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Abstract. 'We consider generalized exponents of a finite reflection group acting on a real or complex vector space
V. These integers are the degrees in which an irreducible representation of the group occurs in the coinvariant
algebra. A basis for each isotypic component arises in a natural way from a basis of invariant generalized forms.
We investigate twisted reflection representations (V tensor a linear character) using the theory of semi-invariant
differential forms. Springer’s theory of regular numbers gives a formula when the group is generated by dim V
reflections. Although our arguments are case-free, we also include explicit data and give a method (using differential
operators) for computing semi-invariants and basic derivations. The data give bases for certain isotypic components
of the coinvariant algebra.
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1. Introduction

Real and complex finite reflection groups exhibit fascinating numerology. The exponents
and coexponents of the group arise in numerous ways, for example, as the degrees of the
reflection representation and its dual in the coinvariant algebra and also as the degrees of
generating invariant differential forms and derivations. We investigate the numerology of
twisted reflection representations here.

Let V := C’ and recall that a reflection is an element of GL(V) whose fixed point set is a
hyperplane in V. Let G be a reflection group, i.e., a finite subgroup of GL(V') generated by
reflections. Such groups are often called pseudo-reflection groups and include the Weyl and
Coxeter groups. (See Orlik and Terao [12], Kane [5], or Smith [15] for basic notions.) We
assume all G-modules are CG-modules. For any G-module U and irreducible G-module
M, let UM be the isotypic component of U of type M, i.e., the direct sum of those G-
submodules of U isomorphic to M. Let U® := {u € U : gu = u for all g € G} denote
the set of G-invariants. For any linear character x : G — C*, let C,, be a one-dimensional
G-module affording x and let UX := U% = {u € U : gu = x(g)u forall g € G} be the
set of y-invariants in U. The reflection group G acts contragradiently on V* and thus on the
symmetric algebra S := S(V*), which we identify with the algebra of polynomial functions
on V. The algebra S is naturally graded by polynomial degree. Let I C S be the Hilbert ideal
generated by the invariant polynomials of positive degree. Chevalley [4] and Shephard and
Todd [13] show that S¢ = CLf1,-.-, fe] for some homogeneous polynomials fi, ..., f;
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called basic invariants. The algebra S/1 is called the coinvariant algebra. Chevalley also
proved that S/I is isomorphic to the regular representation and that S ~ S¢ ® S/I as
G-modules.

The coinvariant algebra S/I inherits the grading on S. For any irreducible G-module
M, the isotypic component (S/I)¥ decomposes as M; @ M> @ - - - ® Mgimy for some
homogeneous subspaces M; >~ M of degree e;(M). We call e; (M), ex(M), ..., egimm(M)
the M-exponents. For any linear character x of G, the x-exponent is the C, -exponent,

denoted e(y). Let my, ..., m; be the V-exponents, called the exponents of the group,
and assume that m; < --- < m,. Similarly, let m7, ..., m} be the V*-exponents, called
the coexponents of the group, and assume that mj > --- > mj. The exponents and

coexponents of the group indicate the invariant theory of differential forms and derivations
(see Section 3). The coexponents also express the cohomology of the complement of the
hyperplane arrangement (see Orlik and Solomon [12, Cor. 6.62]).

Springer [18] studies generalized exponents, and Stembridge [22] gives a combinatorial
interpretation for the infinite family G(r, p, £) and other wreath products. The associated
generating function is called the “fake degree” (see Broué, Malle, Michel [3], for example).
Ariki et al. [1] give a basis for the coinvariant algebra for the monomial groups G(r, 1, £)
consisting of higher Specht polynomials associated to Young diagrams. Morita and Ya-
mada [9] develop a theory of higher Specht polynomials for the groups G(r, p, £). The
exceptional reflection groups do not lend themselves to the same kind of combinatorial
analysis.

We relate the isotypic component (S/1)” with the space S ® M*. The reflection group
G acts naturally on S ® M* and the rank of (S ® M*)¢ as an S°-module is dimc M (see
[17, Lemma 2]). The module S ® M* also inherits a grading from S: let ¢g;,..., g, be a
fixed basis of M* and suppose w = ) ; w; @ ¢; € S @ M*; if the polynomial coefficients
w; are all homogeneous of degree p in S, then we say that @ is homogeneous of polynomial
degree p.

In Section 2, we remark that the polynomial coefficients of any S¢-basis of (S ® M*)°
form a linear basis of the isotypic component (S/I)™. Thus, the M-exponents are just
the degrees of a homogeneous basis of (S ® M*)C over SU. We begin our investigation
of twisted reflection representations in Section 3 with some background and results on
semi-invariant differential forms. In Section 4, we use information about semi-invariant
polynomials, forms, and derivations to describe generalized exponents for x V := V@ C,,
where y is a linear character of G. The main result of this section is Corollary 13 relating yx,
X, xV,and x V*-exponents. We apply Springer’s Theory of regular numbers in Section 4
to reflection groups generated by dim V' reflections. In Section 5, we discuss a method
for computing derivations and semi-invariants. Computational results are given in tables
at the end, although previous results are obtained case-free. We include the explicit y V-
exponents for all of the linear characters x and exceptional irreducible reflection groups.
Previous research has centered on Coxeter groups and the infinite family G(r, p, £). We hope
the approach here will be helpful in understanding the coinvariant algebra of exceptional
reflection groups.
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2. Bases for isotypic components of the coinvariant algebra
Suppose M is an irreducible representation of the reflection group G. Solomon

[17, Lemma 2] shows that the M-exponents are the degrees of a homogeneous basis of
(S ® M*)Y over SC. We point out a slightly stronger result:

Proposition 1 Let M be an irreducible G-module. Then a natural G-isomorphism
MQESQMHC ~ 5%/ HM

provides an injective map
SSG-bases of (S @ M*)S — C-bases of (S M :

The polynomial coefficients of an S -basis of (S ® M*)¢ form a C-basis of (S/1)™ modulo
I. Hence, the M-exponents are the degrees of a homogeneous basis of (S @ M*)® over SC.

Proof: Note that (SQ M*)® ~ (S°®S/I @ M*)° ~ §° ®(S/I ® M*)® by Chevalley’s
Theorem and (S/I ® M*)° ~ Homg(M,S/I) =~ Homg(M,(S/H™). But
M® Homg (M, (S/I)M) ~ (§/1)™ as M is irreducible. Suppose @y, ..., ®, form an
SY-basis for (S ® M*)C and write each wy, as wy = > - Sjk ® m; for some fixed basis
mi, ..., m, of M*. Then under a composition

j=1,..

M®SQMH ~SC® /DM — (5/DHM
(wherea® (b+ 1)+ ab+ 1),
mj@aw: 1<k, j<ri—{sy+I1:1<k, j=<r}

One may verify that this last set spans (S/1)" over C and thus forms a basis. O

3. Twisted reflection representations and differential forms

We consider twisted reflection representations of the group G and relate components of
the coinvariant algebra to differential forms. Identify Q7 := S ® /\” V* with the space of
differential p-forms on V and set Q := EBf,:O QP . Letd: QP — QP*! be the usual exterior
derivative and let vol be the volume form on V (defined up to a nonzero scalar). Note that
dx = 1 ® x under the identification Q° = § for any x in V*.

Semi-invariant differential forms are related to certain isotypic components of the coin-
variant algebra. Consider a linear character of the reflection group, x: G — C*. We call
xV i =V®C, (or xV*:= V*® C,) a twisted reflection representation. If G is irre-
ducible, the last proposition implies that an S¢-basis of (') ~ (S® V*® C ;) yields
a linear basis for the isotypic component of the coinvariant algebra whose type is x V.
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‘We recall some facts about invariant differential forms and derivations. Let fi, ..., f; be
a set of basic invariants. The exterior derivative d commutes with the group action on €2 and
dfi, ..., df, are invariant 1-forms. These forms generate (S ® V*)¢ as a free S®-module.
The exponents of the group are thus the integers m; = deg fi —1,...,m, = deg fy —1. We
regard S ® V as the S-module of derivations (or vector fields) on V. Generators of (S ® V)¢
over SY are called basic derivations (see [12, Def. 6.50]). The (polynomial) degrees of a
set of homogeneous basic derivations are the coexponents of the group.

Solomon [16] shows that df, ..., df, generate the S®-module of invariant different
forms as an exterior algebra: for each p,

@)= @@ SCdfy,n--ndf;,

i1<<ip

and thus Q¢ = A §G (21HC. We recall a related result for %, the S¢-module of x -invariant
forms. The space of x-invariant polynomials, S*, has rank 1 as an S°-module. Let O, € S
be a (homogeneous) generator:

st =0, s°.

(Note that Q, is only defined up to a nonzero scalar. Also note that the degree of Q, is
the x-exponent, e, (see Lemma 5).) The polynomial Q, divides the exterior product of
any two y-invariant forms (see Shepler [14]) and we define a multiplication on Q% called
x-wedging:

N oA 0
wAn:=

Oy
Define A, M := ;_p tc M for any S¢-module M of x-invariant forms; then
x-wedging endows Age M = @ﬁ;o )\';G M with the structure of an exterior algebra.

Let det : G — C* be the determinant character of G on V. We recall a criterion from
Shepler [14] for a set of forms to generate 2X as an algebra:

Theorem 2 Let x be a linear character of G and let wy,...,w; be homogeneous
X -invariant 1-forms. Then the following are equivalent:

1. Up to a nonzero scalar, wi A --- Awy = Qyget VOL.
2. The forms w; generate Q2% :

QLY = @ SGwil)\---Awip for p=1,..., L

i1 <-<ip

Furthermore, there exist forms satisfying (1) and (2), and QX is an exterior algebra:

Q= Ago (QH.
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We say that wy, ..., w, generate QX if they generate Q* as an S%-module via x-wedging
in the sense of Theorem 2. We assume such generators are homogeneous. Although the w;
are not unique, their degrees are unique. Proposition 1 then implies

Corollary 3 Suppose that G is irreducible and x is a linear character of G. Let wy, . . ., wy
generate QX and write each wy as Zle wiy dx;, where the x; form a basis of V*. Then

fwype +1:i,k=1,...,¢}

is a C-basis for the isotypic component (S/I)" . The degrees of a generating set of Q* are
the x'V-exponents.

Corollary 4 Let x be a linear character of G. Suppose generators of Q* have degrees
ei,...,e. Then a (homogeneous) basis of the S¢-module (S ® V)X et has degrees deg

Qxdet+degQX —e,-fori = 1,...,5.

Proof: LetY” := S® \” V.The G-equivariant perfect pairing A” VO A"V — Cq
gives a degree-preserving duality between semi-invariant differential forms and vector field
forms:

(TP)X-dCt ~ (QZ—P)X

as S9-modules. Hence, by Theorem 2, (S ® V)xdet = (yhyxdet ~ (Qé=lyx = =1 Qhyr,
Theorem 2 also implies thate; 4. .. +¢, = (£ — 1) deg Q, +deg O, 4ei- Hence, generators
of (§ ® V)X have degrees

2—-0degQ,+(e1+---+é +---+e)=deg Q, +deg Qyget — €&

fori =1,...,¢. |

4. Exponents of twisted reflection representations

We collect some observations about yx -invariant forms, where x is any linear character of
the reflection group G. These observations in turn provide various combinatorial relations
among y-exponents and y V-exponents. The main result of this section is Corollary 13.

Let A denote the collection of reflecting hyperplanes in V for the group G. For each
hyperplane H in A, let sy be a reflection of maximal order fixing H pointwise. Let /g in
V* be a linear form with H = ker[y. Stanley [19] gives a formula for Q,:

Q)( — 1_[ ZZH(X)’ (2)

HeA
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where agy(x) is the unique integer satisfying 0 < apy(x) <order (sy) and x(sy) =
det(sg) ™). Define

Q:=0p=[] lu

HeA

the polynomial which defines the hyperplane arrangement A. Steinberg [20] gave a proof
that the determinant of the Jacobian derivative of a set of basic invariants is Qg up to a
nonzero scalar. The image of this Jacobian determinant is nonzero in the coinvariant algebra
(for example, see [10, Lemma 6] or [15, Cor. 6.5.2]). Hence e(det) = deg Q, the number
of reflecting hyperplanes. Similarly, e(det) = deg Qge, the number of reflections in G. In
fact, since each Q, divides Qq¢, we have the following well-known generalization:

Lemma S For any linear character x of G, the image of the polynomial Q, is nonzero
in the coinvariant algebra and the x-exponent is e(x) = deg Q.

The next lemma follows directly from Stanley’s formula. The lemma after gives generators
of Q% in terms of generators of QX. Corollary 8 is a result of Terao [23] (see [12, 6.61]).
Proposition 9 relates the x V-exponents to the exponents m; and the coexponents i of the
reflection group G.

Lemma 6 Let x be a linear character of G. Up to a complex scalar,

Q)( Q)'( -det = Qdet~

Lemma 7 Let x be a linear character of G. Suppose wy, ..., w; generate Q* and let
ni :=(Qy/0Qy) wi. Then ny, ..., ng generate Q*.

Proof: We first observe that Q, divides each Q 5 wi. Choose H in A witha := ay(x) #
0.Fix abasis xy, ..., x, of V*sothatly = x| and the matrix of the reflection s is diagonal.
Let w be some generator w; = ) ; w;dx;. Since o is invariant, x{ divides w; whenever
i # 1and xffl divides w;. Stanley’s formula for Q, (Equation 2) implies that x; divides
0 5, and hence [, divides Q y w. As H was arbitrary, Q, divides Q 3 w, and each 7; is
X -invariant. By Lemma 6 and Theorem 2,

MA-- AN = Qe)_( QXE WL N ANwyp = Qe)—( Q;e Qi_l Qx~delV01
= 05" 0" Queevol = 05" Q5.4 Vol

up to a nonzero scalar. Hence, by Theorem 2, 1y, ..., n, generate Q% . O

Corollary 8 Generators of Qe pave degrees deg Qg4ec — mj for 1 < i < L. Generators
of Q4 have degrees deg Qg — m} forl <i <.
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Proof: Apply Corollary 4 to the case x = det™! = det and recall that invariant derivations
have degrees m7, ..., mj. Lemma 7 then implies the first claim. O

Proposition 9 Let x be a linear character of G and let wy, ..., wy generate QX with
deg w; < degw;yi. Then for each i,

deg Q) —m; < degw; < deg @y +m,;.

Proof: If fi, ..., f; are basic invariants, then the forms Q,dfi, ..., Q,df, are indepen-
dent over S¢, and hence degw; < deg Q, +m; foreachi.Let ui, ..., u, be generators of
Q4 with deg i = deg Qe — mj (using Corollary 8). Note that Q 5 .get @1, - . -, Q 5 -det W¢

are det-invariant forms independent over S¢, and hence (by Lemma 6)

deg Qe — m; = deg p; < deg Q 5 .qet @i = deg Quer — deg O, + degw;.
O

Proposition 10 Let x # 1 be a linear character of G. Suppose w;, . .., w; generate QX.
Then deg w; = deg Q, — 1 for some i.

Proof: Since the 1-form dQ, is x-invariant, dQ, = ), h;w; for some homogeneous
polynomials /; in SC. Suppose none of the #; lie in C*. Fix a basis xy, ..., x; of V*. Then
each 3/9x;(Q,) lies in I. By Euler’s formula, (deg Q,) Q, = (deg Q,) Y, x; %(QX)
also lies in I, contradicting Lemma 5. Hence, some h; is a nonzero scalar, and thus
{wi,...,0i—1,dQy, wiy1, ..., w} also generates QX. ]

We say that the character x is wholly non-trivial (borrowing terminology from Victor
Reiner) when x(sy) # 1 for each H in A. Thus y is wholly non-trivial exactly when Q
divides Q. Stanley’s formula (Equation 2) for Q, directly implies

Lemma 11 Let x be a linear character of G. Then x is wholly nontrivial if and only if
(up to a nonzero scalar)

Q)( det QX det = Qdetz'

Proposition 12 Let x be a linear character of G. Then x is wholly nontrivial if and only
if generators of Q* have degrees deg Q, — m} fori =1, ..., L. Furthermore, x is trivial
if and only if generators of QX have degrees deg Q, +m; fori =1, ..., L.

Proof: Recall that generators of Q% have degrees deg Que — m! fori =1,...,¢
(Corollary 8). Let wy, ..., w, generate Q2% with deg w; < deg w;+1. Then

—1
a)l/\~-~/\we=Qx QxdetVOI
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by Theorem 2, and hence

—1
QX det W1 A -+ A Qj(dela)[ = QX det Qdet QxdetVOI

by Lemma 6. On the other hand, the S®-module of det-invariant ¢-forms is generated by
Q 4e2 VO, and thus

—1
Q)'( det W1 A -+ A Q)’( det Wy = f Qdet Qdelz vol

for some f in S¢ (see Equation 1). Hence, Q 3 det Qydet = f Qgee- But x is wholly
nontrivial exactly when f is a nonzero constant (by Lemma 11), exactly when the Q 3 get @;
generate Qe (by Theorem 2), exactly when the degree of each Q y g w; is deg Q et — m],
and thus exactly when the degree of each w; is deg Q, — m} (by Lemma 6). Also note that
if each deg w; = deg Q, + m;, then

deng(_1 +deg Qg =deg w1 A=+ Ay :deng( +my+...+my
= deg Q) + deg Quer,

and deg O, 4ot = deg Q, + deg Q. But Stanley’s formula for Q, (Equation 2) implies
that deg O, ¢t < deg O, + deg Qg unless x is trivial. Conversely, if x is trivial, then
0, = 1 and we may take w; := df;. O

We obtain some combinatorial identities by applying Lemmas 5 and 6 and Corollary 3 to
Theorem 2, Propositions 9, 10, and 12, Lemma 7, and Corollary 4. Note that the coexponents
are m; = eg_;(V*) in the corollary below, and recall that e(det) is the number of reflections
in G.

Corollary 13 Assume G is irreducible. For any irreducible G-module M, label the
M -exponents in increasing order: e;y(M) < - -- < egimm(M). Let x be any linear character
of G. Then:

(a) e(x det) = e(det) —e( x ).

() ex(xV)+---+e(xV) = — De(x) + e(x det).

©) e(x)—e—i(V*)<e(xV)<el(x)+e(V)fori=1,... L

(d) if x # 1, then some e;(x V) =e(x) — L.

(e) x is wholly nontrivial if and only if e;(x V) = e(x) — eg—i(V*) fori =1,..., L.
®) x istrivial ifand only if e;(x V) = e(x) + e;(V) fori =1,..., L.
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(@ e(xV)=e(x)—e(x)+e(xV)fori=1,... ¢
(h) e;(xV*) =e(det) —e;(jy detV) fori=1,...,¢.

5. Springer’s theory of regular elements

The invariant theory of reflection groups generated by £ = dim V reflections is particularly
appealing. We recall Springer’s theory of regular elements. A vector v in V is regular if
its isotropy group in G is trivial. Steinberg [21, Theorem 1.5] shows that v is regular if and
only if v does not lie on any of the reflecting hyperplanes for G. When g in G has a regular
eigenvector, then g is a regular element and the order of g is a regular number for G.
Springer [18, Prop. 4.5] shows

Theorem 14 Let g be a regular element of G with order d. Let § = ed. Let M be
any irreducible representation of G. Then the eigenvalues of the action of g on M are
E74, . .., &M where ey, . .., eqeq m are the M-exponents.

Corollary 15 Let G be an irreducible reflection group and let x be a linear character of
G. Let d be a regular number for G. The exponents of the twisted reflection representation
xV aredeg Q, +my,deg Q, +ma, ..., deg Q, + m; modulo d.

Proof: Suppose & = e’ where d is the order of a regular element g. By Lemma 5,
e(x) = deg Q. Apply Theorem 14to M = C,, M = V,and M = xV: x(g) = £ 4%
and the eigenvalues of g on V are £”; hence the eigenvalues of g on x V are x(g)™ =
gmi—deeQx fori =1,..., 4. O

If if d is regular, then by Corollary 15, there is a permutation 7 of 1, ..., £ such that
the exponents and coexponents of G satisfy m; + mj ;) = 0 modulo d (also see [8, Cor.
4.6]). Set d; := my + 1. The group G is a duality group if d; = m; + m? for each i.
Examples include Coxeter groups and Shephard groups. Theorem 16 below implies that if
G is a duality group, then d, is a regular number. The converse is false, e.g., d; is regular
for the group G3,, but G3; is not a duality group.

Orlik and Solomon [11, Theorem 5.5] observe (among other equivalences) that G is a
duality group if and only if G can be generated by £ = dim V reflections. They examine
the irreducible groups case-by-case. Bessis [2] gives a proof of this result which avoids
case-by-case analysis using an observation by Lehrer and Springer [8]. Lehrer and Michel
[7] give a case-free proof of this observation, which is the next theorem. The degrees of G
are the degrees of the basic invariants m; + 1 fori = 1, ... £. The codegrees of G are the
integers m; — 1 fori =1,...¢.

Theorem 16 An integer d is a regular number for G if and only if d divides as many
degrees as codegrees.
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The following result is false for many non-duality groups.

Corollary 17 Let G be a duality group and let x be a linear character of G. Let e1(x V) <
- < e(xV) be the xV-exponents. Then each e;(xV) is e(x) + m; or e(x) — m} for
i=1,...,¢

Proof: Since G is a duality group, d; is a regular number by Theorem 16 and ¢;(x V) =
deg Q, + m; = deg O, — m} modulo d; by Corollary 15. The result then follows from
Proposition 9 (see Corollary 13c). O

6. Constructing semi-invariant forms

We show how to construct generators for semi-invariant forms using differential operators.
(This method produces an explicit C-basis for the isotypic component of the coinvariant al-
gebra whose type is any twisted reflection representation.) We list the explicit x V-exponents
and y-invariant forms for the irreducible reflection groups (except the infinite family) in
tables at the end.

We may assume that the reflection group G preserves a Hermitian inner product, V xV —
C. The inner product induces a natural map from S(V)to S = S(V*), say p > dp. Identify
S(V) with the algebra of differential operators to obtain a map

SxS§S— 8§
(p, f) = @p)f

(where (dp) f is the result of applying the differential operator dp to f). This map preserves
the group action: (gap)(gf) = g(dp(f)) for every g in G and polynomials p, f in S.
This implies that the induced “star and bar” map from the product space of derivations and
polynomials to the space of differential forms preserves semi-invariance:

Proposition 18 Ler x and t be linear characters of G. The natural map

(S®V)x S — (S® V¥
given by (p®v, f) = @p)f ®dv
inducesamap (S® V) x 8% — (SQ VAT,

Denote the image of a derivation € and a polynomial f € S under this map by 0 f (a
differential form). Let @ f (a derivation) denote the image of a differential form w and a
polynomial f € S under the analogous map (S ® V*)* x X — (S ® V)X 7.
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Corollary 19 If f; and f; are basic invariants, then c?f, fj is an invariant derivation. If 6

is a basic derivation, then 0 Q is a x -invariant 1-form.

We use the above corollary to construct basic derivations and generators for 2X. These
techniques are suggested by the numerology of Corollaries 13 and 17. Shephard and
Todd [13] classify the irreducible reflection groups into an infinite family G(r, p, £) and
thirty-three exceptional groups labeled G4 through Gs;. Let 6y, ..., 6, be a set of ba-
sic derivations with deg6;, > deg6;,,. Let fi,..., fg be a set of basic invariants with
deg f; < deg fi11. When G is a duality group, deg(df; f;) = deg fr — degdf; = deg6;.
Hence, dfi fi, ..., dfif; form a set of invariant derivations with the same (polynomial)
degrees as 0y, ...,0;. Do they form a set of basic derivations? Similarly, does the set
of y-invariant forms {é; Oys--- ,67Qx, 0,df1,..., Q,df} include generators of 4?
Corollary 17 suggests that a generating set of 2% may be chosen from this set when G is a
duality group. We verify this suggestion in the observation below using basic invariants from
Shephard and Todd [13]. The observation after suggests a pattern for nonduality groups as
well. Both observations seem likely for the family G(r, p, £) although we have not checked
details.

Observation 20 Let G be an irreduciblgv duality group, G # G(r, p, £). The basic invari-
ants, fi, ..., f¢, may be chosen so that {df f, ..., df. fe} is a set of basic derivations. Let
0; := dfi fe and let x be a linear character of G. A generating set of £2* may be chosen

from {6,Q,..... 0,0y, Qydfi. ..., O, dfe}.

Observation 21 Let G be an irreducible reflection group, G # G(r, p, £), and let x be
a linear character of G. There are basic invariants f; and invariant polynomials F; so that
{dfiFi,...,dfiF,} is aset of basic derivations.

We give the explicit x and x V-exponents and some illustrative examples in tables below.
Klein’s invariants [6] appear in Table 1. Table 2 gives basic derivations in terms of differential
operators for the exceptional groups. (The Coxeter groups are omitted since the coefficients
of each 6; are just the coefficients of df,_;.) Table 3 list the exceptional groups and give
the polynomial Q,, its degree (the x-exponent e(y)), and generators of % and their
degrees (the x V-exponents) for each linear character x of G. We omit those duality groups
whose only linear characters are det and the trivial character, since these two cases are well
understood. The symbol » indicates a nonduality group throughout. The x V-exponents were
first computed from character tables using a version of Molien’s theorem and the software
GAP and Mathematica. It may be interesting to note that for a fixed two-dimensional
exceptional group, one may compute all the semi-invariant forms and derivations from just
one polynomial.
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Table 1. Klein’s invariants for 2-dim. groups.

o= xf + Ziﬁxlzx% +x§

v = x? - 2i«/§x12x22 —t—xé1

t = x|xz()ci1 — xg)

W= x? + 14x?x§ +x§

X = xl12 - 33x18x§ — 33x?x§ + x212

f= x1xz(x110 + llxlsxg — xzm)

H = x}0 —228x 1553 +494x10x10 4 228x7x)3
T = x}° + 522xPx3 — 10005x2x1% — 10005x

20
+ x5

10,20 _ 522x5x25 +x§0

1 %2 %2

Table 2. Basic invariants and basic derivations.

Basic inv. Basic der.
Group fi f2 01 0>
4 @ t dfi > dh f>
5 t @3 dfi f> df2 fo
6 2 @ fi o dffr
> 7 o3 2 afi 13 dffr
8 14 X fi fo dffr
9 4 x? dfi fo dffr
10 X w3 fi f> s fr
> 11 w3 X2 dfy 2 dfs f»
> 12 t w dfy f} dfs f
> 13 w 12 dfy 2 dfs f
14 t X2 dfi f> df2 fo
> 15 2 be dfitfif)  dfaf
16 H T dfi f> df2 f>
17 H T2 fi fo dffr
18 T H? dfi fo dffr
> 19 H3 T2 dfy f} dfs f
20 f T dfi o dffr
21 f 72 dfi f> s fr
> 22 f H afi 13 dffr
Group Basic der. 6;
24-27,29,32-24  dfife  dffe df fo
> 31 afsf} dfh df fa dfsfa
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Table 3. Semi-invariants and x V-exponents.

Group Oy Deg Generators of QX xV Exp
Gy w2 00, 00, 5.7
v 4 00, 00, 1,3
Gs W2 12 6,0, 6,0, 5,11
2P 12 6,0, 6,0, 5,11
P 4 0,0, dfiQy 3,9
VR 16 610, 60, 9,15
v 4 00, dfi Qy 3,9
w2 8 6,0, dfi 0y 7,13
2 8 6,0, dfi 0y 7,13
oW 8 60, 00, 1,7
Ge t 6 6,0, dfi 0y 5,9
Wy 10 6,0, 6:0, 1,9
w2 14 010y 0,0, 5,13
w 4 04 dfi 0y 3,7
w2 00, dfiQy 7,11
> Gy ' 6 620, dfi 0y 5,17
2yt 18 6,0, 6,0, 5,17
W2y 18 6,0, 6,0, 5,17
oW 12 5o,  6(hey 1,11
ow? 2 6o, 6hYyY 11, 11
D22t 22 610, 6,0, 9,21
ot 10 6,0, 01(f20y) 9,9
N\ 10 6,0, 01(20y) 9,9
P22 16 6,0, 61(f20,) 15, 15
o 6,0, df20, 3,15
v 6,0, df,0, 3,15
oWt 14 610, 6,0, 1,13
w2 14 6,0, 61(f20,) 13,13
@2 14 6,0, 61(f20,) 13,13
oW 8 h0, 010y 7,7
2 8 6,0, df20, 7,19
2 8 6,0, df20, 7,19
Gs 12 12 6,0, 6,0, 7,11
t 6 610, 6,0, L5
13 18 6,0, 6,0, 13,17
Go 2 12 6,0, dfi 0y 11,19
X 12 6,0, dfi 0y 11,19

(Continued on next page.)
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Table 3. (Continued).

Group Oy Deg Generators of Q% xV Exp
12X 24 6,0, 6:0, 7,23
13X 30 6,0, 6:0, 13,29

t 6 6:0, dfi 0y 513

3 18 6,0, dfi 0y 17,25
tX 18 010y 020, 1,17
Gio 2 12 6,0, dfi 0y 11,23
3 18 6,0, dfi1 0y 17,29

' 6 6,0, dfi10y 5,17
£w 26 6,0, 6,0, 13,25
tW 14 6,0, 6,0, 1,13
2w 20 6,0, 6,0, 7,19
w 8 6,0, dfi 0, 7,19
w2 34 6,0, 6,0, 21,33
tW? 2 6,0, 6,0, 9,21
2W? 28 6,0, 6,0, 15,27
w2 16 6,0, dfi 0, 15,27
et X 12 6,0, dfi1 0y 11,35
12 12 6:0, df0, 11,35
X 24 60, 6(HQ) 23,23
X 30 5oy 6i(hQY 29,29

t 6 6:0, dfr 0y 5,29

3 18 6:0, df0, 17, 41
tX 18 60, 6(HQy 17,17
PWX 38 6,0, 6:0, 13,37
W 14 h0oy  01(HQY 13,13
Bw 26 h0y  01(HQY 25,25
WX 26 0104 004 1,25
2w 20 6,0, 0(f205) 19,19
WX 20 6,0, 61(£20,) 19,19
2PWX 32 6,0, 6:0, 7,31
w 8 6:0, df0, 7,31
PW2X 46 010y 6,0, 21,45
w2 2 6o, 6i(HQY 21,21
w2 34 h0oy  01(H0Qy 33,33
tW2X 34 6,0, 6,0, 9,33
W2X 28 h0y  01(H0OY 27,27
2w? 28 h0y  01(H0y) 27,27
2W2X 40 6,0, 6,0, 15,39
w2 16 6,0, df0, 15,39

(Continued on next page.)
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Table 3. (Continued).

Group Ox Deg Generators of X xV Exp

>G> X 12 6,0, 6:0, 1,11
> Gi3 X 18 6,0, 6,0, 1,17
t 6 00, dfiQy 5.13

X 12 01(£205) 0,0, 7,11

Guis X 12 6,0, dfi 0y 11,17
WX 20 6,0, 6,0, 1,19

w 8 6,0, dfi 0, 7,13

WX 28 6,0, 6:0, 9,27

w? 16 020y dfi 0y 15,21

»Gis t 6 6:0, df0, 5,29
X 18 00, 01(£20) 17,17

X 12 6,0, dfi 0y 11,23

tw? 22 00, 01(£205) 21,21

tW2X 34 6,0, 6,0, 9,33

W2X 28 01010y 0,0, 15,27

w2 16 6:0, dfi1 0y 15,27

W 14 0,04 01(£20) 13,13

WX 26 6,0, 6,0, 1,25

WX 20 01(f10y) 04 7,19

w 8 60y dfiQy 7,19

Gie r 36 00, 00, 25,35

! 12 0104 504 1,11

4 48 6,0, 6:0, 37,47

F2 24 6,0, 6:0, 13,23

Gy T 30 6,0, dfi1 0y 29,49
i 78 6,0, 6,0, 37,77

3 66 610, 6,0, 25,65

f2r 54 6,0, 6,0, 13,53

IT 4 00, 00, 141

4 48 6,0, dfi 0, 47,67

3 36 6:0, dfi1 0y 35,55

r? 24 00, dfiQy 23,43

f 12 6:0, dfi 0y 11,31

(Continued on next page.)
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Table 3.

(Continued).
Group Oy Deg Generators of % xV Exp
Gis 12 24 6,0, dfi 0y 23,53
Vi 48 6,0, dfi1 0y 47,77
f 12 6:0, dfi1 0y 11,41
f3 36 6,0, dfi10, 35,65
H 20 6,0, dfi 0y 19, 49
f2H 44 6,0, 6,0, 13, 43
f4H 68 6,0, 6,0, 37,67
fH 32 610y 00, 1,31
f3H 56 6,0, 6,0, 25,55
H? 40 6,0, dfi1 0y 39, 69
F2H? 64 6,0, 6:0, 33,63
fiH? 88 6,0, 6:0, 57,87
fH? 52 6,0, 6,0, 21, 51
f3H? 76 6,0, 6,0, 45,75
»Go T 30 6,0, dfi1 0, 29, 89
i 78 h0y  01(LQy 71,77
£ 66 B0, 01(HQy 65,65
1 54 B0y 6i(HOy) 53,53
fT 42 B0y Hi(HOy) 41,41
4 48 6,0, df20, 47,107
f3 36 6,0, df20, 35,95
f? 24 6,0, df,0, 23,83
f 12 6,0, df20, 11,71
HT 50 50, 61ROy 49,49
FAHT 98 6,0, 6,0, 37,97
F3HT 86 6,0, 6:0, 25, 85
fEHT 74 010, 020y 13,73
fHT 62 6,0, 6:0, 1,61
H 20 6,0, df,0, 19,79
f4H 68 h0y  6i(H0y) 67,67
e 56 h0y  01(LQy 55.55
f*H 44 h0y  01(LQy) 43 .43
fH 32 60, i(H0y) 31,31
HT 0 60, 61(£0) 69, 69
FHT 118 6,0, 6:0, 57,117
fAHT 106 6,0, 6,0, 45,105

(Continued on next page.)
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Table 3. (Continued).
Group Oy Deg Generators of % xV Exp
FEH2T 94 6,0, 6:0, 33,93
fHT 82 6,0, 6:0, 21, 81
H2 40 6,0, df20, 39,99
fAH? 88 0204 01(£20,) 87,87
£u? 76 0,0, 0(£0y) 75,75
fPH? 64 00, 01(£205) 63,63
fH? 52 60, 01(£205) 51,51
Gao H? 40 6,0, 6,0, 21,39
H 20 6,0, 6:0, 1,19
Ga T 30 6:0, dfi 0, 29,41
H2T 70 6,0, 6:0, 21,69
H? 40 6,0, dfi 0, 39,51
HT 50 6,0, 6,0, 1,49
H 20 6,0, dfi 0y 19, 31
> G T 30 6,0, 6,0, 1,29
Group deg Oy Generators of % xV Exp
Gos 12 010y 00, 00, 58,11
24 6,0, 6,0, 6:0, 17,20, 23
Gos 21 6,0, 6,0, 6:0, 8, 14,20
33 610, 6:0, 6:0, 20, 26, 32
24 610, 6,0, dfi 0y 17,23,29
12 610, 6:0, dfi 0y 511,17
9 610, dfi 0y df20, 8, 14,20
Group  deg Qy Generators of % xV Exp
Gos 24 010y 60, 60, 00, 13,17,19,23
12 6:0, 60, dfi0, dhQo, T,11,13,17
12 GEQX QZ;QX dfiQy  df0y  7,11,13,17
» Gi 60 60, 60, 6,0, 0,0, 31,43,47,59
Gy 80 60, 60, 6:0, 0, 61,67,73,79
40 60, 60, 6:0, 60, 21,27,33,39
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