (of Gr(B, v)) with at least three vertices. By some abuse of notation, we will
also use X to denote the vector that corresponds to the graph x. We will denote by dg(X)
the expression on the right side of (2.2), thus we will show that d(x) = dg(x) for any
x € V — Vy and any B which is equivalent to a tree of type D, x.

Since X is minimal, each connected component of Gr (B, X) is equivalent to a tree of type
D,,,1 (Theorems 2.11,2.7). Let A = {ay, ..., a,},r > 3 be a maximal complete subgraph
which is contained in a connected component C of x. For any vertex b in C such that b is not
in A, we denote by A(b) the vertex in A which is closest to b (such a vertex exists by (2.1)).
For any vertexa € A, wedefine H(a) = {b € C—A : A(b) = a}U{a} and forapair {a;, a;}
of verticesin A, we define H(a; +aj) ={b € C—A : A(b) = a; or A(b) = a;}U{a; +a;}.
If r is even (resp. odd) let

B = ¢ar—1»ar ©---0 ¢a3,a4 © ¢al,az (resp. B = ¢ar—2,ar—1 ©---0 ¢a3,a4 © ¢a1,a2)'

Then C(B’, %) = (C(B,x) — C)U {H(a, + a2), H(as + a4), ..., H(a,_1 + a,)} (resp.
C(B',%) = (C(B,x)— C)U{H(a1 + @), H(az + a4), ..., H(a,—2 + a,1)}, H(a,)), and
M(B’, x) = M(B, x) — A. We note that dg(X) = dp/(x) and X is minimal. Continuing this
procedure, we obtain a basis B” which is equivalent B such that each connected compo-
nent of Gr(B”, %) is a chain. Then dg(X) = dp-(X) is equal to the number of connected
components of Gr(B”, x). (Note that x is also minimal with respect to B’). Since each
connected component of Gr(B”, X) corresponds to a vector in A (c.f. Subsection 3.2), we
have dg (%) = d(x) = d(x) by Lemma 3.5, Theorems 2.5, 2.6 and we are done.



468 SEVEN

4. Orbits of groups generated by symplectic transvections of a linearly independent
subset

In this section, we will prove Theorem 2.15 after some preliminary statements. Throughout
the section, B denotes a linearly independent subset which is not a basis in a finite dimen-
sional F,-space V equipped with the alternating form 2. We always assume that Gr(B)
is connected. We denote by U the linear span of B. We note that each y € I'p preserves
cosets in V /U, so we only need to describe I"g-orbits in each cosetv + U.If v+ U = U,
then our previous results apply, so we will always consider the action of I'z on a coset
v+ U # U. We note that the set B U {v} is linearly independent and there is the associated
graph Gr(B U {v}) as defined in Section 2. We denote by V# the set of vectors in V which
are fixed by I's. As before, Uy denotes the kernel of the form |y and A is the I' g-orbit
that contains B ( [1, Proposition 2.1]). The spaces Uy and Uy are defined as in Section 2.

If (v + U) N VT is non-empty, then our previous results allows one to describe all I'p
orbits in v 4+ U. More precisely, we have the following statement.

Proposition 4.1 Suppose that (v + U) N V' is non-empty and contains a vector v + u.
Then I g-orbits in v + U are parallel translates of I g-orbits in U by v + u.

Our next result gives a sufficient condition for (v + U) N VI to be empty.
Proposition 4.2 If Q(v, Uy) # {0}, then (v + U)NVTE =g,

Proof: We may assume, by Theorems 2.3, 2.4, that B is equivalent to one of the four trees
indexed as in figures 2-5.

Let us introduce the numbers r and ¢ as follows: if B is equivalent to the tree in figure 2
withm = 2, thenr = m, t = k + 1 and we set ¢, = ay; if B is equivalent to the tree in
figure 2 withm > 2, thenr = m, t = k; if B is equivalent to the tree in figure 3 or figure 4;
thenr =2n — 1, = p + 1; if B is equivalent to the tree in figure 5, then r = 2n, t = p.

If Q(v, Uppp) # {0}, then the set I = {¢; : Q(v,c;) = 1} is a non-empty, proper
subset of {cy,...,c;} by Proposition 3.1. We assume, without loss of generality, that
I ={ci,...,¢5},s < t. Letx € U. If x contains a,, then 7., (v +x) # v+ x. If x
does not contain a,,, then 7, (v + x) # v+ x. Thus v + x ¢ VT for any x € U, ie.
w+U)NVTs =4, O

4.8. Proof of Theorem 2.15.(i)

We first note that there exist at least two I'g-orbits in v 4+ U because, for any u € A such
that Q(u, v) = 0, we have Qpuyy(v + u) = 0, so v and v + u lie in different orbits; here
the existence of u follows from our assumption that dim(U) > 2.

Since B does not contain any subgraph which is equivalent to Ej, it is equivalent to a tree
of type D, withm > 2,k > 1 (Theorem 2.7). Since basic moves preserve the associated
quadratic forms (c.f. Section 2), we may take B as in figure 2 with the same indexing. A
typical graph of B U v is given in figure 19. As a first step, we will disconnect v from a;’s
using basic moves.
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Figure 19. The vertex v is connected to the graph D, y, m > 2,k > 1.

Lemma 4.3 There exists o € I'g such that Q(a(v),a;) =0for j=1,...,m.

If m = 2, we set cx+1 = a; for convenience. Since 2(v, Uyy) # {0}, we may assume
thatc; € I = {¢; : Q(v, ¢;) = 1} by Proposition 3.1.

For any w € v + U, we define A(w) = {a; : Qa;, w) = 1}. If A(w) # 0, we let
i(w) =max{i : a; € A(w)}. Letus write o; = 74, -+~ Ty, Te, fori < m. If i =i(w) < m,
then A(a;(w)) = (A(w) — {a;}) U {ai 1}, so we have A1 -+ - o1 (w)) = (A(w) —
{a;})U{a,,}. We alsonote thatif i (w) = m and Q(w, ¢1) = 1 then A(7,(w)) = A(w)—{an}.
Thus, by induction on i(v) if necessary, we obtain « € I'p such that A(y(v)) is a proper
subset of A(v). By induction on the cardinality of A(v), we obtain y € I'g such that
A(y(v)) = 0. This completes the proof of the lemma.

For the remaining part of the proof of Theorem 2.15.(1) we assume, without loss of
generality, that I = {b € B : Q(b,v) = 1} = {c1,..., ¢}, where s < k if m > 2 and
s <k+ 1lif m =2 (here cx1 = ay).

Lemmad4.4 Let f be the linear map on the span of B U {v} defined as follows: f(c;) = ¢
forciinl, and f(b) = b forb € BU{v} suchthatb ¢ I. Then, for any z € U, the vectors
v+ zand f(v + 2) lie in the same T g-orbit.

If ¢; is not contained in v 4 z for any i € I, then f(v + z) = v 4 z and we are done.
Let us assume that v + z contains ¢y, ..., ¢; from I. If v + z does not contain a,, and [
is odd (resp. even), then f(v + z) = 7,...T,,(V + 2) (resp. f(v + 2) = 74...T,,(V + 2)).
Let us now assume that v + z contains a,,. If Q(a,,, z) = 1 and [ is odd (resp. even), then
fW42)=14,7c,...T7¢,Ta,(V+2) (resp. f(v+2) = T4, T¢,.--Te, Ta,, U + 2)). If Q(a),, 2) =0
and / is odd (resp. even), then f(v + z) = 7., T4, Tes ---Te; Tay, Teyyy (U 4 2) (reSP. f(V +2) =
Teos1 Tay Tey -+ Tey Tay Teosy (U 4 2)). This completes the proof of the lemma.

Thus Theorem 2.15.(i) is equivalent to the following statement:

f( 4+ x) and f(v + y) lie in the same I'g-orbit if and only if Qpu(f(v + x)) =
Osupy(f (v + y)).

We complete the proof by the following lemma. We recall that Q p(x(w)) = Qp(w) for
anyw € Vand o € I'p.

Lemma 4.5 Foranyu € U, the vector f(v + u) is in the orbit of either v or v + a,.
We first note that v and v + a,, lie in different I"z-orbits because Qpypy(v) = 1 and

O pu(v + a,) = 0. To prove the lemma, we will first show that there is y € I'p such
that y(f(v + u)) is contained in the chain A formed by ay, ..., a,, c1, v. Recall that
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f(v + u) does not contain any of {cs, ..., cs}. Let us first assume that f(v + u) has a
component u,, that contains a,,. If u,, contains vertices c¢;,, ..., cj C {¢s41, ..., cx}, then
fory = Tej, o Tej s y(f(v+u))is contained in A. Now let us assume that u# does not contain
an It Q(ay,, f(v+u)) = 1,thent,, (f(v+u)) = f(v+u)+a, contains a,, and the previous
arguments apply. If Q(a,,, f(v +u)) = 0, then 7, 7., (f(v + u)) = f(v +u) +c1 + am
contains a,, and we apply the previous arguments.

Thus, we may assume that f(v + u) = v 4+ f(u) is contained in the chain formed
by ay, ..., an, c1, v. We may also assume that Q(v, f(u)) = 0, (otherwise we can write
fw+u) =c+au+au_1+---+au—; +x where x € span(ay, ..., a;) and consider
T, Tay, Tay, ---Tay; (f (v + w)). Then, by Theorem 2.5, there exists § € I'y,, .4, such that
B(f(v+u) =v+ay, +au_>+ -+ ay_o for some r > 0. If r = 0, then we are
done. We suppose r > 1. Then, for o = 7., T4, Ta, , Te,ss Tap Tey Tamo Tam 1 Tan Teyy,» WE have
cw+a,+an_—2+---+au—2)=v+ay_4+- -+ ayu_s, which has two less components
than B(f(v +u)) =v+ay, +an—2 + - - - + au—z-. Continuing this process, we will have
f(v + x) in the orbit of either v or v + a,,, which proves the lemma. This also completes
the proof of Theorem 2.15.(1).

4.9. Proof of Theorem 2.15.(ii)

If (v+ U)N VT2 = ¢, then the statement follows from Proposition 4.2. Let us now assume
that (v + U) N Vs = ¢. By Theorem 2.7, we may take B as in figure 2 with the same
indexing. If Q(v, Ugyy) = {0}, then v is connected to none of the ¢;’s or connected to all of
them as in figures 20 and 21. If v is connected to all of ¢;’s, then v 4 a,, is connected to only
a;’s, so we may assume that v is connected only to a;’s. Suppose v is connected to a;, i.e.
Qv,a;) =1,but Q(v,a;) =0for j =i +1,...,m. Then v + a;_; will not be connected
toa;, ..., ay,. Continuing this way, we will have a w = v + u connected to only a;. Thus,
B U {w} will be of type D41 «-
Let us now prove that,

for x, y € U, the vectors w + x and w + y lie in the same I"g-orbit 4.1)

if and only if they lie in the same I"pyyy,)-orbit.

Figure 20. The vertex v is connected to all ¢;’s.

Figure 21. The vertex v is connected to none of the ¢;’s.
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The “only if” part follows from the fact that I'g is a subgroup of I"gyy,,. To prove the
“if” part, we assume, by Theorem 2.5, that f(w + x) and f(w 4+ y) have the same number
of connected components. Then it is easy to see the following: there is o, 8 € I'p such
that a(w + x) = w+ x', B(w + y) = w + y" with Q(w, x") = 0 and Q(w, y’) = 0.
We will show that w + x” and w + y’ lie in the same I'p-orbit. We note that x’, y’ €

S =span(ay, ..., ay,cy,...,cx)and f(x’)and f(y’) have the same number of connected
components). Thus there exists y € I's such that y(x’) = y’. Since Q(w, s) = 0 for any
s € S, we have y(w + x") = w + y" and we are done. O

Example 4.6 For this example, let B = {by, b,, b3, bs, bs, bs} and let V denote the vector
space over I, with basis B U {v, vy, v3, v4}. We denote by 2 the skew-symmetric form
given in figure 22. As above, U denotes the linear span of B in V. We determine I" g-orbits
in V as follows:

It is easy to see that ¢ = by + bs + b € Upgo. Let V) 4 denote the linear span of the set
{v1, v4}. Since Q(v2, ¢) = Q(v3, c) = 1 and Q(vy, ¢) = Q(v4, ¢) = 0, by Theorem 2.15,
we have the following:

Ifvevy+ Vigorv e vs+ V)4, then the I'g-orbits in the coset v + U are intersections
of v + U with the sets QELIJ{U](O) and Q;b{v}(l) (so there are 16 of such orbits).

The remaining I g-orbits are contained in cosets v + U where v € § = span({v, +
V3, U1, U4}).

To proceed, we first notice that vy 4+ v3 + bs and v; + v4 + bg + bs are fixed by I'p.
Now we note the following fact: for v, w € V, if v + w is fixed by I'p, then I'g-orbits
in v + U are parallel translates of I'g-orbits in w + U by v + w (because «(v + u) =
cw+w4+w+u) =v+w+a(w+u) forallo € T'g,u € U). We also note that
the one-element I"g-orbits in U are the vectors {0, by + bg + bs, by + bs + b3 + by, by +
bs + b3 + by + be}. The non-trivial I" g-orbits have representatives bs and bs + bg. Also all
["g-orbits in v; + U are non-trivial and they have representatives vy, v; + bs, vi + bs + be.
Thus, the total number of I'g-orbitsis 16 +4 -6 +4 -3 =16 + 24 + 12 = 52.

According to [24], there is a bijection between I"z-orbits and connected components of
the reduced double Bruhat cell LY ¢(R) for W = S5 and

Wo = §51535254515352545183

V2

U1 bl l)5

Figure 22. The graph for € in Example 4.6. (Example 4).
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where s; = (i,i + 1) are adjacent transpositions. We note that wy is the longest element
of Wandi=(1,3,2,4,1,3,2,4, 1, 3) is its reduced word and the set of bounded indices
B(i) (see [24]) is B. We remark that the total number of I'g-orbits agrees with the result
given in [22].

5. Orbits of groups generated by non-symplectic tranvections

In this section, we prove Theorem 2.16 and give an example. One could easily note that
Theorem 2.16 follows from the following lemma which extends [8, Theorem 3] to an
arbitrary bilinear form.

Lemma 5.1 Let V be an F, space equipped with a non-skew-symmetric bilinear form
Q(u, v). Suppose that B is a linearly independent subset of V such that Q(b, b) = 0 for all
b € B and Gr(B) is connected. Let x be avectorin V and let By be an arbitrary connected
subgraph such that the group I'p, does not fix x. Suppose that b € B — By and let P =
[bo € T(x), ..., by = b] be a shortest path that connects b to T(x) = b € Br : 1,(x) # x.
If Qp,.x) is not alternating and Q(b;, bi11) = 1 fori = 0,...,k — 1, then the vector
x + b lies in the ' g orbit that contains x.

We prove the lemma by modifying the proof of [8, Theorem 3]. Let us first note that
Q(b;,bj) =0for0 <i <i+1 < j < kbecause P is a shortest path. Let/ = min{i > 1 :
Qb;_1, b;) = 1but Q(b;, b;—) = 0}.

We will prove the lemma by induction on £ > 0, the length of P. The case k = 0
is clear: 7,(x) = x + b. Suppose that the statement of the lemma holds for P of length
less than k. Let us first assume that 7,,(x) = x for j = [,..., k. Then 1, ... 7p(x) =
xX+bo+---+b_1+b+---+bi.Since vy, (x+bo+---+br) = (x+bo+-- -+ b))+ by,
we have

Toy Ty Thy « - - Toypy Ty = - - r;,o(x) =x+b.

Let us now assume that there exists / — 1 < j < k + 1 such that 7,,(x) # x and let m be
the one closest to by = b. We note that z = 13, ... 7p,(x) = X + b;, + -+ - + by is in the
same orbit as x. Then, the length of the shortest path connecting 7'(z) to by_ is less than &,
hence by the induction hypothesis, z + by_; = x + b,, 4+ - - - + by lies in the orbit of x.
Applying the same procedure to by_», . .., b,, we will have x 4 by in the orbit of x. O

Example 5.2 Let V be the vector space over [F, with basis B’ = {by, ..., bg, vy, v2, V3}.
Let us introduce the following sets: B = {by, by, b3, by, bs, b}, Bg = {b1, b>, b4, bs},
By = {b3, bs}, Cr = {v1, 12}, CL = {v3}, R= Br UCg L = B, U C.. We denote by Q2
the bilinear form on V defined by Gr(B’) given in figure 23 such that Qpx and Qlpz are
alternating and Q2(a,, ;) = Oforany a, € Rand gq; € L.

To determine the I g-orbits in V', we first note that the vectors {b| + b, + by, by + bs, by +
by + bs} C (Ff“ ). Let us write V| , = linear span of {v}, v, v3 + be}, which is the set
of fixed points of I',. Then for any v € V), such that v ¢ {0, v3 + v; + be}, we have



ORBITS OF GROUPS GENERATED BY TRANSVECTIONS OVER F, 473

U3 b3 be

V2 b2 b5

[
U1 by by

Figure 23. The graph for € in Example 5.2. (Example 5).

Q(v, (Ff Yooo) # 0. Thus, by Proposition 2.16 and Theorem 2.15, we have the following:
For any v € V;, such that v ¢ {0, v3 + v; + b}, the I'p-orbits in the coset v + Ff’*
are intersections of v + F5* with the sets ng{U}(O) and Q;b{u}(l) (so there are 12 such
orbits). We also note that vs + v; + bg + b4 is fixed by I'p,, thus the I',(hence I'p)-
orbits in vz + vy + bg + Ff ¥ are parallel translates of I'z,-orbits in Ff *® (Proposition 4.1).
The one-element I'p,-orbits in Ff" are 0, by + by + bs, by + by + by, by + bs and the
remaining one is represented by by, so there is a total of 10 I'z-orbits in v + ]Fég ¥ for any
v € {0, v3 + v; + bg}. According to Theorem 2.16, the remaining orbits are represented by
the vectors vz, v3 + vy, V3 + Vo, U3 + V1 + V2, b3, b3 + vy, b3 + vy, by + v + V).

Thus, the total number of I" g-orbits is 12 + 10 + 8 = 30.

According to [28], T'g-orbits are in bijection with the connected components of the
reduced double Bruhat cell L*¢(R) for W of type B3, where wy is the longest element in
its Weyl group. We remark that the total number of I' g-orbits agrees with the result obtained
in [8].
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