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Abstract. Let I be a distance-regular graph of diameter D. Let X denote the vertex set of I" and let ¥ be a
nonempty subset of X. We define an algebra 7 = 7(Y). This algebra is finite dimensional and semisimple. If
Y consists of a single vertex then 7 is the corresponding subconstituent algebra defined by P. Terwilliger. We
investigate the irreducible 7-modules. We define endpoints and thin condition on irreducible 7 -modules as a
generalization of the case when Y consists of a single vertex. We determine when an irreducible module is thin.
When the module is generated by the characteristic vector of Y, it is thin if and only if Y is a completely regular
code of I'. By considering a suitable subset Y, every irreducible 7 (x)-module of endpoint i can be regarded as an
irreducible 7 (Y)-module of endpoint 0.
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1. Introduction

Let I" denote a distance-regular graph. In [45], P. Terwilliger introduced the subconstituent
algebra (now often called the Terwilliger algebra) of I with respect to one of its vertices (the
“base vertex”). Since then, these algebras have been investigated in many papers [3, 4, 6—14,
16-19, 22, 23, 26, 43, 45-50]. In this paper we generalize some of this work by replacing
the base vertex with a base subset of vertices. To describe our results more precisely we
recall some facts.

Let I' denote a distance-regular graph with diameter D, vertex set X, and valency k.
Let Maty (C) denote the complex algebra of matrices whose rows and columns are indexed
by X and whose entries are in the complex numbers C. Let A; € Matx(C) (0 < i < D)
denote the i-th distance matrix of I'. Then the adjacency matrix A (= A;) has D + 1
distinct eigenvalues. Let E; € Maty(C) (0 < i < D) denote the primitive idempotents
of A. The matrix subalgebra M generated by A is called the Bose-Mesner algebra of T.
It is well-known that M = Span(Ay, Ay, ..., Ap) = Span(Ey, Ey, ..., Ep) [1, 2, 24].
Fix a base vertex x € X. Let E} = E(x) € Matx(C) denote the projection onto the i-th
subconstituent of I'. The Terwilliger algebra of T" with respect to x is the matrix subalgebra
T =T (x) generated by A and Ej, EY, ..., E},.
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of the Promotion of Science. A part of the research was done when the author was visiting the Ohio State University.
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The algebra 7 is semisimple since it is generated by real symmetric matrices. Thus
much of the structure of 7 is determined by its modules. Let V = C* denote the complex
vector space consisting of column vectors whose entries are indexed by X. Let W C V
be an irreducible 7 -module. Then W is the direct sum of the nonzero subspaces among
ESW,EfW, ..., ELW. W is said to be thin if dim EfW < 1 for every i. The index
min{i | 0 <i < D, EfW # 0} is called the endpoint of W. There is only one irreducible
module of endpoint 0 and it is always thin. Recently Terwilliger investigated thin modules
of endpoint 1 and obtained an inequality involving the local eigenvalues and showed that the
equality holds if and only if every irreducible module of endpoint 1 is thin [48, 49]. Tight
distance-regular graphs defined in [31] have lots of interesting properties, one of which is
that every irreducible module of endpoint 1 is thin and of dimension D — 1 [23]. Hence they
are in the special class satisfying the equality mentioned above. For tight distance-regular
graphs and related topics, see [27-30, 32, 33, 3639, 44].

This paper is an attempt to generalize the results found in [23, 48, 49]. We first generalize
the algebra 7 by replacing the base vertex by a base subset. Indeed let Y be a nonempty
subset of X. For 0 <i < D let I';(Y) denote the set of vertices in X which are at distance
i from Y. Let Ef = E}(Y) denote the projection onto I';(Y). We let 7 = 7(Y) denote
the subalgebra of Maty (C) generated by A, Ej, ET, ..., E},. Now we can define endpoints
and the thin property similarly for irreducible 7 -modules.

For a nonempty subset ¥ of X let w(Y) denote the maximal distance of vertices of Y in
I", which is called the width of Y. Let v € E}V be a nonzero vector. Then the 7-module
Tv contains My. Moreover, if 7 v is a thin irreducible module, 7v = My.

‘We now state our main results, which will be proved in the body of the paper.

Our first result concerns the dimension of Myv. Before we state our result we make a
few comments. Observe that My has a basis consisting of the nonzero vectors among
Eov, Ev, ..., Epv. Therefore,

dmMyv =|{i | Eiv#0, ie€{0,1,...,D}}.

Theorem 1.1 Let I' = (X, R) be a distance-regular graph of diameter D, and let Y
denote a nonempty subset of X. Let v be a nonzero vector in E§(Y)V.Let T =T (Y). Then
the following hold.

i) dmMy > D —w(¥)+ 1.

(i1) Suppose dim My = D — w(Y) + 1. Then My is a thin irreducible T -module.

In order to state our next result we make a few more comments. Under the assumption
of Theorem 1.1, let dim Mv = r + 1. Since A; is expressed as a polynomial in A of degree
i, My has another basis A;v (0 < i < r). Applying Gram-Schmidt to this basis, we find
My has an orthogonal basis g;(A)v (0 <i < r), where g;(t) € R[t] is a polynomial with
degree exactly i with leading coefficient (cic; . ..c;)~'. We compute | g;(A)v||? in terms of
the intersection numbers and the scalars

[VA,'V

vy

. forie{0,1,..., w(¥).
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We show that for 0 < j <r,
IE; A > < llgi(A) ], (D)
Concerning the case of equality we have the following.

Theorem 1.2 LetT" = (X, R) be adistance-regular graph of diameter D, and let Y denote
a nonempty subset of X. Let v be a nonzero vector in E5(Y)V and define r = dim My — 1.
Let T = T(Y). Then the following are equivalent.

(i) 7Tv is a thin irreducible T -module.
(ii) Equality holds in (1) fori € {0, 1,...,r}.
(iii) Equality holds in (1) fori =r.

When v is the characteristic vector of Y, we show My is an irreducible 7 -module if and
only if Y is a completely regular code. See Proposition 7.2. Hence our attempt is to provide
anew tool to study codes by considering not only the module generated by the characteristic
vector of a code but also those generated by nonzero vectors whose supports lie in the code.
For algebraic characterizations of completely regular codes, see [2,20,21,24,25,34,35,41].

Let W be an irreducible 7 (x)-module of endpoint i. Then the same subspace W becomes
an irreducible 7 (Y)-module of endpoint 0 by setting ¥ = I';(x). Hence by considering a
suitable subset Y, every irreducible 7 (x)-module can be regarded as an irreducible 7 (Y)-
module of endpoint 0. Thus it is advantageous to choose a base subset rather than a base
vertex. In fact the results in [23, 48, 49] are those on 7 (I'; (x))-modules. Since w(I";(x)) = 2,
our results are generalization to the case with arbitrary width. We believe that our results
set a foundation to investigate 7 (x)-modules of endpoint larger than one as well.

The paper is organized as follows. The next two sections are for preliminaries. Section
2 is for orthogonal polynomials and Section 3 is for distance-regular graphs. The readers
who are familiar with distance-regular graphs may skip these two sections and come back
when quoted. In Section 4, we define Terwilliger algebras and their modules with respect
to a base subset, and prove some basic results. Section 5 deals with the properties of change
of base subsets. In Section 6, we discuss the structures of thin modules. In Section 7, we
study the primary module. In Section 8, we collect basic properties of local eigenvalues. In
Sections 9 and 10, we prove our main theorems. In Section 11, we give description of the
case when the width w(Y) of Y is at most 2. This contains the case when Y = I"{(x), which
was studied in [23, 48, 49].

2. Preliminaries: Orthogonal polynomials

In this section we will review some of the basic properties of orthogonal polynomials.
Orthogonal polynomials frequently arise in connection with distance-regular graphs [1,
2, 24], and they play a fundamental role in our work. Thus we take a moment to recall
some basic properties of orthogonal polynomials (most of this material is found in Szegd’s
book [40], see also [5, 15, 24]). To make these results more directly applicable to our
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situation, we specialize them to the orthogonal polynomials with associated weight functions
having only a finite number of points of increase.

Definition 2.1 Let X = {x¢, x1, ..., xy} be the set of N + 1 distinct real numbers. Let w
be a real-valued function on the set X such that w(x) > O for all x € X. Let R[¢] be the set
of polynomials in ¢ with real coefficients. For f(¢), g(t) € R[z], let

N
(f@), g0 = Y fEwWE) = Y fx)gxw(x).
xeX i=0

Then (, ), defines an inner product on R[¢]. A system of polynomials {p(t), p1(¢), ...,
pn(t)} C RJt] is called a system of orthogonal polynomials on X associated with the
weight function w, if they are orthogonal with respect to the inner product ( , ),, and that
deg(p;(t)) = i. A system of orthogonal polynomials {po(t), p1(¢), ..., p.(t)} C R[t] is
called orthonormal if {p;(t), p;(¢)), = 1 foreveryi € {0, 1, ..., n}.

If {po(t), p1(2), ..., pa(t)} C R[¢] is a system of orthogonal polynomials, then every
polynomial p(t) € R[t] of degree at most m with m < n can be written as an R-linear
combination of py(t), pi(?), ..., pm(t) and (p(?), pi(t)), = Oforeveryi € {m+1, ..., n}.

Proposition 2.1 ([40]) Let X = {xo, x1, - .., xn} be the set of N + 1 distinct real numbers.
Let w be a real-valued function on the set X such that w(x) > Oforallx € X. Let fo(t) = 1,
fi(t) € R[t] such that deg f;(t) =i fori € {1,..., N}.
(i) Letci;j = (fi(®), fi(*))w foreveryi, j €{0,1,..., N}. Then for everyn € {0, 1, ...,
N} the value of the following determinant is positive.

€0,0 €o,1 €o0,2 tt Co,n

€1,0 €11 €12 Cin

Dy= | .
Cn—1,0 ©Cn—1,1 Cp—1,2 ot Cp—1n

Cn,0 Cn,1 Cn,2 e Cn,n

(i) Let {po(t), p1(t), ..., pn()} C R[] be a system of polynomials defined as follows.
po(t) =1,
and forn € {1,2,..., N}

€0,0 Co,1 €02 " Con

C1,0 C1,1 C1,2 Cl,n

() =(Dp )™ | e
Cn—1,0 Cn—1,1 Cp—12 " Cu—Ln

fo)  fi@t)  fo() oo fu(D)
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Then foreachn € {0, 1, ..., N}, p,(t) is an R-linear combination of fy(t), f1(t), ...,
[fn(2) and the coefficient of f,(t) is 1. Moreover, {po(t), pi(t), ..., pn(t)} is a system
of orthogonal polynomials satisfying the following.

(Pi(t)’ pj([»w = (Si,jDi~

(iii) Suppose {qo(t), qi(t), ..., qgn(t)} is a system of orthogonal polynomials on X associ-
ated with a weight function w. Assume the following.

(a) The leading coefficient of q;(t) is the same as that of fi(t) for everyi € {0, 1, ...,
N}

(b) (qi(¥), q;j())w = & jDiforeveryi, j € {0,1, ..., N}, where D; is the determinant
defined in (i).

Then q;(t) = p;i(t) for eachi € {0, 1, ..., N}, where p;(t) is a polynomial defined in
(ii).

Remark. ByLemma 2.1, if w is a weight function on the set X of size N + 1, then there
exists a system of N + 1 orthogonal polynomials {po(?), pi(¢), ..., py(?)} associated with
w, but no larger system.

Lemma 2.2 ([24, 40]) Let {fo(?), f1(?), ..., fn(@®)} C R[t] be a system of orthogonal
polynomials on the set X of cardinality N + 1 associated with the weight function w. Set

v = erx(t—x). Then foreachn € {0, 1, ..., N}, there exist real numbers B,_1, o,
and y,1 satisfying the following relations.

tfn(t) = ﬂnflfnfl(t) + anfn(t) + Vn+1fn+1(t)v (2)
and that

<fn+1(t)v fn+1(t))w _ ,Bn
(fu(®)s [ (@) Ynt1

In particular, B,yu+1 > 0 foreveryn € {0,1,..., N — 1}.

, foreveryne{0,1,...,N —1}. 3)

Lemma 2.3  Let {po(t), pi(t), ..., py(#)} C Rlt] be a system of orthogonal polynomials
on X associated with the weight function w. Let p(t) € R[t] such that p(x) > 0 for every
x € X. Suppose

pt) =clt—yD)t —y2)---(t—y) (OFceR),

where yi, y2, ..., y¢ are distinct elements of X. Let D, , be a determinant of size £ x £
defined by the following.
Pn(¥1)  Pup1(V1)  ooo Pare—1(01)
Dy, = Pn(¥2)  Pur1(32) oo Pute—1(32) . @
Pn(ye)  Pup1(Ve) oo Pare—1(Ve)

Then D, , # 0 foreveryn € {0,1,..., N — £+ 1}.
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Proof: Suppose D, , = 0. Then there is a nontrivial linear combination of columns of
the determinant. Let u; be the (i + 1)-st column of the determinant (4) as follows:

PrtiVD)s Pati(32), - -+, Puti(¥e)),

fori =0,1,...,¢—1.Suppose Ay, A1, ..., A¢—| are certain constants of real numbers, not
all zero, such that

Aolg + Aty + -+ Agqug = 0. &)
and set

p(t) = Xopn(t) + A1 Puy1(t) + Ao puga(t) + - - - + he—1 Pute—1(2) € R[1].
Then the degree of p(¢) is at most n + £ — 1. By (5), we have

p(y;))=0 foralli € {1,2,...,¢}.

Thus p(¢) divides p(z), and there is a nonzero polynomial g(z) € R[t] of degree at most
n—1suchthat p(¢) = p(¢)q(¢). Since p(t)is an R-linear combination of p,,(¢), pu+1(®), ...,
Pn+o—1(1), p(t) is orthogonal to any polynomial in R[#] of degree at most n — 1. In particular,

0= (p(t), g = (p(g(1), g = Y p(X)g(x)g(x)w(x)

xeX

= lg)Ppow(x).

xeX

Since p(x) > 0 and w(x) > O for all x € X, we have that

qg(x) =0 foreveryx € X \ {y1, y2,--., Ye}-

Henceif N +1— ¢ > n — 1, we have ¢(¢) = 0 as a polynomial, which is a contradiction.
Thus D, , #0if n < N + 1 — £ as desired. O

3. Preliminaries: Distance-regular graphs

In this section we recall some facts about distance-regular graphs. For the general theory
of distance-regular graphs, we refer the reader to [1, 2, 24]. We shall follow the notation
of [1] for the most part.

Let X denote a nonempty finite set. Let Maty (C) denote the complex algebra consisting of
all matrices whose rows and columns are indexed by X with complex entries. Let V = C*
denote the vector space over the complex number field consisting of column vectors whose
coordinates are indexed by X with complex entries. We observe Matyx (C) acts on V by left
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multiplication. We endow V with the Hermitean inner product ( , ) defined by
(w, vy ="uv (u,v € V),

where ‘u denotes the transpose of u, and ¥ denotes the complex conjugate of v. We abbreviate
llul|> = (u, u) forallu € V. Forall y € X, let # denote the element of V with a 1 in the
y-coordinate and 0 in all other coordinates.

Let I' = (X, R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. For x,y € X, let d(x, y) denote the distance
between x and y, that is the length of a shortest path connecting x and y. The diameter D is
the maximal distance between vertices. The graph I' is said to be distance-regular whenever
for all integers h,i, j € {0, 1, ..., D} and for all vertices x, y € X with d(x, y) = h, the
number

pli=lzeX |, 2) =i, 3z y) = j}| ©)

is independent of x and y. These integers are called the intersection numbers of I'. We
abbreviate ¢; = p}_;; (1 <i < D),a; =p}, (0 <i < D),andb; = p},,, (0 <i <
D — 1). For notational convenience, we define ¢co = 0 and bp = 0.

For the rest of this paper we assume I is distance-regular with diameter D. By (6) and
the triangular inequality,

pl,=0 ifh+i<j i4+j<h orj+h<i @)
For a vertex x € X and an integer i € {0, 1, ..., D}, let
Fix)={yeX|ox,y)=i} and Kk = Ti(x)l.

Then k; = P?,i and the induced graph on I';(x) is an a;-regular graph of size k;, and
k =k =c;+a;+b;foreveryi € {0, 1, ..., D}. It is known that each pfj can be written
using ¢;’s, a;’s and b;’s. We refer to {pffj | h,i, j €{0,1,..., D}} as the set of parameters
of I.

Fori € {0, 1, ..., D} let A; denote the matrix in Maty (C) whose (x, y)-entry is defined
by

1 ifd(x,y) =1,
0 otherwise.

(Ai)x,y - {

The matrix A; is called the i-th distance matrix of I'. For i, j € {0, 1, ..., D} we have

D
AiAj =Y pliA;
h=0
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In particular, by (7) we have fori € {1, ..., D}
AiAy = b 1A+ ai A + civ1Ain 3

by setting Ap;+; = 0 and cpy; = 1. Observe that by (8), the linear span M = Span(Ay,

Ay, ..., Ap)isclosed under multiplication and it is algebraically generatedby A = A;. M
is called the Bose-Mesner algebra of T'. Since M is commutative and generated by real sym-
metric matrices, it has a basis consisting of primitive idempotents. Let Eq, Ey, E,, ..., Ep

be the primitive idempotents. We write

D
A=) pi()HE; foralli{0,1,...,D}, ©)
=0
and
1 &
i=m;qi(])Aj foralli € {0,1,..., D}. (10)
Setm; = ¢;(0) and 6; = p;(i). Then 8y, 0y, . .., Op are the distinct eigenvalues of A = Ay,
and m; is the multiplicity of 6; in A. We order Ey, E, ..., Ep so that

6p>6; >--->0p.

Since I' is a connected k-regular graph, its adjacency matrix has largest eigenvalue k with
multiplicity 1. Hence Ey = L 7 in this ordering, where J € Maty(C) is the all 1’s matrix.

1X|
We use the following well-known formulas. For all i, j € {0, 1, ..., D},
pi(j) _ qj(l)7 (11
k,‘ m;
m;0;
g;(1) = # (12)
mj(9]2 — d]ej — k)
(2) = . 13
q;(2) ib: (13)
Lemma 3.1 ([1, 23]) The following hold.
(i) Letvy(t), vi(t), ..., vp(t), vpi1(t) denote polynomials in R[t] satisfying vo(t) = 1 and
fori e{0,1,..., D},
tv; (1) = bi_1v; 1 () + a;vi(t) + ci 1V 11(1), (14)

whereb_y =0, cpy1 = landv_(t) = 0. Then for each integeri € {0, 1, ..., D+ 1},
the polynomial v;(t) has degree i, the leading coefficient (c\c; - - c¢)) and vi(A) =
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A; with Apy1 = O. Moreover,

c1Ca...cpUpyi(t) = (t — Op)(t — 01)---(t — Op), (15)
andfori, j € {0,1,..., D},

o

> i) O)my, = 8 kil X|. (16)
h=0

(i) Let po(t), pi(t), ..., pp(t) denote polynomials in R[t] satisfying po(t) = 1 and for
ief0,1,...,D—1},
tpi(t) = bipi—1(t) + (@i — cit1 + ¢i)pi(t) + civ1pi+1(D), (17)

where p_i(t) = 0. Then for each integer i € {0, 1, ..., D}, p;(t) = vo(t) + v1(¢) +
-+ -4 v;(t) and the polynomial p;(t) has degree i, the leading coefficient (cics ... c;) ™"
Moreover, (t — 6y)pp(t) = vpy1(t) and fori, j € {0,1,..., D — 1}

D
> piOp;O1)O0 — O)my = 8 jkib;| X|. (18)
h=1

Lemma 3.2 ([23, 48]) Let 0 be a real number such that 0 > 0y or 0 < 0p. For every
Le{0,1,...,D — 1}, let

[4
_x beke pr(9)
gy=>y_ Bk pu@) O

Then the following hold.
(1) If0 = 6, or Op, then

1
(t—0)gp-1(t) = pp() = m(f — 0@ —62)---(t — Op).

(i) pi(t) = gi(t) — 2L, (1) for everyi € {0, 1,..., D —1}.
(iii) Foreveryf e {0,1,...,D — 2}

18¢(t) = Be-18e—1(8) + e ge(t) + Ver18e+1(), (19)
where
Bt = bycet Pz71(9)m+1(9)’
ce (pe(6))?
pe-1(9) pe(0)
Qg =ag+cg—cep1 + Y0 by — le(@)le,
Ye+1 = Ceq1-

Moreover, if@ > 01 0or6 < 0p, then (19) holds for £ = D—1 by setting gp(t) = pp(t).
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@iv) Foreveryi, j e {0,1,...,D — 1}

D
i+1(6)

> 8i01)g; 00O — 0)(60 — OImy = 8 jcit P b X .

h=1 pl(e)

4. Terwilliger algebras and their modules

We now introduce the Terwilliger algebra of a distance-regular graph with respect to a
subset of vertices.

Let Y be a nonempty subset of the vertex set X of a distance-regular graph I' of diameter
D. The number

w(Y) =max{d(x,y) | x,y € Y}

is called the width of Y in I. In particular, w(X) = D.
For x € X, let

a(x,Y)=0(Y,x) =min{d(x,y) |y € Y}.

Set
T =1(Y)=max{d(x,Y) | x € X}.

The number t is often called the covering radius of Y in X. Fori € {0, 1, ..., t}, let
Y)y={xeX|ox,Y) =i},

and let Ef = E}(Y) denote the diagonal matrix in Matx (C) with (x, x)-entry

1 ifx e['i(Y),
(E;k)x,x = { (20)

0 otherwise.

Throughout this paper, we adopt the convention that E; = 0 and E ; = 0 for any integers i
and j suchthati <0,j <0,i > Dorj > 7.

For a vector v = ) _, a(x)¥ € V expressed as a linear combination of %’s, supp(v)
denotes the support of v, i.e., supp(v) = {x € X | a(x) # 0}.

By definition, E}v = v if and only if supp(v) C I';(Y). Moreover, for a subset Z of X,
1 =) ., Zis called the characteristic vector of Z.

Lemmad.l Forh,i,je€{0,1,..., D} the following hold.
6)) E;‘E;‘ =6, ;E}.

(i) Ej+Ef+---+E;, =1

(iii) (E}) = Ef = E}.
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(iv) ERA;ET # 0if and only if there exist vertices x € T'y(Y) and y € T';(Y) such that
Ax, y)=1i.
V) IfEFA;E; #O0thenh <i < h+w(Y).

Proof: Parts (i)—(iv) are immediate from the definition (20). Forx € T',(Y)and y € Y,
thereexists z € Y suchthatd(x, z) = hand d(z, y) < w(Y).Henceh < 9(x, y) < h+w(Y).
Thus (v) follows. O

We have the decompositions

V =E)W+ E|V +---+ EpV (orthogonal direct sum),
= EjV + E{V +--- 4+ EV (orthogonal direct sum).

Definition 4.1 Let I' be a distance-regular graph. Let X be the set of vertices and Y a
nonempty subset of X suchthatt = t(Y).Let7 = 7 (Y) denote the subalgebra of Matx (C)
generated by the Bose-Mesner algebra M and Ejj, E7, ..., Ef. We call T the Terwilliger
algebra (or subconstituent algebra) of I with respect to Y.

Since 7 = 7 (Y) is generated by symmetric real matrices, it is semisimple. The vector
space V is called the standard module of T . It is a fact that every 7 -module is isomorphic to
a submodule of V. Thus, throughout this paper, the term 7 -module shall refer only to vector
subspaces of V which are invariant under the action of 7 by the usual matrix multiplication.
Definition 4.2 Let W be an irreducible 7 (Y)-module. W is said to be thin whenever

dimEW <1 foralli €{0,1,...,D}.

W is said to be dual-thin whenever

dimE;W <1 foralli € {0,1,..., D}.
Definition 4.3 Let W be an irreducible 7 (Y)-module. The endpoint v and diameter § of
W are the nonnegative integers defined by the following.

v=min{i | EfW #0}, v+ =max{i | EfW # 0}.

Lemmad4.2 ([45,Lemma3.9]) LetT = 7(Y)andlet W denote an irreducible T -module
of endpoint v and diameter &. Then

E;W #0 ifandonlyif v <j<v+$.

Moreover, the following hold.



16 SUZUKI

@) AE;‘W C E_’].‘_IW + E}?W + E"]‘.‘HW forevery j € {0,1,..., D}.

() EfAETW #£0if|i —jl=1 (=i, j=<v+9).
(iii) Suppose W is thin. Then for everyi € {0, 1, ..., 6}

EXW+E!, W+ El ,W=EW+AEW +---+ A'EiW.

(iv) Suppose W is thin. Then for j € {0, 1, ..., D}

E;W =E;E;W.
Proof: Letj €{0,1,..., D}. By Lemma4.1 (ii) and (iv), we have

D
AEIW = XgEfAE;W
= E_|AE;W + EJAESW + E5 | AEIW C E;_\W + ETW + E7,| W.

Hence we have (i).
Let v/ = max{i | EfW # 0, and E |AE;W = 0}. Let §’ be the least nonnegative
integer satisfying the following.

E; yW#0 andthat E; ; AE; W =0.

Let W = E;W+E;, (W++---+ E}_ ;W.Then AW C W’ by (i) in this lemma. Since
ETW’' C W forevery j € {0,1,..., D}, W' is a non-zero 7 -invariant subspace of W.
Since W is irreducible, we have W = W’. This shows v = v’ and § = §'.

Certainly,
E;‘HAE;‘W;&O w<j<v+4+9), 21
and
EI JAEW #0 (v <j <v+39).
Thus we have (ii). In particular, we have E;fW #0ifandonlyifv < j <v+36.

If W is thin, the property (21) implies (iii). Thus we have W = ME*W. Multiplying
both sides of this equation on the left by E; gives (iv). O

Lemma 4.3 Let 7 = T(Y) and let W be an irreducible T -module. Then the following
are equivalent.

(i) For some vectorv, W = My,

(i1) W is dual thin.
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Moreover, if W is thin, then W is dual-thin and the vector v above can be taken from E}W,
where v is the endpoint of W.

Proof: Suppose W = My for some vector v € V. Then foreveryi € {0, 1, ..., D},
E;W = E; My C Span(E;v).

Hence W is dual thin.

Conversely, suppose that W is dual thin. Then dim E; W < 1. Hence we can choose v;
so that E; W = Span(v;) foreveryi € {0,1,...,D}.Letv =vo+ v+ --- 4+ vp. Since
Ev=v;, E;W C Mv and W C Mpv. Therefore, W = Mpv.

If W is thin, then dim EW = 1. Hence by Lemma 4.2 (iv) W is dual thin and the last
assertion is obvious. O

5. The significance of endpoint 0

Let Y be a nonempty subset of the vertex set X of I', and let 7 = 7(Y). Let W be a 7 -
module of endpoint v. In this section, we show that W can be regarded as a 7 (Y,)-module
of endpoint 0, where ¥; = I';(Y). Hence, to study a single irreducible 7 -module W, it is
sufficient to study one of endpoint zero with respect to a suitable base subset. We continue
to use the notation E} = Ef(Y)and t = 7(Y).

Lemma 5.1 The following hold.

(i) Foreachx € Y;, 0(x,Y))=j—iifj>i,andi— j <0(x,Y)if j <i.
(ii) Fixi €{0,1,..., D}. Then for each j € {0, 1, ..., D},

E;(Y) = E[,; + Ej(Yi)(E; + Ef + -+ E_)).

Proof: (i) is obvious, and (ii) follows from (i). d

Lemma 5.2 Let V be the standard module of T. For v € {0, 1, ..., t}, let V(v) denote
the sum of irreducible T -modules of endpoint v. Then

V=V@O)+VQA)+---+ V(v) (orthogonal direct sum).
Let Z(v) be the annihilator of Uv) = V(W) + VW + 1)+ -+ V((Y)):
IWw)y={M €T | Mv =0 foreveryv € U(v)}.

Then T /Z(v) is generated by the images of A and E};, E}, |, ..., E}. Moreover, if W is an

irreducible T -module of endpoint v then W is a T /Z(v)-module.

Proof: Since {Ej, ET, ..., E¥_,} is contained in the two sided ideal Z(v) of 7, we have
the assertion. a
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Proposition 5.3 Let U(v) be a T-module defined in Lemma 5.2, and let W be a T -
submodule of U(v). Then the following hold.
(i) Aslinear transformations on W, E;*+U and E}(Y,) coincide foreachi € {0, 1, ..., D—
v}.
(ii) W is a T (Y,)-module of endpoint 0.
(iii) W is an irreducible T -module if and only if it is an irreducible T (Y,)-module.
(iv) W is a thin T -module if and only if it is a thin T (Y, )-module.

Proof: Since {Ef, ..., E_,} is contained in the annihilator of U(v) and W is contained
in U(v), (i) follows from Lemma 5.1. Now (ii), (iii), and (iv) follow immediately. d

We end this section by a lemma related to another type of base change.

Lemma 5.4 Suppose Z CY C X.Let Z; = {x € X | 3(x, Z) = i}. Then the following
hold.

(i) Foreveryx € X, d(x, Z) = d(x, Y).

) Z; cYyUY1U---UY;,andY; C Z; UZ; 1 U---UZp foreveryi € {0,1,..., D}.
(iii) E;(Y)E;(Z) =0 foreveryh,£ €{0,1,..., D} such that h > £.
(iv) Foreveryi € {0,1, ..., D},

ENZ)= Ey(Y)EXZ)+---+ E}(Y)E/(Z), and
Ef(Y) = E;(2)E;(Y) + -+ ER(Z)E;(Y).

Proof: (i) and (ii) are clear. (iii) and (iv) follow from (i) and (ii). |

6. Thin modules

For the rest of the paper, we fix a nonempty subset ¥ of the vertex set X of I' unless
otherwise noted. Let 7 = 7 (Y) denote the Terwilliger algebra of I with respect to Y,
and EF = E}(Y). Recall that 7 is generated by the Bose-Mesner algebra M of I" and E}
(i €{0,1,..., D}) as an algebra.

Definition 6.1 Letv € V be a nonzero vector such that supp(v) C Y C X,ie.,0# v €
ELV.

(i) Letr =t(v) =max{i | EfA;v # 0}.

(i) Letr =r(v)=|{i | E;v#0, i €{0,1,...,D}}| — 1.

Remarks When v is the characteristic vector of Y, #(v) coincides with 7(Y). The number
r(v) is called the dual degree. See [2, Chapter 11].
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Lemma 6.1 Letv € EjV be a nonzero vector. Let t = t(v) and r = r(v). Then the
following hold.

(i) EfAiv #0foreveryi €{0,1,...,t}. Inparticular,
t+1=|{i | EfA;v # 0}].
(i) dimMv =r + 1 and
My = Span(v, Av, ..., A"v) = Span(Agv, A1v, ..., A v).

(iii) t(v) < r(v).

Proof: (i) By definition EA,v # 0. Leti € {0, 1,...,¢}. Then
0 ;ﬁ p;—i,iEt*Alv = EZ*A,_,'A,'V = EZ*A,_Z'E[-*AZ'V.

Hence EfA;v # 0. By the choice of ¢, we have that# + 1 = [{i | EfA;v # 0}].

(ii) Observe that Mv = Span(Egv, Eyv, ..., Epv) and that nonzero vectors among
Egv, E1v, ..., Epv are mutually orthogonal. Since nonzero mutually orthogonal vectors
are linearly independent, dim My = r+1 by the definition of r(v). Since M is algebraically
generated by the adjacency matrix A, Mv = C[A]v. Now Mv = Span(v, Av, ..., A"v)
follows as the polynomial ring over a field is a principal ideal domain. The last equality
follows immediately.

(iii) By (ii) above and Lemma 4.1 (v), for every i > r,
E; Ay € EfMy = Span(E; Aov, E; Ayv, ..., EfAv) =0.
Hence t(v) < r(v). |

Proposition 6.2 Letv € E;V be a nonzero vector. Let t = t(v). Then the following are
equivalent.
(1) 7T is a thin irreducible T -module.
(ii) dim Ef My <1 foreveryi €{0,1, ..., D}.
(iii) EfAj11v, Ef Aijov € Span(E} A;v) for everyi € {0, 1,...,t}.
(iv) Span(Egv, EfAyv, ..., EfA;v) is A-invariant.

Suppose the equivalent conditions (1)—(iv) hold. Then
Tv = My = Span(Ejv, EfA\v,..., EFAwv).
In particular, r(v) = t(v) and Tv is of dimension t + 1.

Proof: Below we shall frequently use the fact that E¥A ;v = 0 wheneveri > j.
Letv; = EfA;vforalli € {0, 1, ..., D}. Weassume thatv; = Oforall j < Oorj > D.
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(i) — (i1) Since M C 7, if 7v is thin irreducible, then fori € {0, 1, ..., D} we have
dim Ef My <dimE/Tv < 1.

(i) — (ii1) This is obvious by the definition of #(v) and Lemma 6.1 (i).

(iii)) — (iv) Lett = #(v) and Wy = Span(vy, v1, ..., v;). By definition, W}, is invariant
under the actions of Ej, Ef, ..., E},. Moreover, by our assumption,
EfA;j11v, EfAijov € Span(v;) foreveryi € {0, 1,...,¢}. (22)

We claim that W, is A-invariant. Let 0 < j < ¢ and assume that for h < j Av; € Wy, or
equivalently,

E;+1Avh, E;Avh, E;fflAvh € WQ. (23)
Then we have by Lemma 4.2 (i), and (22), (23),

AVj = AE;AJV

= EX AETA;v + ETAE;Ajy + E5_ | AESAjv
= E;_HAA]‘V + E;(AA]V — EleE;f_lAjV

+Ei_AAjy — EX_|AE:_ Ay — E5_|AES_,Ajv

=i EjAjsy e ETAj v +a EfAjy — ETAET Ay
+cj+1E;f_1Aj+1v +ajE;‘_1Ajv +bj_1E;f_1Aj_1v
— E;f_]AE}‘f_lAjv — E_’;_]AE;f_zAjv

€ Span(v 41, v, vj—1, EJAv; 1, E7_|Av_1, E;_jAv;))

c Wo.

Now by induction, W, is invariant under the action of A, and hence W) is 7 -invariant. Since
v € Wy, Tv = W, and we have (iv).

(iv) = (i) Let W = Span(vg,vy,...,vp). Thenvy =v # 0and W C Tv. By defini-
tion, W is invariant under the actions of Ejj, EY, ..., E},. Moreover, by our assumption, W is
invariant under the action of A. Hence W = 7v. Let W, be an irreducible subconstituent of
W such that EfW, # 0. Since E;W = Span(vy),v =vo € Woand W =Tv C Wy C W.
Hence W is irreducible. Moreover, since EfW C Span(v;), W is thin.

By (iv), 7v = My = Span(vg, vy, ..., v;), which is of dimension ¢ + 1 by the definition
of #(v). By Lemma 6.1 (ii), dim Mv = r(v) + 1. Hence r(v) = #(v). The last assertion
follows from Lemma 4.3. |

7. The primary module

In this section, we summarize the results concerning the module generated by the charac-
teristic vector of Y.
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Let 1 be the all 1’s vector of V. For every i, let

L= > &
xel(Y)

Wehave 1l =1p+1; +--- + 1, where T = 7(Y). Note that 1; is the characteristic vector
of I';(Y). In particular, 1 is the characteristic vector of the base subset Y.

Lemma 7.1 Let W be an irreducible module of T . Then the following are equivalent.
(1) EoW #0,ie,1 € W.

@) 1o e W.

(i) 1, e Wforalli € {0, 1,...,1}.

Proof: Since E/1 = 1;, (i)<>(iii) and (i)— (ii) are immediate. Suppose (ii) holds. Then
(IY1/1XD1 = Egly € W and (i) holds. 0

The irreducible module satisfying the conditions in the previous lemma is called the
primary module of T .
For z € T, (Y), let

ml =ali @)=y e i) |8z y) = j} = (EfA;1))..
Recall that a subset Y of the vertex set X of a distance-regular graph is called a completely
regular code if ) ;(2) is independent of the choice of z € Ty(Y), i.e., EjA;1 = 7 1,
for all & and j. Using Proposition 6.2, we can easily prove the following.

Proposition 7.2  Let 1y be the characteristic vector of the base subset Y of T . Then the
following are equivalent.
(1) Y is a completely regular code of T'.
(ii) 71y is a thin irreducible T -module.
(iii) 71y = Span(1g, 14, ..., 1;).
(iv) EfA;1; = ni{‘jlh, ie., nfj(z) is independent of the choice of z € T',(Y) for every
h,i,je{0,1,...,D}.
(V) Let B; = ﬂf;lql, aj = nj]fyl and y; = rrjj.;“. Then for everyi € {0, 1, ..., D},

Al =Bl + a1+ vl
Moreover, if one of these conditions are satisfied, then

vill;(V)| = Bj—1Il'j-1(Y)|  and
BoBi ... Bj-1

T (V)| =
)/1)/2 . )/j

Y|, forallje{0,1,2,...,1}.
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Proof: Let W = 71y and Wy = Span(1y, 14, ..., 1;). (i) is equivalent to M1y C W,.
Hence Proposition 6.2 (i) (b) is satisfied. Thus (ii) holds. Other implications are also im-
mediate. O

Remarks

1. For definitions and algebraic characterizations of completely regular codes, see [2, Sec-
tion 11.1] and [20, 21, 35].

2. If Y = {x}, then the primary module of 7 (Y) is always thin. It actually characterizes the
property of a graph to be distance-regular with respect to a vertex x. See for example [42].

8. Local eigenvalues

Definition 8.1 For a nonzero vector v € V = C¥, let

t —

A A
7Py = 22X foriefo,1,..., D).

vy

Let A; = EGA;Ej fori € {0,1,..., D}. Suppose supp(v) C Y,i.e., v € E;jV. Since
v = Ejv,

[VA,‘V = [VESA,‘EE;_ = IVA,'V,
and n®(v) = 0 for every i > w(Y) as A; = 0. Moreover if v is an eigenvector of A; for
somei € {0, 1, ..., D}, then n(i)(v) is the eigenvalue of A; associated with the eigenvector
vasv = Ejv.
Lemma 8.1 Let W be a thin irreducible T-module of endpoint 0. Let v be a nonzero
vector in E;W, and n'D = n®OW) for each i. Then E§W = Span(v) and v is a common

eigenvector of Ay, A, ..., Ap. In particular, A;v = nVv for everyi € {0, 1, ..., D}.

Proof: Since W is thin, E;W # 0 is of dimension 1. Hence it is spanned by v and we
have the following.

Av = E;A;Ejv € E;W = Span(v).
Hence we have the desired conclusion. O

Lemma 8.2 Letv € EjV be a nonzero vector, and let vi(t) (j = 0,1, ..., D) be the
polynomials in Lemma 3.1. Then

IEvI? 1 R 1Ry
= — n’mwq(j) = — —v;(0;))m;.
HE |X|; m; K,
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Proof: Set n” = (). Since v;(6;) is the eigenvalue of A; on E;V, v;(6;) = p;(i).
See Lemma 3.1 (i), and (9). Hence by (11),
m;v;(6;)

q:(j) = K

Now using (10) and the remark following Definition 8.1, we have

|E;v|* = V'EEv
=YE;v

= vﬁ Z%(])A v
D

1
=T Zq,va v

J=
w(¥)

Z nDg:(HlvI?

— VUV 9 m;|(|v

T x|

9. The subspace My

Definition 9.1 Letv € V be a nonzero vector. Let

1 vj (t)
— )
py () = IX] E nv )

where v;(¢) is a polynomial in R[¢] of degree j such that v;(A) = A;. See Lemma 3.1.
Note that if in addition v € E;V, i.e., supp(v) C Y, then

w(Y)

1 v; (t)
— (J) J
py (1) X] ; v)——

and deg py (1) < w(Y).
Let ® = {6y, 61, 65, ...,0p} and let m be a function on ® such that m(6;) = m;. Then

{vo(2), v1(?), ..., vp(2)} is a system of orthogonal polynomials associated with the weight
function m on ® satisfying the following. See Lemma 3.1.

(Wi(0), v;(O)m = Z vi(0)v;(0)m(0) = & ;| X |k; (24)

fe®
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forevery i, j € {0, 1,2, ..., D}. Moreover, it follows from Lemma 8.2 that

IEv]?
v

= py(B;)m(6;) >0 foreveryi € {0,1,2,..., D}. (25)

Proposition 9.1 Let v be a nonzero vector in E§V. Then

r(v)=D—[{0 € ©| pp(®) =0}| = D —degpy(r) = D — w(Y).

Proof: This is immediate from Definition 6.1 and (25). |

Definition 9.2 A nonzero vector v € EjV is said to be tight with respect to Y, if r(v) =
D — w(Y).

Theorem 9.2  Let v be a nonzero vector in EGV . If v is tight with respect to Y, then My is
a thin irreducible T -module. In particular, v is a common eigenvector of M = E§ME;.

Proof: Let w = w(Y) and p(r) = py(¢). By (25) above, p(0) > 0 for every eigenvalue

of the adjacency matrix A. Suppose 6;,, 6;,, ..., 6;, are the roots of p(t). Hence there is a
nonzero constant ¢ such that

pt)=c(t —0;,)(t —6,) - (t —6,)-

Then we have

Hence foreveryn € {0, 1, ..., D — w},

E:E,‘]V = E:Eizv == E:E,'WV =0.
Thus for every j € {1, 2, ..., w} we have
0=EE;v
D
= ml) S ) g
|X| g,
_ i vn+h lj E A v
- n
h=0 n+h

where we used Lemma 4.1 (v).
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Hence for each j € {0, 1, ..., w}, we have a linear equation
v 1 Uy 9,‘.
ZUH;,(Q,-!.)—E:AHW = — ( j)E:A,,V.
h=1 kn+h kn
By Lemma 2.3,
Un+1 (eil) Un+2 (61'1) o Untw (Gil)
Un+1 Gi Un+2 91' Tt Un+w 91‘
PR CSTCA RSy @),
Uns1(0i,)  vns2(0:,) o0 Unrw(6:,)
Hence for every h € {0, 1, ..., w}, ﬁE;“AHhv, and therefore E A, ;v is a scalar mul-
tiple of EA,v. Since E}A, ;v # 0 only when & € {0, 1, ..., w}, we have shown the

conditions in Proposition 6.2 (iii). Hence by the same proposition, 7 v is a thin irreducible
T -module as desired. The last assertion follows directly from our proof above. See also
Lemma 8.1. O

Corollary 9.3 Let Y be a subset of the vertex set X of a distance-regular graph. Suppose
w=w(Y)andfori € {0,1,..., D} set

oAy 1
o = -
l 1ol Y|

Hi, y2) €Y x Y | 0(y1, y2) =i},

where 1 is the characteristic vector of Y. Let p(t) = p1, (D). Then the following hold.
(i) p(@) = Oforevery eigenvalue 6 of the adjacency matrix of T, where p(t) is the following
polynomial.

w

1 Ki
=0 ; -

@ii) If p(t) has w roots in the set of eigenvalues of the adjacency matrix of T', then Y is
completely regular.

Proof: The assertions follow directly from Theorem 9.2. O

Remarks Corollary 9.3 can be viewed as a generalization of the Hoffman bound of the size
of a clique and the condition for equality, which can be derived easily by setting w(Y) = 1.
See Lemma 11.1. Similar conditions were studied in [20, 21]. It would be interesting to
further consider the case where EjV is spanned by tight vectors.
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10. Thin conditions
In this section, we consider thin conditions. Let r = r(v) and
O@) ={0 € © | py(0) # 0}.
of cardinality » 4 1. Then by Proposition 2.1, there is a system of orthogonal polynomials

{go(®), g1(¢), ..., g-(t)} associated with the weight function w = p-m on ®(v) with p = py.
We may assume that the leading coefficient of g;(¢) coincides with that of v;(¢). Then

this system of polynomials is unique and there exist cl(.j ) € R for je{0,1,...,i} such
that
i)=Y ;). (26)
j=0

with ¢! = 1. Set

gy =[] ¢-0.

0e0OV)

Then foreachi € {0, 1, ..., r} there exist real numbers S;_;, «;, ¥;+1 and go(?), g1(2), ...,
g-(1), gr+1(¢) satisfy the following relations.

tgi(t) = Bi—18i—1(t) +a; gi(t) + Vip18i+1(0). 27
Moreover, B;_1y; > 0fori € {1,2,...,r}.

Theorem10.1 Letv beanonzerovectorin EjV,andletu; = g;(Ayv fori € {0,1,...,r+
1}. Then the following hold.

(1) Foreveryi,je€{0,1,...,r + 1},
(i wj) = (gi(1). &) (v, v) =8 j(g:(0). & (O)ullVI,
and u, 41 = 0.
(i) Foreveryi € {0,1,...,r},
IE; A |? < flui ]|,
Moreover, equality holds above if and only if u; € E}'V. In this case, u; = EfA;v.

(iii) The following are equivalent.

(a) T-module Tv is thin and irreducible.
(b) Equality holds in (ii) for everyi € {0, 1, ...,r}.
(¢c) Equality holds in (ii) fori = r.
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Proof: (i) By (25), |E,v|*> = p(6,)m(6y)||v||>. Hence
(i, u;) = (gi(A)y, g;j(A)yv)

D D
=(8i(A))_ Ew. g;(A)) Ehv>
h=0 h=0

|
=<gi(A) Z Epv, gj(A) Z Ehv>
|

0,e®O(V) 0,e®OV)

> @@Ew, Y. g<,-(9h)Ehv>

0,e®O(V) 0,eOV)

> 2008 )P EIMEB) (. v)

0,eO(V)
> 2O OOy, v)

0,€0(V)

(2i(0), 8D (v, ¥)

= 8 j(&i(®), & ()olIV]I*.

Since g,41(t) is a zero function on ®(v), u,+; = 0.

(i1) By the definition of r = r(v), u; # 0 fori € {0, 1, ..., r}. Note that g;(¢) is of degree
i and the leading coefficient of g;(¢) coincides with that of v;(¢#) by definition. Hence if
gi(A) is expressed as a linear combination of Ag, Ay, ..., Ap, then A; with j > i does not
appear and the coefficient of A; is 1. Hence E}g;(A)y = E}A;v and

i—1
= gi(Aw = E}Av + Y Ejgi(A).
h=0

Since the vector appearing in the right hand side of the equation are mutually orthogonal,
||Ei*A,-v||2 < |lu;||>. Hence the first assertion follows from (i). Moreover, u; € E?V if and
only if Y1 _} EFgi(A)vy = 0. Thus we have (ii).

(iii) (a) — (b) Suppose W = 7 v is thin and irreducible. By Proposition 6.2 r(v) = #(v).
Hence W = My and W is an orthogonal direct sum of EfW = Span(E}A;v). Setv; =
ErA;v fori =0,1,...,r. Then {vg, v, ..., v,} forms a mutually orthogonal basis. On
the other hand, since ug, uy, ..., u, are mutually orthogonal and gives a basis of My, we
have the following.

v, € EXW C E}(Span(u;, w11, ..., u,) N Span(vi iy, ..., v,)"). (28)

We prove by induction on i in reverse order that Span(u;) = Span(v;). Suppose the assertion
holds for j > i fori € {0, 1, ..., r}. By the inductive hypothesis,

Span(u;y1, ..., u,) = Span(Vitq, ..., Vy). 29)
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Hence by (28) and (29),

0 £ v; € Span(E}u;)

C Span(ug, uy, ..., ui—) N Span(viyy,...,v,)TNW
C Span(u;, u;41, ..., u,) N Span(®; 41, - . ., u,.)L
C Span(u;).

By (ii), we have the assertion.
(b) — (c) This is obvious.
(c) — (b) By (ii), we assume that u, € Span(E}A,v). Since u,;; = 0, by (27) we have

Au; = Bi_ iy + ol + Vi1l (30)
foreveryi € {0, 1, ..., r}. Since deg g;(¢) = i,

w € E;V+EV+.---+E'V
foreveryi € {0,1,...,r}. Suppose u; € EV fori < r. Then by (30)

Bty € (Ef V4 -+ EVYN(EV+EV 4+ E V)=E V.

Since B;_ # Ofori € {1,2,...,r},wehaveu;_; € E ,V.Thus we have (b) by induction.
(b) — (a) Suppose u; € Span(v;) foreveryi € {0, 1,...,r}, thenr(v) = ¢t(v) and

W = Span(ug, uy, ..., u,) = Span(vg, vy, ..., vy). 3D
Hence W is A-invariant and it is also stable under the actions of Ej, Ef, ..., E},. Thus
W = 7Tv and it is irreducible and thin by Proposition 6.2. O

Corollary 10.2 Let v be a nonzero vector in E5V. Let r = r(v). Then the condition
whether T is a thin irreducible T -module is determined by n(v), i € {0, 1, ..., D}, and
|EXAv||/|v| together with the parameters of T'.
Proof: By Theorem 10.1, 7 v is thin and irreducible if and only if

IEFAVIP/IVIP =< 8(1), 8r(1) > pm -

Now the assertion follows immediately. O

Corollary 10.3 Let Wy and W, are irreducible thin T-modules. Then Wy and W, are
isomorphic if and only if the endpoints v are same and pw,(t) = pw,(t), where E;W; =
Span(w ) and E;W, = Span(w,).
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Proof: By Proposition 5.3 we may assume that v = 0. Suppose pw,(t) = pw,(t). Then
the module structure is determined by the system of orthogonal polynomials defined above.
Hence they are isomorphic.

Conversely, if W, and W, are isomorphic, n”(w) = n®(w,) foreveryi € {0, 1, ..., D}
by Lemma 8.1. Hence the polynomials pw (), pw,(t) defined by each vector are equal. O

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1and 1.2: Theorem 1.1 (i) is adirect consequence of Proposition 9.1
together with the fact that dim My = r(v) + 1 proved in Lemma 6.1 (ii). Suppose r(v) =
D — w(Y). Then v is tight and by Theorem 9.2 7v is a thin irreducible module.

Theorem 1.2 follows from Theorem 10.1 (iii). d

The following is also obtained as an application of Theorem 10.1.

Proposition 10.4 Letv € V = C¥ be a nonzero vector. Let supp(v) C Z C Y C X.
Then the following hold.

(i) Ef(V)Aiv = E;(V)EXNZ2)Aiv, and |EX(Y)Aiv| < |EF(Z2)Av| for every i € {0, 1,
..., D}. Equality holds if and only if Ef(Y)A;v = E}(Z)A;v.

(ii) If W = T (Y)v is a thin irreducible T (Y)-module, then W is a thin irreducible T (Z)-
module.

Proof: (i) By Lemma 5.4 (iii), E;k(Y)E;(Z) =0ifi > j. Hence
i-1 D
Ef(V)Aw =Y E/(Y)ENZ)Av + Ef()ENZ)Aiv + Y Ef(Y)ENZ)Aiv
=0 ' j=i+l '
= E/(Y)E!(Z)Av.

Therefore,

ENZ)Aw = (E{(VEN(Z) + - - + EX(V)ENZ) A
— (E§(VENZ) + -+ + EL(NEZ)AY + Ef(Y)Av.

Since the first term in the last expression is orthogonal to the last term, we have (i).
Since the right hand side of Theorem 10.1 does not depend on the choice of base subsets,
foreveryi € {0, 1, ..., r(v)} we have

IE; (AP < IEHZ) A < (gi(0), g IVIIP,

by (i). Thus the assertion follows from Theorem 10.1 (iii). d
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11. Y with small width

In this section we study irreducible modules of endpoint 0 when w(Y) is small. If w(Y) = 0,
Y consists of a single vertex y. Then 7 = 7 ({y}) is the Terwilliger algebra of [45]. If v
is a vector in V with supp(v) C Y = {y}, it is a scalar multiple of $. Hence 7 v is the
primary module and it is always thin. See [45, Lemma 3.6]. Hence we now consider the
casesw(Y)=1land w(Y)=2.For M € M, let M = E;ME; and M= E;MES.

11.1. w@)=1
Throughout this subsection assume that w(Y) = 1.

Lemma 11.1 = The following hold.
(1) M = Span(Ag, A;) = Span([l, J) is commutative.
(i) 0p = —k/(1Y| = 1). N
(iii) Let v be an eigenvector of A in E;V associated with an eigenvalue 1. Then
IEv(>  mi(k +n6;)

Iz kIX|
and one of the following holds.

(@) Eov #0,n = |Y| — 1, and v is a multiple of 19. Moreover, if E;v = 0 for some i,
theni = D, 0p-n+k=0andv is tight.
(b) Egv =0and n = —1. In particular, v is tight.

Proof: (i) is obvious.
Since w(Y) = 1, the formula in Lemma 8.2 yields

IEvI> 1 (0)+ ngi(1)) = o
(g ngi(1)) = U KIX]

vz x| | X

as N =1, =p.
Let v = 1y be the characteristic vector of Y. Then n = |Y| — 1, and

2 — 16
< XHEwI (Y= 16
mi|[v]? k

Hence we have (ii). Moreover E;v = 0 if and only if i = D and 6p - (Y| — 1)+ k = 0.
Now the rest of the assertions follow from Definition 9.2. O

Lemma 11.2  Let v be an eigenvector of A in E3V associated with an eigenvalue . Then
n # 0. Let p(t) = py(t) and let & = —by/n. Then 0 = by = k or 8 < 0p. Moreover, the
following hold.

Q) p®;) = |17‘(1 + 16) = % > 0 foreveryi € {0, 1, ..., D).



THE TERWILLIGER ALGEBRA ASSOCIATED WITH A SET OF VERTICES 31

(i) v;(0) # O foreveryi € {0,1,..., D}.
(iii) For€ € {0, 1,..., D}, let g,(t) € R[t] defined by the following.

¢
ke vi(0)
g =Y 2.
= ki ve(0)
Then for every i, j € {0, 1, ..., D} the following hold.
D
v;+1(0)
> 8108 OO IMO)) = 8 jkiciy1 ———.
= 0 - v;(0)
@iv) Foreveryl € {0, 1, ..., D—1}, go(t), g1(t), ..., gp(t) satisfy the following three term

recurrence.

18e(t) = Bo—18e—1(t) + aege(t) + Vey18041(0), (32)
where

oy = be—1c¢11v¢-1(0)ve41(6)

—1 — ’
ce(ve(0))?
ve—1(0) v (0)
= by — .
WO T T v ®
Ye+1 = Cot-

Moreover, if 0 < Op, then (32) holds for £ = D by setting gp1(t) = vpi1(t).

Proof: Sincen = |Y|—1or —1, n # 0. Now (i) follows from Lemma 11.1 (iii).
The proofs of (ii), (iii), and (iv) are very similar to those of Lemma 3.2 and therefore
omitted. See [23, 48] and [5, Section 1.7]. O

Proposition 11.3  Let v be an eigenvector of A in E;V suchthat Av = nv. Letv; = E} A;v
fori €{0,1,..., D+ 1}. Then the following hold.
() Ifn = —1, thenthe module Tv is always thin of dimension D. Fori € {0, 1, ..., D—1},
vi = pi(A)v, where po(t) = 1, p1(t), p2(t), ..., pp(t) is a system of orthogonal
polynomials defined by

tpi(t) = bipi—1(t) + (a; — cip1 +c)pi@) + ci1piv1@®) (0=<i=<D-1),
where p_i(t) = 0. They satisfy p;(A1) = Ay + A} + --- + A;. Moreover, Tv =
Span(vg, vy, ...,vp_1) and

Av; =biv; 1+ (a; — ciy1 +C)Vi + Ciy1Vis1s (33)

fori €e{0,1,...,D—1}andvp = 0.
(i) If n = Y| — 1, dim My is either D or D + 1. Let 6 = —by/n. Fori € {0, 1, ..., D},
let Bi—1, @i, Yit1, and g;(t) be as in Lemma 11.2. Then the following hold.
(@) IfdimMv = D, then® = 6p, |Y| =1—k/0p, and Tv is always thin. Moreover,
fori €{0,1,...,D—1}v; = gi(A)w, Tv = Span(vg, v{,...,Vp_1) and
Av; = Bi1vi1 + Vi + Vig1Vigt
withv_y =vp =0.
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(b) Ifdim My = D + 1, then

kpvp41(0)
[Y|Ilp(Y)| < W

)

with0 = —k/(|Y|—1) and T v is thin if and only if equality holds above. Moreover,
fori €{0,1,...,D}v; = gi(A)yv, Tv = Span(vy, vy, ...,vp) and

Av; = Bis1vici + Vi + Vig1Vit

withv_; = VD41 = 0.

Proof: (i) In this case 6 = by = k. Hence v;(6) = k; for every i. Moreover, g;(¢) in
Lemma 11.2 becomes p;(t) in Lemma 3.1 (ii). Hence the assertions follow from
Lemma 3.1 (ii), Lemma 11.2 (iii), (iv), and Theorem 9.2 together with the fact in
Lemma 11.1 (iii) (ii).

(i) (a) follows similarly.

We need to consider the case when v = 1y with dim My = D + 1. Since D is the
diameter of I, Y C I'p(x) for every x € I'p(Y). Hence

IESApLoll® = 1Y [1p]* = [YPITp(Y)I.

Since
vp+1(0)
1), om =kp—m—,
(80(1), 80} pm = ko =0~
we have the assertion by Theorem 10.1 (ii) and (iii). d

112, w(¥)=2

In this subsection we assume that w(Y) = 2. This is the case when ¥ = I'";(x) for some
vertex x.

Lemma 11.4 Letv € E;V be a nonzero vector such that Eqv = 0. Then

IEv > mitk —0)((1+ 1)) +6;) + by)
iz kby| X|

Proof: Set n® = n(y)and n = nW. Since Egv = 0 and w(¥) = 2,

nPIv? = YA =v(J — A — Ag)v = —(1 + p)v]|*. (34)
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Hence we have n® = —(1 4 1) and by (12) and (13),

qi(0) + ngi(1) + 19¢;(2)

_ 1+ 9,‘ (1+ )Giz—a16i—k
= M T g kb
m;

= 15 (kb1 + b1, —(L+ (67 — a6, — k)
1
- Z’b" (kby + nb16; — 67 + ar6; + k — n6? + ainb; + kn)
1
m;
= 7 ((k = 60)by + (k — 6:)6; + (k — 6) + n(b16; — 6] + ar6; + k))
1
mi(k = 6)((1+n)(1 +6) + by)

kb,

Now the formula follows from Lemma 8.2. O

Lemmall.5 Supposethe induced subgraphon isregular of valency k and sizem = |Y|,
ie., Alg = «lg. Let k =1n > 12 > -+ = 1y, be the eigenvalues of A on E§V. Then the
following hold.

(i) (A) =) 1 =0.
i=1

(i1) tr(Az) = Z nl-z =mn;y.
i=1
(iii) Suppose w(Y) =2 < D, then
b

-1 - .
1+6

>mz 2,z -1 -

1+6p

Proof: (i) and (ii) are well-known.

Let v be an eigenvector of A associated with an eigenvalue n = n; with i > 2. Since 1,
is an eigenvector for k = 7, we may assume that v is orthogonal to 1. Hence Eyv = 0.
By Lemma 11.4, we have

- IEvI> — mitk = 6)((1+ (1 +6) + by)

T kb X|

Hence (1 +n)(1+6;)+b; > 0. Itis well-known that 8; > —1 > 0p. (See for example [24,

Section 13.2] or [31, Lemmas 2.3 and 2.6].) Hence we have

b] bl
znz-l- :
1+6p 1+6

—1-
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Remark We remark that Lemma 11.5 (iii) is essentially proved in [31, 44].

Lemma 11.6 The following hold.
(i) M = Span(Ag, A, A>) = Span(I, Ay, J). M is commutative ifand only if the induced
subgraph on Y is regular.

(ii) Let v be a common eigenvector of M. in E3V such that Av = nv. Then one of the
following hold.

(@) Eov # 0, v is amultiple of 1, and the induced subgraph on Y is regular of valency
n. Moreover, if v satisfies the tight condition, then E;v = E; v = 0 for some
indexi € {1,...,D —1}.

(d) Egv = 0. Moreover, if v satisfies the tight condition, then either E\v = 0 or
EDV =0.

Proof: (i) follows from the well-known fact that the adjacency matrix of a graph commutes
with the all-one’s matrix if and only if the graph is regular.

@ii) Let p(r) = py(t). Then the degree of p(¢) is at most 2 and p(6;) > O for every
h €{0,1,..., D}. Hence if p(6;) = p(0;) = 0 forsomei < j withi, j € {0,1,..., D},
then p(¢) is quadratic and either j =i+ 1 ori = 0and j = D. If p(6p) = 0, then we have
case (b). Now we have the assertions by Theorem 9.2. a

Definition 11.1 For each element z € R \ {—1} set

Let {po(t), p1(¢), ..., pp(t)} be the system of polynomials in Lemma 3.1. Let 8 be a real
number satisfying 8 > 6, or 6 < 6p. For £ € {0, 1, ..., D}, let gy(¢) be the polynomial
defined in Lemma 3.2.

Proposition 11.7  Suppose the induced subgraph on Y is regular of valency k. Let v be
an eigenvector of Ay in E5V such that Av = nv. Assume that Egv = 0. Then the following
hold.

(i) The following hold.
IEv|>  mitk —6:)((1 4+ ) +6;) + by)

0, )m(6;) = =
prEm®) = e kby[X]|
mik — 0,7 — ;)
~1
] e pix Jorn # =1,
mi(k —0; _
W forn— 1

(i) v is tight with respect to Y, i.e., r(v) = D — 2, ifand only if n = 0, or 6p. In this
case Tv is a thin irreducible module of dimension D — 1. Moreover, if we set 0 = 7 to
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define polynomials g;(t)’s, then v; = EfA;v = gi(A)v fori € {0,1,..., D — 1} with
vp—1 = 0. Moreover, fori € {0,1,..., D — 2},

Av; = Bisvici Haivi + Viq1Vis.

Proof: (i) This follows from the equation

I+ +n) = —b.

(i) r(v)+1 =dim My = D — 1 if and only if py(6;) = O for some i € {1,2,..., D}. It
follows from Lemma 11.5 (iii) together with (i) above that it is equivalent to n € {0y, 6p}.
In this case 7 v is thin by Theorem 9.2. Since n # —1, {go(?), g1(?), ..., gp_2(t)} satisfies

Di+1(f)ciy1 kib;
; , . 0 = 81'  ~N/= 1 1\
(&i(0). 8/ = 01—~ e g

by Lemma 3.2 (iv) and (i) above.

Since the leading coefficient of g;(¢) coincides with that of v;(¢), we have the asser-
tions by Lemma 3.2 and Theorem 10.1. The last three term recursion is obtained from
Lemma 3.2 (iii). a

Proposition 11.8 Suppose the induced subgraph on Y is regular of valency k. Let v be
an eigenvector of Ay in E5V such that Av = nv. Assume that Eqv = 0. Let p(t) = py ().
If dim Mv = D, then the following hold.

(i) ©Ww)=1{01,65,...,0p}and i} > 6, orfj < Op.

(i) If n # —1, then the system of polynomials {go(t), g1(t), ..., gp—1(t)} is the system of
orthogonal polynomials associated with the weight function ® = p - m on ®(v) such
that the leading coefficient of g,(t) coincides with that of v,(t) and p,(t). Moreover,
the following hold.

@) (1), gj (D)) = & ; Lttt

(b) ||Ei*A,~v||2 < (gi(1), 8&i(t))o|Iv|I> and the equality holds if and only if Tv is irre-
ducible and thin.

(c) If Tv is an irreducible thin module, thenv; = EfA;jv = g;(A)v fori € {0, 1, ...,
D} withvp = 0. Moreover, fori € {0,1,..., D — 1},

Av; = Bisivici +aivi + Yig1 Vi

(iii) If n = —1, then the system of polynomials {po(t), p1(t), ..., pp—1(t)} is the system
of orthogonal polynomials associated with the weight function v = p - m on ©(v)
such that the leading coefficient of p¢(t) coincides with that of v,(t). Moreover, the
following hold.

@ (pi(0). pj (D)o = 8i 5
(b) ||E;kA,<V||2 < (pi(®), pi(®))ollv||? and the equality holds if and only if Tv is irre-
ducible and thin.
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(c) If Tv is anirreducible thin module, thenv; = E¥A;v = p;(A)v fori € {0, 1, ...,
D} withvp = 0. Moreover, fori € {0,1,..., D — 1},

Avi =bivi_1 +(a;i +¢; — cig)Vi + Cig1Vig1-

Proof: By Proposition 11.7 (i),

mi(k —0;)(7) — 6;)

forn # —1,
_ k(1 +HIX|
oy (0)m(9;) =
m;(k — 6;)
—_ forn = —1.
k|X|

Hence if n # —1, then {go(?), g1(?), ..., gp—1(?)} is a system of orthogonal polynomials

with respect to the weight function w = p - m, and if n = —1, then {po(?), p1(?), ...,
pp—1(t)} is the one which plays the same role. Now the assertions are direct consequences
of Lemma 3.2 and Theorem 10.1. O
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