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Abstract. We introduce an operation that assigns to each binomial poset a partially ordered set for which the
number of saturated chains in any interval is a function of two parameters. We develop a corresponding theory of
generating functions involving noncommutative formal power series modulo the closure of a principal ideal, which
may be faithfully represented by the limit of an infinite sequence of lower triangular matrix representations. The
framework allows us to construct matrices of formal power series whose inverse may be easily calculated using the
relation between the Möbius and zeta functions, and to find a unified model for the Tchebyshev polynomials of the
first kind and for the derivative polynomials used to express the derivatives of the secant function as a polynomial
of the tangent function.
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Introduction

In a recent paper [6] the present author introduced a sequence of Eulerian partially or-
dered sets whose ce-indices provide a noncommutative generalization of the Tchebyshev
polynomials. The partially ordered sets were obtained by looking at intervals in a poset
obtained from the simplest possible infinite lower Eulerian poset represented in figure 1 and
using an operator that could be applied to any partially ordered set. This operator, which
we call the Tchebyshev operator, creates a partial order on the non-singleton intervals of
its input, by setting (x1, y1) ≤ (x2, y2) when either y1 ≤ x2, or x1 = x2 and y1 ≤ y2. The
property of having a rank function is preserved by the Tchebyshev operator. The existence
of a unique minimum element is not preserved, but if we “augment” the poset that has a
unique minimum element 0̂ by adding a new minimum element −̂1, then the Tchebyshev
transform of the augmented poset will have a unique minimum element associated to the
interval (−̂1, 0̂).

In this paper we study the effect of the augmented Tchebyshev operator on binomial
posets. As it is well known, binomial posets provide a framework for studying generating
functions. Those functions of the incidence algebra that depend only on the rank of the
interval, form a subalgebra, and there is a homomorphism from this subalgebra into the ring
of formal power series in one variable. Combinatorial enumeration problems stated in terms
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Figure 1. The “ladder” poset.

of binomial posets may be solved using generating functions and, conversely, identities of
formal power series may be explained by exposing the combinatorial background.

The augmented Tchebyshev transform of a binomial poset is never binomial (this is
shown in Section 4) but, as far as the enumeration of saturated chains is concerned, each
interval may be characterized by a pair of integers. This description, together with the
generalizations of the factorial functions and of the binomial coefficients, are presented in
Sections 2 and 3. Hence it is a natural generalization of the theory of binomial posets to
consider those functions in the incidence algebra of their augmented Tchebyshev transform
which are constant on intervals of the same type. In Section 4 we define a ring of generating
functions (called the Tchebyshev algebra) that is isomorphic to the subalgebra of these
functions. In Section 5 we show that our ring of generating functions is isomorphic to the
ring of noncommutative formal power series in x and y, modulo the closure of the ideal
generated by yx − x2. The resulting ring is more complex than the ring of formal power
series in one variable, and there are infinitely many ways to represent it as a ring of d × d
matrices whose entries are formal power series in one variable. We construct a series of
d × d matrix representations, each representation being a lift of the previous one, such that
the “limit representation” of infinite lower triangular matrices is a faithful representation.

Using our matrix representations, any relation that holds for functions that are constant on
intervals of the same type may be translated into a relation between matrices of formal power
series. In Sections 6 and 7 we describe a few translations of the fact that the zeta function is
the multiplicative inverse of the Möbius function, and obtain formulas for inverting some
nontrivial matrices of formal power series. Since the augmented Tchebyshev transform of
a lower Eulerian poset is lower Eulerian, in the case of lower Eulerian binomial posets we
obtain a particularly elegant rule: to invert the matrix associated to the zeta function, one
needs to substitute (−t) into the variable t in each entry of the matrix.

Describing all matrix representations of the Tchebyshev algebra is beyond the scope of
this paper. In Section 8 we describe at least all “one-dimensional representations”, that is
all homomorphisms from the Tchebyshev algebra into a ring of formal power series K [[t]]
in one variable. It turns out that, modulo the endomorphisms of K [[t]], there are only two
essentially different homomorphisms. One of them may be extended to a homomorphism
from the incidence algebra of the augmented Tchebyshev transform of an arbitrary poset
into the incidence algebra of the same poset, the other seems to extend only to the level of
standard algebras.
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Finally, in Section 9 we show that the augmented Tchebyshev transform may be used
to generalize the notion of Tchebyshev polynomials and establish links to combinatorially
interesting polynomial sequences. The same operation that associates to the “ladder” poset
in figure 1 the Tchebyshev polynomials of the first kind, associates to the poset of finite
subsets of an infinite set the derivative polynomials used to express the derivatives of the
secant function as a polynomial of the tangent function. These polynomials may be used to
express several combinatorially important integer sequences, as it is described in Hoffman’s
paper [9].

The results of this paper mark only the tip of an iceberg which is yet to be explored.
There are many more results on functions that depend on the rank of an interval only
in the incidence algebra of a binomial poset, than just the relation between the Möbius
function and the zeta function. Some examples of such relations are given in section 3.15
of Stanley’s book [15]. Analogous formulas for the augmented Tchebyshev transform will
yield formulas for matrices of formal power series. Moreover, since we had a lot of freedom
in choosing the matrices representing our variables x and y, other matrix representations
of the Tchebyshev algebra are yet to be discovered, which may yield even more results.

Finally, one may want to ask whether there are other operators, analogous to the Tcheby-
shev operator, which would yield similar results in rings derived from the ring of formal
power series.

1. Preliminaries

1.1. Binomial posets

A partially ordered set P is locally finite if every interval [x, y] ⊆ P contains a finite number
of elements. An element y ∈ P covers x ∈ P if y > x and there is no element between x
and y. We will use the notation y � x . A function ρ : P → Z is a rank function for P if
ρ(y) = ρ(x) + 1 is satisfied whenever y covers x . A partially ordered set may have more
than one rank function, but the restriction of any rank function to any interval [x, y] ⊆ P
is unique up to a constant shift. Therefore the rank ρ(x, y) of an interval [x, y], defined
by ρ(x, y) = ρ(y) − ρ(x), is the same number for any rank function, and it is equal to the
common length of all maximal chains connecting x and y. We say that a finite partially
ordered set is graded when it has a unique minimum element, a unique maximum element,
and a rank function ρ. A locally finite partially ordered set P is binomial, if it has a unique
minimum element 0̂, contains an infinite chain, every interval [x, y] ⊆ P is graded, and the
number B(n) of saturated chains from x to y depends only on n = ρ(x, y). The function
B(n) is called the factorial function of P .

Binomial posets are a natural tool to generalize the notion of exponential generating
functions. Given any locally finite poset P , the incidence algebra I (P, K ) of P over a field
K consists of all functions f : Int(P) → K mapping the set of intervals of P into K ,
together with pointwise addition and the multiplication rule

( f · g)([x, y]) =
∑

x≤z≤y

f ([x, z])g([z, y]).
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This multiplication is often called convolution. Those functions of the incidence algebra
which depend only on the rank of the interval form a subalgebra R(P, K ). For its elements
f ∈ R(P, K ) we may write (by abuse of notation) f (n) instead of f ([x, y]) where [x, y] ⊆
P is any interval of rank n. Then we have the following multiplication rule

( f · g)(n) =
n∑

k=0

[n

k

]

f (k)g(n − k),

where [ n
k ] is the “binomial coefficient” B(n)

B(k)B(n−k) . As a consequence of this formula, it is
easy to show that associating to each f ∈ R(P, K ) the formal power series

φ( f ) =
∞∑

n=0

f (n)

B(n)
xn ∈ K [[x]]

yields an algebra homomorphism from R(P, K ) into K [[x]]. The details of this theory are
well explained in Stanley’s book [15, Section 3.15]. Generalizations were developed by
Ehrenborg and Readdy in [3], and by Reiner in [13].

1.2. Möbius function and Eulerian posets

The zeta function ζ ∈ I (P, K ) is the function whose value is 1 on every interval of
P . The Möbius function µ is the multiplicative inverse of the zeta function. In other
words, the value of the Möbius function may be recursively defined, by µ([x, x]) = 1
and

∑

x≤z≤y µ([x, z]) = 0 for all intervals [x, y] satisfying x < y. A graded partially
ordered set is Eulerian if every interval [x, y] in it satisfies µ([x, y]) = (−1)ρ(x,y).

Following [17] we call a partially ordered set P lower Eulerian if it has a unique minimum
element 0̂ and for every u ∈ P the interval [0̂, u] is Eulerian.

If a partially ordered set is binomial, then the zeta function and the Möbius function both
belong to R(P, K ). If the partially ordered set is also lower Eulerian, then the homomor-
phism φ : R(P, K ) → K [[x]] introduced in Section 1.1 provides evidence that the formal
power series

∑

n≥0 xn/B(n) and
∑

n≥0(−1)n xn/B(n) are multiplicative inverses of each
other.

1.3. General Tchebyshev posets

In [6] we define the (general) Tchebyshev poset T (Q) associated to an arbitrary locally
finite poset Q as follows. Its elements are all ordered pairs (x, y) ∈ Q × Q satisfying
x < y, and we set (x1, y1) ≤ (x2, y2) when y1 ≤ x2, or x1 = x2 and y1 ≤ y2.

It is natural to think of the elements of T (Q) as the non-singleton intervals [x, y] of Q.
We consider an interval larger than the other if either every element of the larger interval
is larger than every element of the smaller interval or the smaller interval is an “initial
segment” of the larger interval.
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Although most of the paper [6] focuses on the intervals of T (Q) for a specific Q, the
following statements were shown for arbitrary locally finite posets (see Propositions 2.2,
2.3, 1.4, Lemma 1.5, and Proposition 1.6 in [6]):

Proposition 1.1 T (Q) is a partially ordered set.

Proposition 1.2 If ρ : Q → Z is a rank function for Q then setting ρ(x, y) = ρ(y)
provides a rank function for T (Q). In fact, the set of elements covering (x, y) ∈ T (Q) is

{(x, ẏ) : y ≺ ẏ} ∪ {(y, ẏ) : y ≺ ẏ}.

(Here ẏ denotes an arbitrary element covering y in Q.)

Proposition 1.3 Assume that every element of Q is comparable to at least one other
element of Q. Then T (Q) has a unique minimum element if and only if Q has a unique
minimum element x0 covered by a unique atom y0. In that case the unique minimum element
of T (Q) is (x0, y0).

Lemma 1.4 Given x1 < y1 ≤ y2 ∈ Q, the interval [(x1, y1), (x1, y2)] ⊆ T (Q) is
isomorphic to [y1, y2] ⊆ Q.

Proposition 1.5 Assume that every element of Q is comparable to some other element
and that T (Q) has a unique minimum element (x0, y0). Then every interval of T (Q) is an
Eulerian poset if and only the same holds for every interval of Q \ {x0}.

Proposition 1.3 suggests considering the following modified version of the operation T
when it is applied to a poset that has a unique minimum element.

Definition 1.6 Assume Q is a locally finite poset with a unique minimum element 0̂. We
define the augmented Tchebyshev transform Ť (Q) of Q as T (Q ∪ {−̂1}), where −̂1 is a
new minimum element, covered only by 0̂.

As a consequence of Proposition 1.3, the element (−̂1, 0̂) ∈ Ť (Q) is the unique mini-
mum element of Ť (Q). In this paper we will also need the following statement, related to
Lemma 1.4.

Lemma 1.7 Given y1 ≤ x2 < y2 ∈ Q, and any pair of elements x1, x ′
1 ∈ Q satisfying

x1, x ′
1 < y1, the intervals [(x1, y1), (x2, y2)] and [(x ′

1, y1), (x2, y2)] (in T (Q) or Ť (Q)) are
isomorphic.

Proof: Let us describe first the elements (x, y) of [(x1, y1), (x2, y2)]. We may distinguish
three disjoint cases, depending on whether x = x1, x = x2 or x �∈ {x1, x2}. (The elements
x1 and x2 are different, since x1 < y1 ≤ x2.) If x = x1 then (x1, y1) ≤ (x, y) is equivalent
to y1 ≤ y, while (x, y) ≤ (x2, y2) is equivalent to y ≤ x2. If x = x2 then (x1, y1) ≤ (x, y)
is automatically satisfied, while (x, y) ≤ (x2, y2) is equivalent to y ≤ y2. Finally if x is
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different from x1 and x2 then (x1, y1) ≤ (x, y) ≤ (x2, y2) is equivalent to y1 ≤ x < y ≤ x2.
To summarize, we obtain a disjoint union description

[(x1, y1), (x2, y2)] = {(x1, y) : y1 ≤ y ≤ x2} 
 {(x2, y) : x2 < y ≤ y2}

 {(x, y) : y1 ≤ x < y ≤ x2}. (1)

A similar formula may be written for [(x ′
1, y1), (x2, y2)]. It may be observed immediately

that removing the elements of the form (x1, y) from [(x1, y1), (x2, y2)] yields the same
set as removing the elements of the form (x ′

1, y) from [(x ′
1, y1), (x2, y2)]. Thus the map

κ : [(x1, y1), (x2, y2)] → [(x ′
1, y1), (x2, y2)] given by

κ(x, y) =
{

(x, y) if x > x1

(x ′
1, y) if x = x1

is a bijection. We only need to verify that it is also order-preserving. For that purpose let
us compare each element of the form (x1, y) with the other elements in [(x1, y1), (x2, y2)].
Given another element (x1, y′) of the same form, we have (x1, y) ≤ (x1, y′) if and only
if y ≤ y′. The actual value of x1 is irrelevant for the purposes of this comparison. Since
any element (x1, y) ∈ [(x1, y1), (x2, y2)] satisfies y ≤ x2, it is automatically less than any
element of the form (x2, y′) in [(x1, y1), (x2, y2)]. Given finally an element of the form
(x1, y) and an element of the form (x, y) where x1 < x �= x2, only (x1, y) ≤ (x, y′) is
possible, if they are comparable at all, and the inequality holds if and only if y ≤ x . This
comparison is again independent of the actual value of x1. Therefore κ is indeed order
preserving, since replacing x1 with x ′

1 does not change any of the comparisons we need to
make. �

The original motivation behind the notion of the Tchebyshev transform in [6] was to
introduce a sequence of Eulerian posets whose order complex encodes the Tchebyshev
polynomials of the first kind.

Definition 1.8 Given any partially ordered set P , the order complex �(P) of P is the
simplicial complex whose vertices are the elements of P and whose chains are the faces of
P .

As noted at the end of Section 9 of [6], we have the following description of Tchebyshev
polynomials.

Proposition 1.9 The Tchebyshev polynomial Tn(x) of the first kind satisfies

Tn(x) =
n∑

j=0

f j−1(�(((−̂1, 0̂), (−n, −(n + 1))))) ·
(

x − 1

2

) j

where ((−̂1, 0̂), (−n, −(n+1))) is an open interval in the augmented Tchebyshev transform
of the partially ordered set shown in figure 1.
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As usual, f j−1(�) denotes the number of j-dimensional faces of a simplicial complex (which
is also the number of j-element chains for an order complex). It was shown in [6, Theorem
4.1] that �(((−̂1, 0̂), (−n, −(n+1)))) triangulates the boundary of the n-dimensional cross-
polytope. This result may be generalized to intervals in an arbitrary Tchebyshev transform.
To state the generalization, recall that the suspension �(�) of a simplicial complex is
obtained by adjoining two new vertices, say s1 and s2, and adding the family {{s1} ∪
σ, {s2} ∪ σ : σ ∈ �} to the set of faces. Moreover, given two simplicial complexes �1

and �2 with disjoint vertex sets, the join �1 ∗ �2 is defined as the simplicial complex
�1 ∗ �2 = {σ1 ∪ σ2 : σ1 ∈ �1, σ2 ∈ �2}.

Theorem 1.10 Let Q be a locally finite poset and consider an open interval ((x1, y1),
(x2, y2)) ⊂ Ť (Q).

(i) If x1 = x2 then �(((x1, y1), (x2, y2))) is isomorphic to �((y1, y2)) ⊂ �(Q).

(ii) If x1 �= x2 (and so y1 ≤ x2) then �(((x1, y1), (x2, y2))) is isomorphic to a triangulation
of �(�((y1, x2)) ∗ �((x2, y2))), where (y1, x2) and (x2, y2) are open intervals in Q.

Theorem 1.10 will only be used as a “source of inspiration” in this paper, its proof is
outlined in the Appendix. Its significance in an algebraic setting is due to the fact that the
Möbius function of an interval [x, y] is the reduced Euler characteristic of �([x, y]). (see
[15, Proposition 3.8.6].) Hence Proposition 1.3 is a consequence of Theorem 1.10 and, more
generally, we can expect the Möbius function to “behave nicely” on the intervals of some
Ť (Q) if it “behaves nicely” on the intervals of Q.

1.4. Noncommutative formal power series

Given an alphabet X of variables, the set of finite words with letters from X (or, in other
words, the free monoid generated by X ) is usually denoted by X∗. Given a field K , a formal
power series on X is a formal linear combination f = ∑

w∈X∗ aww where all aw’s belong
to K . Given a second formal power series g = ∑

w∈X∗ bww, the sum of the two formal
power series is defined by f + g = ∑

w∈X∗ (aw + bw)w, while their product is defined as
f · g = ∑

w∈X∗ (
∑

uv=w aubv)w. The ring of formal power series on the alphabet X with
coefficient field K is denoted by K 〈〈X〉〉. Some information on noncommutative formal
power series may be found in [16, Section 6.5].

For the purposes of our paper the following “typically noncommutative” phenomenon
needs to be noted. For noncommutative formal power series there is often a distinct differ-
ence between factoring by an ideal generated by a single element, and the way someone
used to commutative formal power series would tend to think “modulo the ideal”. If, for
example, one takes the ring K [[x, y]] of formal power series in two commuting variables,
then factoring by the ideal generated by y is equivalent to removing all terms that contain
a positive power of y, from all expressions. The factor ring is isomorphic to K [[x]]. In the
noncommutative case, however, the formal power series

∑

n≥0 xn yxn does not belong to
the ideal generated by y. This is stated in Lemma 1.2 of the paper [4] by Gerritzen and
Holtkamp. If we want to get a factor ring isomorphic to K 〈〈x〉〉 = K [[x]], we need to factor
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by the ideal

⋂

n≥0

((y) + J n),

where J n is the ideal generated by all monomials of degree n. In general, given an ideal I
of K 〈〈X〉〉, the closure of I is the ideal

cl(I ) =
⋂

n≥0

(I + J n).

The reason for this terminology is the following. Consider the noncommutative polynomial
ring K 〈X〉. Let us denote (by abuse of notation) also by J the ideal generated by X in K 〈X〉.
Given any p ∈ K 〈X〉, the family of sets {p + J n : n ∈ N} serves as the neighborhood basis
in the J -adic topology on K 〈X〉. The noncommutative power series ring K 〈〈X〉〉 is then
the completion of K 〈X〉 with respect to this topology. (see e.g. [4, Section 1].) According
to [4, Lemma 1.1] an ideal I of K 〈〈X〉〉 is closed in the J -adic topology if and only if

I =
⋂

n≥0

(I + J n).

The quotient by the closure of an ideal often corresponds better to the kind of quotient ring
we grew used to in the commutative case.

2. The augmented Tchebyshev transform of a binomial poset

Since any binomial poset Q is assumed to have a unique minimum element 0̂, it makes sense
to consider its augmented Tchebyshev transform, which has a unique minimum element
(−̂1, 0̂). Moreover, if any locally finite poset Q has a rank function satisfying ρ(0̂) = 0,
then we may extend it to Q ∪ {−̂1} by setting ρ(−̂1) = −1, and so by Proposition 1.3
we obtain that Ť (Q) has a rank function given by ρ(x, y) = ρ(y). Note that for this rank
function the rank of the minimum element (−̂1, 0̂) ∈ Ť (Q) is zero.

Unfortunately, the augmented Tchebyshev transform of a binomial poset is not binomial
even in the case of the simplest possible example. If Q is a binomial poset then, by what
was said above, Ť (Q) satisfies all criteria of a binomial poset, except for the one requiring
that the number of saturated chains of an interval has to depend on the rank of the interval
only.

Example 2.1 Consider the binomial poset N consisting of all natural numbers and the
usual linear order 0 < 1 < 2 < . . . on them. This is a binomial poset, with the “simplest
possible” factorial function given by B(n) = 1 for all n ≥ 0. All elements below (3, 4) of
the augmented Tchebyshev transform Ť (N) are represented in figure 2.

The intervals [(−1, 0), (1, 3)] and [(−1, 0), (2, 3)] both have rank 3, but the number of
saturated chains in the first interval is 2, while in the second it is 4.
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Figure 2. The interval [(−1, 0), (3, 4)] in Ť (N).

We should not be discouraged by this example, because we only need to refine the picture
a little bit to arrive at a situation reminiscent of the one of binomial posets.

Definition 2.2 Let Q be a locally finite partially ordered set that has a minimum element
0̂ and a rank function ρ. Assume ρ(0̂) = 0 and extend the rank function to Q ∪ {−̂1} by
setting ρ(−̂1) = −1. We call the ordered pair (ρ(x), ρ(y)) associated to (x, y) ∈ Ť (Q) the
type of (x, y) ∈ Ť (Q).

As we will see in a moment, the number of saturated chains in an interval [(u, v), (x, y)] ⊂
Ť (Q) depends only on the type of its endpoints.

Lemma 2.3 Assume that (u, v) < (x, y) in Ť (Q), where Q is any locally finite poset
having a minimum element 0̂ and a rank function ρ.

1. If u < x (and so v ≤ x) then every saturated chain of [(u, v), (x, y)] ⊂ Ť (Q) may be
uniquely described by a pair of the following two objects:

(i) a saturated chain v = y0 ≺ y1 ≺ · · · ≺ yρ(y)−ρ(v) = y of [v, y] ⊆ Q satisfying
yρ(x)−ρ(v) = x, and

(ii) A word w1w2 . . . wρ(y)−ρ(v) formed of the letters R and L such that wρ(x)−ρ(v)+1 = L
and all subsequent letters are R’s.

2. If u = x then the saturated chains of [(u, v), (u, y)] ⊂ Ť (Q) are in bijection with the
saturated chains of [v, y] ⊆ Q.
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Proof: This lemma is an almost straightforward consequence of Proposition 1.2. Assume
(u, v) < (x, y) and u < x first. Consider an arbitrary saturated chain

(u, v) = (x0, y0) ≺ (x1, y1) ≺ · · · ≺ (
xρ(y)−ρ(v), yρ(y)−ρ(v)

) = (x, y)

in [(u, v), (x, y)]. By Proposition 1.2, the element (xi+1, yi+1) covers (xi , yi ) exactly when
yi+1 covers yi , and xi+1 is either xi or yi . Thus the sequence v = y0 ≺ y1 ≺ · · · ≺
yρ(y)−ρ(v) = y must be a saturated chain in [v, y] ⊆ Q. Once such a saturated chain is fixed,
we have at most two choices when we move from (xi , yi ) to (xi+1, yi+1): either we “remove
the left element xi ” and write yi+1 after yi (yielding (xi+1, yi+1) = (yi , yi+1)), or we “remove
the right element yi ” and replace that with yi+1 (yielding (xi+1, yi+1) = (xi , yi+1)). Let us
record the first choice by a letter L and the second choice by a letter R.1 For example, the
saturated chain 0 ≺ 1 ≺ 2 ≺ 3 ≺ 4 in [0, 4] ⊂ N and the word L R RL yields the saturated
chain

(−1, 0) ≺ (0, 1) ≺ (0, 2) ≺ (0, 3) ≺ (3, 4)

for the interval represented in figure 2. No matter which letter we choose, the rank of the
second coordinate (which is also the rank of the element in Ť (Q)) always increases by one.
The effect of the letters L and R on the rank of the first coordinate is completely different.
Writing R keeps the rank of the first coordinate unchanged, while writing L increases the
rank of the first coordinate to the rank of the second coordinate of the input. Hence, once the
rank of the first coordinate reaches ρ(x), we may use only R’s, keeping the first coordinate
unchanged. Thus we are only allowed to use R’s once x is introduced as a first coordinate
for the first time. This first introduction of x as a first coordinate can be only achieved by
choosing the L-option which makes the second coordinate of the previous (xi , yi ) equal to x .
The only yi that has the same rank as x is yρ(x)−ρ(v). Therefore we must have yρ(x)−ρ(v) = x ,
wρ(x)−ρ(v)+1 = L and all subsequent letters must be R’s. Conversely, any saturated chain
of [v, y] and any L R word satisfying conditions (i) and (ii) yields a saturated chain

(u, v) = (x0, y0) ≺ (x1, y1) ≺ · · · ≺ (
xρ(y)−ρ(v), yρ(y)−ρ(v)

)

for which the first coordinates stabilize at xρ(x)−ρ(v)+1 = xρ(x)−ρ(v)+2 = · · · = x and the
second coordinates halt at yρ(y)−ρ(v) = y.

The proof for the case when u = x is similar but easier. Here x is already introduced as
the first coordinate at the beginning of the saturated chain, so only the option represented by
the letter R may be used all along. Therefore the saturated chains of [(u, v), (u, y)] ⊂ Ť (Q)
are in bijection of with the saturated chains of [v, y] ⊆ Q. �

Corollary 2.4 Let Q be a binomial poset with factorial function B(n) and assume (u, v) ≤
(x, y) in Ť (Q). If the type of (u, v) is (i, j) and the type of (x, y) is (k, l) then the number of
saturated chains in [(u, v), (x, y)] is 2k− j B(k − j)B(l − k) if i < k, and B(l − j) if i = k.

In fact, i = k is only possible if u = x and in that case B(l − j) is the number of saturated
chains in [v, y]. If i < k then we are in the case u < x , the product B(k − j)B(l − k) is the
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number of pairs of saturated chains, one in [v, x], one in [x, y], while 2k− j is the number
of admissible L R-words.

It is worth noting that in the case when k ≥ j the number of saturated chains from an
element of type (i, j) to an element (k, l) is the same as the number of saturated chains from
(−̂1, 0̂) (= the only element of type (−1, 0)) to an element of type (k − j, l − j). The only
obstacle to automatically extending this observation to the case k = i is that in that case we
might have k − j < −1 and no element of Q ∪ {−̂1} has such a low rank. This motivates
the following definition.

Definition 2.5 We define the type of an interval [(u, v), (x, y)] ⊂ Ť (Q) to be

(max(ρ(x) − ρ(v), −1), ρ(y) − ρ(v)).

In analogy to binomial posets we define a factorial function on the types of intervals. Our
factorial function will differ from the actual number of saturated chains for most types by
a factor of a power of 2. The reason of this choice will be clear in Section 3 where we use
our factorial function to express generalized binomial coefficients.

Definition 2.6 Let Q be a binomial poset and B its factorial function. For any pair of
integers (k, l) satisfying k < l and l ≥ 0 we define the factorial B(k, l) associated to Ť (Q)
by the following formula.

B(k, l) =
{

B(k)B(l − k) if k ≥ 0,

B(l) if k < 0.

Remark 2.7 If (k, l) is the type of an interval, then we require k ≥ −1, while B(k, l) is
defined for all negative values of k, although it always yields the same number as B(−1, l).
When we perform calculations with these coefficients, it will be more convenient to allow
all values of k, while the number of saturated chains in an interval [(u, v), (x, y)] ⊂ Ť (Q)
satisfying ρ(x) − ρ(v) < 0 (and thus x = u) does not depend on the actual value of
ρ(x) − ρ(v). Alternatively one could define the type of an interval [(u, v), (x, y)] ⊂ Ť (Q)
to be (ρ(x) − ρ(v), ρ(y) − ρ(v)) and then declare that “all types (k, l) with a fixed positive
l and an arbitrary negative k are the same”. This convention is also useful to state the
following straightforward observation more easily: if [(u, v), (x, y)] has type (k, l) and
(r, s) ∈ [(u, v), (x, y)] is such that the type of [(u, v), (r, s)] is (m, n) then the type of
[(r, s), (x, y)] is (k − n, l − n). Without the informal convention one would need to say that
the type of [(r, s), (x, y)] is (max(−1, k − n), l − n).

Using Definitions 2.5 and 2.6 we may restate Corollary 2.4 as follows.

Proposition 2.8 The number of saturated chains of an interval of type (k, l) in Ť (Q) is
2max(0,k) B(k, l).
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3. Generalizing binomial coefficients

As seen in the previous section, in the augmented Tchebyshev transform of a binomial
poset, the number of saturated chains in an interval depends not only on the rank, but also
on the type of the interval. Hence, rather than counting all elements of a given rank in an
interval, it seems to make more sense to count all elements of a given type. Let us introduce
( (i, j),(k,l)

(m,n) ) for the number of elements of type (m, n) in an interval whose minimum element
has type (i, j) and maximum element has type (k, l). Our main result is the following:

Proposition 3.1 Let Q be a binomial poset. Then the binomial coefficients associated to
Ť (Q) satisfy the formula

(
(i, j), (k, l)

(m, n)

)

= B(k − j, l − j)

B(m − j, n − j)B(k − n, l − n)
.

In particular, the number of elements (r, s) of a fixed type in an interval [(u, v), (x, y)]
depends only on the type of the intervals [(u, v), (x, y)] and [(u, v), (r, s)].

Proof: Assume we are given an interval [(u, v), (x, y)] ⊆ Ť (Q) such that (u, v) is of type
(i, j) and (x, y) is of type (k, l). We want to count the number of elements (r, s) of type
(m, n). By the definition of the Tchebyshev order, (u, v) ≤ (r, s) implies that either u = r
or v ≤ r must hold. At the level of the types we must either have i = m or j ≤ m. Similarly,
from (r, s) ≤ (x, y) we have either m = k or n ≤ k, and from (u, v) ≤ (x, y) we have either
i ≤ k or else i < k and j ≤ k.

Case 1: i = k. In this case m = i = k and also u = r = x must hold. By the second
case of Lemma 2.3, the saturated chains in [(u, v), (x, y)] are then in bijection with
the saturated chains of [v, y]. A saturated chain of [(u, v), (x, y)] contains (r, s) if and
only if the corresponding saturating chain of [v, y] contains s. Hence we are reduced to
count the number of elements of given rank in a binomial poset. Using the well known
formula from Stanley’s book [15, Section 3.15, Eq. (47)], we obtain

(
(i, j), (i, l)

(i, n)

)

= B(l − j)

B(n − j)B(l − n)
. (2)

Case 2: i < k (and so j ≤ k). Now we are in the first case of Lemma 2.3. As seen there,
every saturated chain of [(u, v), (x, y)] may be described by a saturated chain

v = y0 ≺ y1 ≺ · · · ≺ yl− j = y

of [v, y] satisfying yk− j = x , and an L R-word w1w2 . . . wl− j such that wk− j+1 = L
and all subsequent letters are R’s.
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Assume first j ≤ m < n ≤ k, the other subcases being similar but easier. To decide
whether the saturated chain of [(u, v), (x, y)] contains any element of type (m, n), one only
needs to know the associated L R word. In fact, some element of rank m is introduced
as a first coordinate if and only if wm− j+1 = L . This element is still the first coordinate
when the second element reaches rank n if and only if wm− j+1 is followed by n − m − 1
R’s. As a consequence, every element of type (m, n) is contained in the same number of
saturated chains of [(u, v), (x, y)] (associated to the same set of L R-words). The number of
elements of type (m, n) equals the total number of saturated chains containing some element
of type (m, n) divided by the number of saturated chains containing a fixed element of type
(m, n). (This part of our reasoning is analogous to the classical case.) When we perform
this division, the number of admissible L R-words cancels, and we are left with dividing
the total number of saturated chains

v = y0 ≺ y1 ≺ · · · ≺ yl− j = y

satisfying yk− j = x with the number of similar saturated chains also satisfying ym− j = r
and yn− j = s, where (r, s) ∈ Ť (Q) is an arbitrary but fixed element of type (m, n). Therefore
we have

(
(i, j), (k, l)

(m, n)

)

= B(k − j)����B(l − k)

B(m − j)B(n − m)B(k − n)����B(l − k)

= B(k − j)

B(m − j)B(n − m)B(k − n)
. (3)

The remaining subcases are m = i and m = k. Similarly to the previous subcase, the
number of admissible L R words cancels when we divide the total number of saturated
chains containing some element of the prescribed type with the number of saturated chains
containing an arbitrary but fixed element of the prescribed type. In the subcase when m = i
(and so m = i < j ≤ n ≤ k < l), we have to divide the number of saturated chains

v = y0 ≺ y1 ≺ · · · ≺ yl− j = y

satisfying yk− j = x with the number of similar saturated chains also satisfying yn− j = s
where s ∈ Q is an arbitrary but fixed element of rank n. Therefore we have

(
(i, j), (k, l)

(i, n)

)

= B(k − j)����B(l − k)

B(n − j)B(k − n)����B(l − k)
= B(k − j)

B(n − j)B(k − n)
. (4)

Finally, when m = k (and so i < j ≤ k = m < n ≤ l) the same division as in the previous
subcase yields

(
(i, j), (k, l)

(k, n)

)

== ����B(k − j)B(l − k)

����B(k − j)B(n − k)B(l − n)
= B(l − k)

B(n − k)B(l − n)
. (5)
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The four equations we obtained for ( (i, j),(k,l)
(m,n) ) depending on the relation between m and the

other entries, look rather different. Ironically this is due to writing our binomial coefficient
in simplest form in terms of the factorial function of Q. If we use the factorial function
introduced in Definition 2.6, the formula stated in the Proposition follows from Eqs. (2),
(3), (4), and (5) by straightforward substitution. �

Corollary 3.2 Assume that [(u, v), (x, y)] ⊂ Ť (Q) has type (k, l). Then the number of
those elements (r, s) ∈ [(u, v), (x, y)] for which the type of [(u, v), (r, s)] is (m, n) is

(
(−1, 0), (k, l)

(m, n)

)

= B(k, l)

B(m, n)B(k − n, l − n)
.

This corollary is an immediate consequence of Proposition 3.1 and Remark 2.7.

4. Generating functions

In analogy with the theory built for binomial posets, consider the following subalgebra of
the incidence algebra of Ť (Q)

Definition 4.1 Given a binomial poset Q and a field K , we say that a function f ∈
I (Ť (Q), K ) is a function of types if it assigns the same value to all intervals of the same
type. We denote the subalgebra of the functions of types by R(Ť (Q), K ).

Remark 4.2 Our notation looks similar to the one introduced in Stanley’s book [15,
Section 3.15] for binomial posets and a different set of functions. However, this will not
lead to confusion, since for any locally finite poset Q with a unique minimum element 0̂, its
augmented Tchebyshev transform Ť (Q) is never binomial. Assume the contrary. Applying
Lemma 1.4 to all intervals of the form [(−̂1, x), (−̂1, y)] ⊆ Ť (Q) we may easily convince
ourselves that Q must be binomial. Using the rank function of Q we may define the types
of the intervals in Ť (Q), and observe that all intervals of type (k, l) with a fixed l must
have the same number of saturated chains. In particular, we must have that the number of
saturated chains is the same in an interval of type (1, 3) and in an interval of type (2, 3).
By Proposition 2 this is equivalent to 2B(1)B(2) = 4B(2)B(1), which can never happen,
considering that B(1) and B(2) must be positive.

By abuse of notation, for a function of types f ∈ R(Ť (Q), K ) we will denote its value
on an arbitrary interval of type (k, l) by f (k, l). Furthermore, for the sake of notational
convenience we extend the definition of f (k, l) to all negative integers k by setting f (k, l) =
f (−1, l) for all k < 0. Using this notational convenience, and keeping in mind Remark 2.7,
we may write the following “convolution formula”:

( f · g)(k, l) =
∑

(−1,0)≤(m,n)≤(k,l)

(
(−1, 0), (k, l)

(m, n)

)

f (m, n) · g(k − n, l − n)
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Observe that the partial order below the summation sign is exactly the partial order of Ť (N)
introduced in Example 2.1. According to Corollary 3.2 this equation may be rewritten as

( f · g)(k, l) =
∑

(−1,0)≤(m,n)≤(k,l)

B(k, l)

B(m, n)B(k − n, l − n)
f (m, n) · g(k − n, l − n)

or, equivalently

( f · g)(k, l)

B(k, l)
=

∑

(−1,0)≤(m,n)≤(k,l)

f (m, n)

B(m, n)
· g(k − n, l − n)

B(k − n, l − n)
. (6)

In analogy to the case of binomial posets, the existence of these convolution rules demon-
strates the fact that R(Ť (Q), K ) is indeed a subalgebra of I (Ť (Q), K ). Rule (6) suggests
considering generating functions of the form

φ( f ) =
∑

−1≤k<l<∞

f (k, l)

B(k, l)
· x(k, l)

where the multiplication rules for the “monomials” x(k, l) have to be deciphered from
equation (6).

Definition 4.3 Given a field K we define the Tchebyshev algebra T (K ) of K as the algebra
of infinite formal sums

∑

−1≤k<l<∞
ak,l · x(k, l)

where all coefficients ak,l belong to K , and the terms x(k, l) obey the multiplication rule

x(i1, i2) · x( j1, j2) =
{

x(i2 + j1, i2 + j2) if j1 ≥ 0

x(i1, i2 + j2) if j1 < 0

Before going any further let us observe that by setting deg(x(k, l)) = l we may define
a “degree function” on the terms, and there are only finitely many values of k satisfying
−1 ≤ k < l for a fixed value of l. Hence the multiplication rule given in the definition
induces a valid multiplication rule for products of infinite sums, since there will be only
finitely many terms contributing to the coefficient of any given x(k, l) in the product. In
particular, we have the following.

Proposition 4.4 Let f = ∑

−1≤k<l ak,l x(k, l) and g = ∑

−1≤k<l bk,l x(k, l) be two el-
ements of T (K ). Extend the definition of bk,l to all negative k’s by setting bk,l = b−1,l
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whenever k < 0. Then the coefficient of x(k, l) in f · g is

∑

(−1,0)≤(m,n)≤(k,l)

am,n · bk−n,l−n

where the partial order below the summation sign is the partial order of Ť (N).

Proof: Let us fix x(k, l) and x(m, n). First we show that x(m, n) · x(i, j) = x(k, l) holds
for some x(i, j) exactly when (m, n) ≤ (k, l) and that such an x(i, j) is unique.

Let us try setting i = −1 first. Then, by the multiplication rule we have

x(m, n) · x(−1, j) = x(m, n + j).

This is equal to x(k, l) iff. m = k and j = l − n. The requirement j > −1 is equivalent to
n ≤ l.

Consider now the case i ≥ 0. Then, the definition yields

x(m, n) · x(i, j) = x(n + i, n + j).

This is equal to x(k, l) iff. i = k − n and j = l − n. Since i is not negative, we must have
n ≥ k. The requirement j > i is an automatic consequence of l > k.

We obtained that x(m, n) ·x(i, j) = x(k, l) has a solution exactly when either both m = k
and n ≤ l hold, or when k ≥ n. This is exactly the definition of the partial order Ť (N) for
(m, n) and (k, l). In each case we have found a unique solution. In the second case we found
this unique solution to be x(k − n, l − n), in the first case we found x(−1, l − n). In this
first case k − n is negative and we have set bk−n,l−n = b−1,l−n . This observation concludes
the rest of the proof. �

Equation (6) and Proposition 4.4 yield the following theorem.

Theorem 4.5 Given any binomial poset Q, the function φ : R(Ť (Q), K ) → T (K ) defined
by

φ( f ) =
∑

−1≤k<l<∞

f (k, l)

B(k, l)
· x(k, l)

is an algebra-isomorphism.

The proof is analogous to the proof of [15, Theorem 3.15.4]. We conclude this section with
a few observations about the Tchebyshev algebra.

Corollary 4.6 The algebra T (K ) is associative.
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In fact, by Theorem 4.5, T (K ) is isomorphic to a subalgebra of the incidence algebra of a
partially ordered set. It is also easy to verify the associativity directly on the semigroup of
monomials x(k, l), from which general associativity directly follows.

Proposition 4.7 x(−1, 0) is the multiplicative identity of T (K ).

This statement is straightforward. Using this observation we call x(−1, 0) and its coefficient
the constant term of an element of T (K ).

Since the Tchebyshev algebra is obviously not commutative, there is a distinction between
left and right inverses. Fortunately we have the following statement, in analogy to the case
of formal power series.

Proposition 4.8 If f ∈ T (K ) has either a left or a right inverse then its constant term is
nonzero. Conversely, if f ∈ T (K ) has a nonzero constant term, then it has both left and
right inverses (which therefore must be equal).

Proof: If the constant term of f is zero, then its lowest degree terms have positive degree.
Hence the lowest degree terms in any product f · g or g · f will also have positive degrees.
It is thus necessary for f to have a nonzero constant term if it has any one-sided inverse.

To prove the converse, observe first that, by Proposition 4.4, given an f = ∑

(k,l) ak,l

x(k, l) ∈ T (K ) such that a−1,0 �= 0, a right inverse g = ∑

(k,l) bk,l x(k, l) may be found by
setting b−1,0 = 1/a−1,0 and solving

0 =
∑

(−1,0)≤(m,n)≤(k,l)

am,n · bk−n,l−n

for all (k, l) �= (−1, 0). One may show by induction on l, that such a system of bk,l’s exist.
In fact, the only place where bk,l occurs in the above equation is when (m, n) = (−1, 0).
Hence we may write

bk,l = − 1

a−1,0
·

∑

(−1,0)<(m,n)≤(k,l)

am,n · bk−n,l−n

where the second index of each bi, j on the right hand side is strictly less than l, and we
only divide by the nonzero a−1,0. The proof of the existence of a left inverse is similar, only
easier. Both arguments are analogous to showing that the Möbius function is the inverse of
the zeta function and reiterate the fact that an upper triangular matrix is invertible if and
only if its diagonal entries are nonzero. �

5. Structure and representation of the Tchebyshev algebra

Definition 4.3 was designed in a way that made it easy to prove that the Tchebyshev algebra
provides generating functions for the functions on types of intervals in some Ť (Q). This
definition does not reveal, however, much of the structure of T (K ).
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Theorem 5.1 The Tchebyshev algebra T (K ) is isomorphic to the quotient of the non-
commutative formal power series ring K 〈〈x, y〉〉 by the closure of the ideal generated by
yx −x2. This isomorphism may be given by replacing each x(−1, l) with yl and each x(k, l)
(where k ≥ 0) with xk+1 yl−k−1.

Proof: Let us show first that every element of the ring

K 〈〈x, y〉〉
/

⋂

n≥0

((yx − x2) + J n) = K 〈〈x, y〉〉/cl(yx − x2)

may be uniquely written as an infinite linear combination of noncommutative monomials
of the form xi y j , where i, j ≥ 0. Any monomial may be rearranged into the form xi y j

by the use of the rule yx = x2 a finite number of times. There is only a finite number of
noncommutative monomials that are congruent to the same xi y j modulo (yx −x2) since we
factor by a homogeneous ideal, and there are only finitely many noncommutative monomials
of degree i + j . Thus any noncommutative polynomial of x and y is obviously congruent to
a linear combination of xi y j ’s modulo (yx − x2). Moreover, it is easy to see that different
linear combinations of xi y j ’s are incongruent modulo (yx − x2). In fact, every nonzero
element of the ideal (yx − x2) contains at least one monomial with nonzero coefficient in
which a y precedes an x , and so it cannot be the difference of linear combinations of xi y j ’s.

Consider now a noncommutative formal power series f ∈ K 〈〈x, y〉〉 which may consist
of infinitely many nonzero terms. Using the relation yx = x2 to rearrange all monomials
of degree at most n, we may write up a formal power series fn which is congruent to
f modulo (yx − x2), and up to degree n it consists only of terms of the form ai, j x i y j .
Moreover, given m < n, the terms of fm and fn agree up to degree m. Hence there is a
“limit” g which agrees with every fn up to degree n. (As a matter of fact, g is the limit of the
series f1, f2, . . . in the J -adic topology.) In other words, g − fn ∈ (yx − x2) + J n+1, and
so g − f = g − fn + fn − f ∈ (yx − x2) + J n+1 holds for all n. Therefore g is congruent
to f modulo the closure of yx − x2 and it is obviously of the required form.

The uniqueness follows from the fact that for all n, the sum of the terms of g up to degree
n forms a polynomial which is uniquely defined.

Let us denote x(0, 1) by x and x(−1, 1) by y. It is easy to show by induction on n that

xn = x(n − 1, n) and yn = x(−1, n) (7)

hold for all positive n. The formula is also valid for n = 0 since x(−1, 0) is the identity
element of T (K ). Thus we have

yx = x(−1, 1)x(0, 1) = x(1, 2) = x2

and for positive i (and nonnegative j) we also have

xi y j = x(i − 1, i)x(−1, j) = x(i − 1, i + j).

Therefore the unique solution to xi y j = x(k, l) is i = k + 1, and j = l − k − 1.
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We have proved that T (K ) consists of infinite linear combinations of the exact same kind,
with the exact same multiplication and addition rules as the ones holding in the factor of
K 〈〈x, y〉〉 by the closure of (yx − x2). �

The isomorphism φ : R(Ť (Q), K ) → T (K ) depends on the structure of the binomial
poset Q. On the other hand, between K 〈〈x, y〉〉/cl(yx − x2) and T (K ) we will always
consider the same isomorphism: the one that sends x into x(0, 1) into x , and x(−1, 1) into
y. Hence we will identify these two rings in this paper, and use the notations xk+1 yl−k−1

and x(k, l) interchangeably.

Remark 5.2 The ideal generated by yx − x2 in K 〈〈x, y〉〉 is not closed in the J -adic
topology. This may be shown by proving that the noncommutative formal power series

∞∑

k=0

xk(yx − x2)xk

does not belong to (yx − x2). According to Ralf Holtkamp [10], this statement may be
shown in analogy to the proof of Lemma 1.2 in the paper [4] by Gerritzen and Holtkamp.

Remark 5.3 Multiplication by x and y in T (K ) may be easily “visualized” using a picture
of Ť (N), such as the one represented in figure 2. We may identify the monomial x(i, j) with
the element (i, j) ∈ Ť (N) on the picture. Multiplying by y = x(−1, 1) corresponds then to
moving straight up (such moves are indexed with the letter R in the statement of Lemma 2.3),
while multiplying by x = x(0, 1) corresponds to to moving to the rightmost element in the
row right above (these are the moves indexed by L). It is also worth noting that, given
any (i, j) ∈ Ť (N), the upper ideal {(u, v) : (u, v) ≥ (i, j)} is isomorphic to Ť (N), which
“explains” why multiplication in T (K ) is associative. (The proof of this “self-similarity” is
analogous to the proof of [6, Proposition 3.1], and left to the reader.)

Remark 5.4 The study of the Tchebyshev algebra provides not only an analogous theory
to the study of formal power series associated to binomial posets, but it is a generalization
of the classical theory. In fact, the map α : K 〈〈x, y〉〉/cl(yx − x2) → K [[t]] induced
by α(x) = 0 and α(y) = t is an algebra homomorphism, which may be completed to the
following commutative diagram:

R(Ť (Q), K )
∼=→ K 〈〈x, y〉〉/cl(yx − x2)

αR ↓ ↓ α

R(Q, K )
∼=→ K [[t]]

Here αR : R(Ť (Q), K ) → R(Q, K ) is given by αR( f )(l) = f (−1, l). The fact that αR

is a homomorphism may be established using Lemma 1.4. In fact, exactly those intervals
[(x, y), (u, v)] of Ť (Q) have type (−1, l) for some l which satisfy x = u. According to
Lemma 1.4, the interval [(x, y), (x, v)] is isomorphic to the interval [y, v] of Q. The effect
of αR is thus to restrict the domain of f to such intervals of Ť (Q) which are isomorphic
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to intervals of Q. Using this observation we may extend αR to the homomorphism αI :
I (Ť (Q), K ) → I (Q, K ) of incidence algebras, given by

αI ( f )([x, y]) = f ([(−̂1, x), (−̂1, y)]). (8)

Using Lemma 1.4, one may show that αI defined by equation (8) is a homomorphism from
I (Ť (Q), K ) onto I (Q, K ) even if Q is not a binomial poset!

There are many ways to represent the Tchebyshev algebra as a ring of matrices of
(commutative) formal power series in a single variable. In particular, we are about to
show that there is a sequence of homomorphisms �d : T (K ) → K [[t]]d×d such that the
restriction of �d to the to the linear span of monomials of degree at most d − 1 is injective.

Before explicitly defining such a sequence of representations, let us make a few general
observations. Assume that some homomorphism � : T (K ) → K [[t]]d×d sends x into X and
y into Y . Setting X and Y uniquely determines a homomorphism from the (noncommutative)
polynomial ring K 〈x, y〉 into K [[t]]d×d . If our homomorphism is “continuous”, in the sense
that given any sequence of polynomials converging in the J -adic topology, all entries of
their images converge in the (t)-adic topology of K [[t]], then the homomorphism uniquely
extends to a homomorphism from K 〈〈x, y〉〉 to K [[t]]d×d . One way to achieve this is by
choosing our matrices X and Y in such a way that all their entries have zero constant term.
The kernel of this continuous homomorphism will contain the closure of the ideal generated
by yx − x2 if and only if the matrices X and Y satisfy Y X − X2 = 0, that is (Y − X )X = 0.
To summarize:

Proposition 5.5 Let X and Y be d ×d matrices with entries in K [[t]] such that each entry
of X and Y has zero constant term and (Y − X )X = 0 is satisfied. Then there is a unique
homomorphism

� : K 〈〈x, y〉〉/cl(yx − x2) → K [[t]]d×d

satisfying �(x) = X and �(y) = Y.

Using matrices X and Y whose entries have zero constant term is a sufficient but not a
necessary condition to guarantee the continuity of the induced homomorphism K 〈x, y〉 →
K [[t]]d×d . Consider, for example, the representation induced by setting

X =
(

t 1

0 0

)

and Y =
(

t 1

0 t

)

.

These matrices obviously satisfy Y X = X2. Straightforward induction shows that

Xn =
(

tn tn−1

0 0

)

, and Y n =
(

tn n · tn−1

0 tn

)

(9)
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hold for n ≥ 0. For any positive i we obtain

Xi Y j =
(

t i t i−1

0 0

)(
t j j · t j−1

0 t j

)

=
(

t i+ j ( j + 1) · t i+ j−1

0 0

)

(10)

In particular x(k, l) = xk+1 yl−k−1 is represented by

X (k, l) = Xk+1Y l−k−1 =
(

t l (l − k)t l−1

0 0

)

when k is positive, and by

X (−1, l) = Y l =
(

t l l · t l−1

0 t l

)

when k = −1. Clearly, when l converges to infinity, each entry in Xk+1Y l−k−1 con-
verges to zero in the (t)-adic topology of K [[t]]. Hence the homomorphism sending x
into X and y into Y is continuous. As a consequence of Theorem 4.5 we obtain the
following:

Corollary 5.6 The function �̃ : R(Ť (Q), K ) → K [[t]]2×2 defined by

�̃( f ) =




∑

−1≤k<l<∞
f (k,l)
B(k,l) · t l

∑

0≤l<∞
f (−1,l)
B(−1,l) · l · t l−1 + ∑

0≤k<l<∞
f (k,l)
B(k,l) · (l − k) · t l−1

0
∑

0≤l<∞
f (−1,l)
B(−1,l) · t l





is an algebra-homomorphism.

There are infinitely many ways to represent R(Ť (Q), K ), and all of them may yield inter-
esting formulas for matrices of formal power series. In this paper we focus on one sequence
of representations

�d : K 〈〈x, y〉〉/cl(yx − x2) → K [[t]]d×d

(d = 1, 2, . . .) that has the additional property of �d being injective on the linear span of
all monomials of degree at most d − 1. Thus the direct sum ⊕d≥1�d provides a faithful
representation of the Tchebyshev algebra. (Actually, it will turn out that it will be possible
to take the “limit” limd→∞ �d of our homomorphisms and obtain a single representation
by infinite lower triangular matrices.)
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To facilitate our calculations, let us fix d and denote by Ei, j the d × d matrix whose only
nonzero entry is a 1 in the i-th row and j-th column. Let us set

X = t ·
d∑

i=2

Ei,i−1. (11)

In other words, X is the matrix












0 0 . . . 0 0

t 0 . . . 0 0

0 t . . . 0 0
...

...
. . .

...
...

0 0 . . . t 0












Since the first row of X is zero, any matrix M whose only nonzero entries are in its first
column will satisfy M X = 0, and is a potential candidate for Y − X . In particular, if we set
Y − X = t · E1,1 or, equivalently

Y = t · E1,1 + X = t · E1,1 + t ·
d∑

i=2

Ei,i−1, (12)

then we have (Y − X )X = t · E1,1 X = 0. The matrices X and Y satisfy the conditions of
Proposition 5.5, hence there is a unique homomorphism �d : T (K ) → K [[t]]d×d sending
x = x(0, 1) into X and y = x(−1, 1) into Y . (Note that �1 : T (K ) → K [[t]] is precisely
the map α introduced in Remark 5.4!)

Proposition 5.7 The restriction of �d : T (K ) → K [[t]]d×d to the linear span of mono-
mials xi y j of degree at most d − 1 is injective.

Proof: It is sufficient to show the same statement about products of the form xi (y − x) j

of degree at most d − 1, since they span the same vector space and are equinumerous. We
show this modified statement by explicitly calculating Xi (Y − X ) j for 0 ≤ i, j ≤ d − 1.
Concerning the powers of X it is easy to show by induction that

Xi = t i
d∑

u=i+1

Eu,u−i (13)

holds for 1 ≤ i ≤ d − 1, while all higher powers of X are zero. As a consequence

Xi (Y − X ) j = t i ·
d∑

u=i+1

Eu,u−i · t j · E1,1 = t i+ j · Ei+1,1 (14)
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for 1 ≤ i ≤ d − 1 and any positive j . Consider now any linear combination of the form

M =
d−1∑

i=0

ai · Xi +
d−1∑

i=0

d−1∑

j=1

bi, j · Xi (Y − X ) j ,

with coefficients ai and bi, j from K , yielding M = 0. By equations (13) and (14) we may
write

M = a0 · I +
d−1∑

i=1

ai · t i
d∑

u=i+1

Eu,u−i +
d−1∑

i=0

d−1∑

j=1

bi, j · t i+ j · Ei+1,1,

where I is the identity matrix. For 1 ≤ i ≤ d − 2 we have Md,d−i = ai · t i and so
we must have a1 = · · · = ad−2 = 0. Since Md,d = a0, we also have a0 = 0. Since
Md,1 = ad−1 · td−1 + ∑d−1

j=1 bd−1, j · td−1+ j , we also have ad−1 = bd−1,1 = bd−1,2 = · · · =
bd−1,d−1 = 0. Finally, for 0 ≤ i ≤ d − 2 and 1 ≤ j ≤ d − 1, bi, j is the coefficient of t i+ j

in Mi+1,1 and must be zero. �

Remark 5.8 It is worth noting that given d1 < d2, the matrix �d1 (x) may be obtained
from �d2 (x) by removing all entries except the ones in the first d1 rows and columns. In
other words, �d2 is a lift of �d1 . Hence we may define �∞(x) as the infinite triangular
matrix whose only nonzero entries are �∞(x)i,i−1 = t for i = 1, 2, . . .. We may then set
�∞(y) to be the matrix that is obtained from �∞(x) by changing the 0 in the first row,
first column to t . The resulting infinite matrices �∞(x) and �∞(y) generate a subring of
the ring of infinite lower triangular matrices over K [[t]]. We may also allow infinite linear
combinations of products of the form �∞(x)i�∞(y) j and perform the collection of terms
entry by entry. The constant term of each entry of �∞(x) and �∞(y) being zero, for each
entry the degree of t dividing the entry increases as i or j increases. These infinite linear
combinations provide a faithful representation of T (K ) as a subring of the ring of infinite
lower triangular matrices over K [[t]].

In order to apply Theorem 4.5 to our matrix representation, we now compute the products
Xi Y j . Obviously Y j = ((Y − X )+ X ) j may be written as the sum of all products consisting
of altogether j copies of (Y − X ) and X . Since (Y − X )X = 0 and Xd = 0, many of these
products vanish, and we are left with

Y j =
min( j,d−1)∑

u=0

Xu(Y − X ) j−u .

Using equations (13) and (14) we may rewrite this as

Y j =
min( j−1,d−1)∑

u=0

t j · Eu+1,1 + X j . (15)
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Multiplying by Xi from the left shifts all rows down by i , and multiplies all entries by t i .
Hence we obtain

Xi Y j =
min(i+ j−1,d−1)∑

u=i

t i+ j · Eu+1,1 + Xi+ j . (16)

Here the first sum is empty if j = 0 and the second power is zero if j ≥ d. Moreover, for
i = 0, this formula yields exactly Eq. (15).

Theorem 5.9 Let X and Y be the matrices given by (11) and (12), respectively. Given a
function f ∈ R(Ť (Q), K ), the entries of the matrix

M = �d (φ( f )) =
∑

−1≤k<l<∞

f (k, l)

B(k, l)
Xk+1Y l−k−1 are

Mp,q =






t p−q

B(p − q)
·




p−q−1∑

k=0

[

p − q

k

]

f (k, p − q) + f (−1, p − q)



 for 2 ≤ q ≤ p,

∞∑

l=p−1

t l

B(l)
·


 f (−1, l) +
p−2∑

k=0

[

l

k

]

f (k, l)



 for 1 = q < p,

∞∑

l=0

f (−1, l) · t l

B(l)
for 1 = q = p,

0 in all other cases.

Proof: Let us observe first that equation (16) may be rewritten as

Xk+1Y l−k−1 =
min(l−1,d−1)∑

u=k+1

t l · Eu+1,1 + Xl . (17)

where the first sum is empty if l = k +1 and the second power is zero if l ≥ d. The formula
is also correct if k = −1.

Assume first q ≥ 2. None of the terms in the first sum of (17) contribute anything
outside the first column, so these entries only consist of the contribution of the Xl’s. By
equation (13), Xl contributes to Mp,q exactly when l = p − q (and, of course, we need
p − q ≥ 0). Hence we obtain

Mp,q = t p−q ·
p−q−1∑

k=−1

f (k, p − q)

B(k, p − q)

= t p−q ·
(

f (−1, p − q)

B(p − q)
+

p−q−1∑

k=0

f (k, p − q)

B(k)B(p − q − k)

)

= t p−q

B(p − q)
·
(

f (−1, p − q) +
p−q−1∑

k=0

[
p − q

k

]

· f (k, p − q)

)

,

exactly as stated.
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Assume next q = 1. Here we need to distinguish between the subcases p = 1 and p ≥ 2.
The case p = q = 1 is easier, since the top left entry in each Xk+1Y l−k−1 satisfying k ≥ 0
is zero by equations (17) and (13). Thus we only need to account for the contribution of
∑∞

l=0
f (−1,l)
B(−1,l) Y

l , which gives

M1,1 =
∞∑

l=0

f (−1, l) · t l

B(l)
.

Assume finally q = 1 and p ≥ 2. In this case both summands on the right hand side
of equation (17) may contribute to Mp,1. The term Xl on the right hand side of Eq. (17)
contributes to Mp,1 exactly when l = p − 1, and there is no restriction on the k’s occurring,
except for k < l = p − 1. Thus the contribution of these terms to Mp,1 is

p−2∑

k=−1

f (k, p − 1)

B(k, p − 1)
· t p−1 = t p−1

B(p − 1)

(

f (−1, l) +
p−2∑

k=0

[
p − 1

k

]

f (k, l)

)

.

The first sum on the right hand side of Eq. (17) contributes to Mp,q exactly when u = p−1,
and this may happen only if k satisfies k + 1 ≤ u = p − 1, i.e., k ≤ p − 2, and l satisfies
l − 1 ≥ u = p − 1, i.e., l ≥ p. (Note that when k ≤ p − 2 and l ≥ p then k < l is
automatically satisfied!) Hence the contribution of these terms to Mp,1 is

p−2∑

k=−1

∞∑

l=p

f (k, l)

B(k, l)
t l =

∞∑

l=p

f (−1, l)

B(l)
t l +

p−2∑

k=0

∞∑

l=p

f (k, l)

B(k, l)
t l

=
∞∑

l=p

f (−1, l)

B(l)
t l +

∞∑

l=p

tl

B(l)

p−2∑

k=0

[
l

k

]

f (k, l)

=
∞∑

l=p

tl

B(l)

(

f (−1, l) +
p−2∑

k=0

[
l

k

]

f (k, l)

)

.

Adding up the two contributions yields exactly the stated formula for Mp,1. �

Remark 5.10 Since

M1,1 =
∞∑

l=0

f (−1, l) · t l

B(l)
=

∑

n≥0

αR( f )(n)
tn

B(n)

is just the ordinary generating function of the restricted function αR( f ) ∈ R(Q, K ), identi-
ties involving the matrices M automatically specialize to identities in the classical setting.
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6. Lower Eulerian binomial posets

Recall that a poset P is lower Eulerian if it has a unique minimum element 0̂ and for every
u ∈ P the interval [0̂, u] is Eulerian.

Using the notion of the augmented Tchebyshev operator we may rephrase Proposition 1.5
as follows:

Proposition 6.1 If Q is a lower Eulerian poset, then so is Ť (Q).

Assume now that Q is a binomial and lower Eulerian poset. Then Ť (Q) is also lower
Eulerian. Since the rank of an interval of type (k, l) in Ť (Q) is l, the value of the Möbius
function on such an interval is (−1)l . Using Theorem 4.5 and the fact that the Möbius
function and the zeta function are inverses of each other, we obtain that the multiplicative
inverse of

φ(ζ ) =
∑

−1≤k<l<∞

x(k, l)

B(k, l)
∈ T (K ) is φ(µ) =

∑

−1≤k<l<∞
(−1)l · x(k, l)

B(k, l)
∈ T (K ).

Substituting Definition 2.6 yields:

Corollary 6.2 If Q is a lower Eulerian binomial poset, then the multiplicative inverse of

φ(ζ ) =
∑

0≤l<∞

x(−1, l)

B(l)
+

∑

0≤k<l<∞

x(k, l)

B(k)B(l − k)
∈ T (K ) is

φ(µ) =
∑

0≤l<∞
(−1)l · x(−1, l)

B(l)
+

∑

0≤k<l<∞
(−1)l · x(k, l)

B(k)B(l − k)
∈ T (K ).

Using the representations �d and Theorem 5.9, we obtain the following.

Corollary 6.3 If Q is a lower Eulerian binomial poset, then the multiplicative inverse of
the d × d matrix A given by

Ap,q =






t p−q

B(p − q)
·
(

p−q−1∑

k=0

[
p − q

k

]

+ 1

)

for 2 ≤ q ≤ p,

∞∑

l=p−1

t l

B(l)
·
(

1 +
p−2∑

k=0

[
l

k

])

for 1 = q < p,

∞∑

l=0

t l

B(l)
for 1 = q = p,

0 in all other cases.

may be obtained by substituting (−t) into t in each entry of A.
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Example 6.4 Let the elements of Q be all finite subsets of an infinite set, ordered by
inclusion. This poset is locally finite, binomial, lower Eulerian, with factorial function
B(n) = n!. Corollary 6.2 yields that the multiplicative inverse of

∑

0≤l<∞

x(−1, l)

l!
+

∑

0≤k<l<∞

x(k, l)

k!(l − k)!
∈ T (K ) is

∑

0≤l<∞
(−1)l · x(−1, l)

l!
+

∑

0≤k<l<∞
(−1)l · x(k, l)

k!(l − k)!
∈ T (K ).

Let us rewrite the statement also in terms of Corollary 6.3. When 2 ≤ q ≤ p, we obtain

Ap,q = t p−q

(p − q)!
·
(

p−q−1∑

k=0

(
p − q

k

)

+ 1

)

= (2t)p−q

(p − q)!
.

For 1 = q < p we obtain

Ap,1 =
∞∑

l=p−1

t l

l!
·
(

1 +
p−2∑

k=0

(
l

k

))

=
∞∑

l=p−1

t l

l!
+

p−2∑

k=0

1

k!

∞∑

l=p−1

t l

(l − k)!

= et −
p−2∑

l=0

t l

l!
+

p−2∑

k=0

t k

k!

∞∑

l=p−1

t l−k

(l − k)!

= et −
p−2∑

l=0

t l

l!
+

p−2∑

k=0

t k

k!

( ∞∑

l=k

t l−k

(l − k)!
−

p−2∑

l=k

t l−k

(l − k)!

)

= et −
p−2∑

l=0

t l

l!
+

p−2∑

k=0

t k

k!

(

et −
p−2−k∑

m=0

tm

m!

)

= et

(

1 +
p−2∑

k=0

t k

k!

)

−
p−2∑

k=0

t k

k!
−

p−2∑

k=0

t k

k!

p−2−k∑

m=0

tm

m!

= et

(

1 +
p−2∑

k=0

t k

k!

)

−
p−2∑

k=0

t k

k!
−

∑

m+k≤p−2

tm+k

m!k!

= et

(

1 +
p−2∑

k=0

t k

k!

)

−
p−2∑

k=0

t k

k!
−

p−2∑

l=0

t l

l!

l∑

m=0

(
l

m

)

.
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Using the binomial theorem, and collecting terms yields

Ap,1 = et

(

1 +
p−2∑

k=0

t k

k!

)

−
p−2∑

k=0

(1 + 2k)t k

k!
.

Finally, for q = p = 1 we obtain

A1,1 =
∞∑

l=0

t l

l!
= et .

Corollary 6.5 The inverse of the d × d matrix given by

Ap,q =






(2t)p−q

(p − q)!
for 2 ≤ q ≤ p,

et

(

1 +
p−2∑

k=0

t k

k!

)

−
p−2∑

k=0

(1 + 2k)t k

k!
for 1 = q < p,

et for 1 = q = p,

0 in all other cases.

may be obtained by substituting (−t) into t in each entry of A.

For d = 4 this result yields that the inverse of the matrix








et 0 0 0

2et − 2 1 0 0

(2 + t)et − (2 + 3t) 2t 1 0

(2 + t + t2/2)et − (2 + 3t + 5t2/2) 2t2 2t 1








is








e−t 0 0 0

2e−t − 2 1 0 0

(2 − t)e−t − (2 − 3t) −2t 1 0

(2 − t + t2/2)e−t − (2 − 3t + 5t2/2) 2t2 −2t 1








,

which may be verified by hand.

Example 6.6 Consider the “ladder poset” Q represented in figure 1. This is binomial,
with factorial function

B(n) =
{2n−1 if n ≥ 1,

1 if n = 0.
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It is also lower Eulerian. (Intervals of Ť (Q) for this particular Q are the main subject of my
paper [6].) The “binomial coefficients” [ n

k ] are all equal to 2, except for the two extreme
cases [ n

0 ] = [ n
n ] = 1. By Corollary 6.2 we obtain that the multiplicative inverse of

∑

0≤l<∞

x(−1, l)

2l−1
+

∑

0≤k<l<∞

x(k, l)

2l−2
∈ T (K ) is

∑

0≤l<∞
(−1)l · x(−1, l)

2l−1
+

∑

0≤k<l<∞
(−1)l · x(k, l)

2l−2
∈ T (K ).

Let us rewrite the statement also in terms of Corollary 6.3. For 2 ≤ q < p, we obtain

Ap,q = t p−q

2p−q−1
·
(

p−q−1∑

k=0

[
p − q

k

]

+ 1

)

= t p−q

2p−q−1
· 2 · (p − q)

= 4 · (p − q) ·
(

t

2

)p−q

,

while Aq,q = 1 for q ≥ 2. Assume next 1 = q < p. Then

Ap,1 =
∞∑

l=p−1

t l

2l−1
·
(

1 +
p−2∑

k=0

[
l

k

])

=
∞∑

l=p−1

t l

2l−1
· 2 · (p − 1)

= 4 · (p − 1) ·
∞∑

l=p−1

t l

2l
= (p − 1) ·

(
t

2

)p−1

· 8

2 − t
.

Finally for 1 = q = p we obtain

A1,1 = 1 +
∞∑

l=1

t l

2l−1
= 2 + t

2 − t
.

Corollary 6.7 The inverse of the d × d matrix given by

Ap,q =






1 for 2 ≤ q = p,

4 · (p − q) ·
(

t

2

)p−q

for 2 ≤ q < p,

(p − 1) ·
(

t

2

)p−1

· 8

2 − t
for 1 = q < p,

2 + t

2 − t
for 1 = q = p,

0 in all other cases.

may be obtained by substituting (−t) into t in each entry of A.
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For d = 4 this yields








(2 + t)/(2 − t) 0 0 0

4t/(2 − t) 1 0 0

4t2/(2 − t) 2t 1 0

3t3/(2 − t) 2t2 2t 1








−1

=








(2 − t)/(2 + t) 0 0 0

−4t/(2 + t) 1 0 0

4t2/(2 + t) −2t 1 0

−3t3/(2 + t) 2t2 −2t 1








.

7. The Möbius function of Ť(N)

As a final illustration of the power of Theorem 5.9, we calculate the inverse of a lifted
sequence of d × d matrices using the fact that the Möbius function of Ť (N) is the multi-
plicative inverse of its zeta function. It is very easy to show that the Möbius function µ of
Ť (N) satisfies

µ(k, l) =






1 if (k, l) ∈ {(−1, 0), (1, 2)},
−1 if l = 1,

0 for all other values of (k, l).

(18)

The reader familiar with Möbius function computations may use figure 2 to fill in the picture
and notice that, except for four elements at the bottom, all others need to be labeled with 0.

The binomial poset N has factorial function B(l) = 1 and “binomial coefficients” [ n
k ] = 1.

Let A be the d × d matrix associated to the zeta function of Ť (N) under �d . For 2 ≤ q ≤ p
Theorem 5.9 yields

Ap,q = t p−q ·
(

p−q−1∑

k=0

[
p − q

k

]

+ 1

)

= (p − q + 1) · t p−q .

For 1 = q < p, Theorem 5.9 yields

Ap,1 =
∞∑

l=p−1

t l ·
(

1 +
p−2∑

k=0

[
l

k

])

= p ·
∞∑

l=p−1

t l = p · t p−1

1 − t
.

Finally, for 1 = q = p we have

A1,1 =
∞∑

l=0

t l = 1

1 − t
.
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The inverse of A is the image of the Möbius function under �d . Using Eq. (18) and
Theorem 5.9 we obtain:

A−1
p,q =






t2 for 1 ≤ q < p and p − q = 2,

−2t for 1 ≤ q < p and p − q = 1,

1 for 2 ≤ q = p

1 − t for 1 = q = p,

0 in all other cases.

For d = 5 we obtain











1/(1 − t) 0 0 0 0

2t/(1 − t) 1 0 0 0

3t2/(1 − t) 2t 1 0 0

4t3/(1 − t) 3t2 2t 1 0

5t4/(1 − t) 4t3 3t2 2t 1











−1

=











1 − t 0 0 0 0

−2t 1 0 0 0

t2 −2t 1 0 0

0 t2 −2t 1 0

0 0 t2 −2t 1











.

As a consequence of the Möbius function vanishing on all but finitely many elements, A−1

is “almost diagonal”: only those entries are nonzero for which the row number exceeds the
column number by at least 0 and and at most 2.

8. “One-dimensional” representations of the Tchebyshev algebra

It is relatively easy to essentially describe all “one-dimensional” representations of T (K ),
that is, all homomorphisms ψ : T (K ) → K [[t]]. Given such a homomorphism ψ , the
formal power series ψ(x) and ψ(y) must satisfy

ψ(y) · ψ(x) = ψ(x)2

(Here we identify T (K ) with K 〈〈x, y〉〉/cl(yx − x2).) Since K [[t]] is an integral domain,
we must have either ψ(x) = 0 or ψ(y) = ψ(x). In the first case, the kernel of ψ contains
the ideal generated by x , and the homomorphism factors through T (K )/(x) ∼= K [[y]].
(Although T (K ) is not commutative, each of its elements may be written as an infinite
linear combination of terms xi y j , and any such expression containing only terms xi y j with
a positive i is a multiple of x . Hence there is no need to “close” the ideal generated by x .)
The ring K [[y]] is obviously isomorphic to K [[t]] so we may use the factoring of ψ through
K [[y]] to obtain a description ψ1 ◦α, where ψ1 is an endomorphism of K [[t]], and α is the
“canonical homomorphism” α : T (K ) → K [[t]] introduced in Remark 5.4, sending x into
0 and y into t .
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Consider now the second case, when ψ(x) = ψ(y). In this case ψ factors through
T (K )/(x − y).

Lemma 8.1 The factor of T (K ) ∼= K 〈〈x, y〉〉/cl(yx − x2) by the ideal generated by y − x
is isomorphic to K [[x]].

Proof: Using yx = x2, it is easy to show by induction that yi−1x = xi holds for i ≥ 2 in
T (K ). Hence we have

y j − x j = y j−1(y − x) for j ≥ 1.

Therefore any infinite linear combination
∑

i, j≥0 ai, j x i y j is congruent modulo the ideal
generated by y − x to

∑∞
n=0

∑n
i=0 ai,n−i xn , since their difference

∑

i, j≥0

ai, j x
i y j −

∞∑

n=0

n∑

i=0

ai,n−i x
n =

∞∑

n=0

n−1∑

i=0

ai,n−i x
i (yn−i − xn−i )

=
∞∑

n=0

n−1∑

i=0

ai,n−i x
i yn−i−1(y − x)

=
∞∑

i=0

∞∑

j=1

ai, j x
i y j−1 · (y − x)

is an element of the ideal generated by y − x . �

Again, the ring K [[x]] is isomorphic to K [[t]] and so ψ is of the form ψ1 ◦β where ψ1 is
an endomorphism of K [[t]] and β is the homomorphism β : T (K ) → K [[t]] sending both
x and y into t . To summarize, we have obtained the following theorem.

Theorem 8.2 Every homomorphism ψ : T (K ) → K [[t]] is of the form ψ1 ◦ ψ2, where
ψ1 is an endomorphism of K [[t]], and ψ2 is either the homomorphism α : T (K ) → K [[t]]
sending x into 0 and y into t, or the homomorphism β : T (K ) → K [[t]] sending both x
and y into t.

A good reference on the endomorphisms of a commutative formal power series ring is
Chapter 3 of Brewer’s book [2]. We now take a closer look at the homomorphisms α and
β. Given a binomial poset Q and a function f ∈ R(Ť (Q), K ), we have

α

(
∑

−1≤k<l<∞

f (k, l)xk+1 yl−k−1

B(k, l)

)

=
∞∑

l=0

f (−1, l)t l

B(l)
,
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thus α induces a homomorphism. Finally, consider the effect of β. Given a binomial poset
Q and a function f ∈ R(Ť (Q), K ), we have

β

(
∑

−1≤k<l<∞

f (k, l)xk+1 yl−k−1

B(k, l)

)

=
∞∑

l=0

t l ·
l−1∑

k=−1

f (k, l)

B(k, l)

=
∞∑

l=0

t l

B(l)
·
(

f (−1, l) +
l−1∑

k=0

[
l

k

]

f (k, l)

)

.

Therefore β induces a homomorphism βR : R(Ť (Q), K ) → R(Q, K ) given by

βR( f )(l) = f (−1, l) +
l−1∑

k=0

[
l

k

]

f (k, l).

One would be tempted to look for a homomorphism βI : I (Ť (Q), K ) → I (Q, K ) that
extends the definition of βR, in analogy to (8). Unfortunately, using the most plausible
extension, one seems to run into a difficulty with preserving multiplication. We are still able
to extend β to the standard algebra of a poset.

Definition 8.3 Let P be a locally finite partially ordered set, and K a field. We define the
standard algebra S(P, K ) of P as the set of those f ∈ I (P, K ) that assign the same value
to isomorphic intervals.

According to Proposition 4.13 in Aigner’s book [1, Chapter IV, Section 1] the standard
algebra is a subalgebra of the incidence algebra. Moreover, if an element of the standard
algebra is invertible in the incidence algebra, then it is already invertible in the standard
algebra. It is also evident that R(P, K ) is a subalgebra of S(P, K ).

Lemma 8.4 Given any locally finite partially ordered set Q with minimum element 0̂, the
map βS : S(Ť (Q), K ) → S(Q, K ) given by

βS( f )([x, y]) =
∑

z∈{−̂1}∪[x,y)

f ([(−̂1, x), (z, y)]).

is a homomorphism. Furthermore, if Q is a binomial poset, then restriction of βS to
R(Ť (Q), K ) is βR.

Proof: It is easy to verify that βS is compatible with addition, and that, for a binomial
poset Q, its restriction to R(Ť (Q), K ) is βR . We only need to show that βS is compatible
with the convolution. Given (x, y) ∈ Ť (Q) we have x < y and

βS( f · g)([x, y]) =
∑

z∈{−̂1}∪[x,y)

( f · g)([(−̂1, x), (z, y)])

=
∑

z∈{−̂1}∪[x,y)

∑

(−̂1,x)≤(u,v)≤(z,y)

f ([(−̂1, x), (u, v)])g([(u, v), (z, y)])
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=
∑

x≤v≤y

∑

u∈{−̂1}∪[x,v)

f ([(−̂1, x), (u, v)])

×
(

g([(u, v), (u, y)]) +
∑

v≤z<y

g([(u, v), (z, y)])

)

.

Given any fixed u ∈ {−̂1} ∪ [x, v), the interval [(u, v), (u, y)] is isomorphic to [(−̂1, v),
(−̂1, y)] (and to the interval [v, y] of Q, by Lemma 1.4). Given also a z ∈ [v, y), the
interval [(u, v), (z, y)] is isomorphic to the interval [(−̂1, v), (z, y)] by Lemma 1.7. Since
g belongs to the standard algebra, we obtain

g([(u, v), (u, y)]) +
∑

v≤z<y

g([(u, v), (z, y)]) =
∑

z∈{−̂1}∪[v,y)

g([(−̂1, v), (z, y)]).

Thus

βS( f · g)([x, y]) =
∑

x≤v≤y

∑

u∈{−̂1}∪[x,v)

f ([(−̂1, x), (u, v)])

×
(

∑

z∈{−̂1}∪[v,y)

g([(−̂1, v), (z, y)])

)

.

=
∑

x≤v≤y

βS( f )([x, v]) · βS(g)([v, y])

which is exactly the definition of (βS( f ) · βS(g))([x, y]). �

The combinatorial meaning of Theorem 8.2 is that for a binomial poset Q, αI and βS are
the only “essentially interesting” homomorphisms between the incidence algebras or stan-
dard algebras of Ť (Q) and Q: at the level of generating functions, any other homomorphism
would be either meaningless, or induce the same formulas, modulo the endomorphisms of
K [[t]].

Remark 8.5 We have seen that the matrix representations �d lift the map α and they
“converge” to a faithful representation of the Tchebyshev algebra. It would be interesting
to find out whether a similar sequence of matrix representations could be constructed to lift
β.

9. Tchebyshev polynomials and derivative polynomials

As noted in Proposition 1.9, the Tchebyshev polynomial Tn(x) of the first kind is connected
to the face numbers of the order complex of any open interval of type (n, n + 1) in the
augmented Tchebyshev transform of the “ladder poset” represented in figure 1. We may
use this proposition to associate a sequence of generalized Tchebyshev polynomials to each
binomial poset Q.
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Definition 9.1 Given a binomial poset Q, we define the n-th Q-generalized Tchebyshev
polynomial T Q

n (s) by setting

T Q
n (s) =

n∑

j=0

f j−1(�(((−̂1, 0̂), (u, v)))) ·
(

s − 1

2

) j

where (u, v) ∈ Ť (Q) is any element of type (n, n + 1).

Remark 9.2 Definition 9.1 may be rephrased in terms of the Tchebyshev algebra as
follows. The number of ( j − 1)-dimensional faces in an order complex is the same as the
number of j-element chains, which may be expressed using the zeta function, as noted
by Stanley in [15, Example 3.15.9]. It is easy to verify that T Q

n (s) is the coefficient of
xn+1 = x(n, n + 1) in

φ

( ∞∑

n=0

(ζ − 1)n+1 ·
(

s − 1

2

)n
)

where φ : R(Ť (Q), K ) → T (K ) is the algebra isomorphism from Theorem 4.5. Note that
sending all monomials containing a factor of y to zero is not a homomorphism, so at best
one could use some sort of “umbral calculus” here!

Definition 9.1 is especially appealing since, according to Definition 2.5, if (u, v) has type
(n, n + 1) then for any (u′, v′) ∈ ((−̂1, 0̂), (u, v)), the type of the interval ((u′, v′), (u, v))
is also of the form (n′, n′ + 1) for some n′. More precisely, we have the recursion formula

T Q
n (s) = 1 + s − 1

2
·

n∑

m=1

[
n

m

] m∑

k=0

[
m

k

]

T Q
n−m(s). (19)

In fact, calculating T Q
n (s) involves summing over all partial chains in an open interval of

type (n, n + 1) in such a way that each element in each partial chain contributes a factor of
(s −1)/2. The summand 1 on the right hand side of (19) corresponds to choosing the empty
chain, while the sum over m corresponds to choosing the least element (u, v) of a partial
chain such that ρ(v) = m. There are [ n

m ] ways to choose v, and the second sum corresponds
to choosing an appropriate u for a fixed v, satisfying ρ(u) = k. (Note that u = v is not
allowed, yet we include the term [ m

m ] = 1 to account for the case ρ(u) = −1.) Finally the

term T Q
n−m(s) corresponds to choosing the rest of the chain above (u, v), in an interval of

type (n − m, n + 1 − m).
Equation (19) may be used to compute the “exponential generating function” of the

polynomials T Q
n (s). In fact, adding (s − 1)/2 · T Q

n (s), multiplying both sides by tn/B(n),
and summing over n from 0 to infinity yields:

s + 1

2

∞∑

n=0

T Q
n (s)

tn

B(n)
=

∞∑

n=0

tn

B(n)
+ s − 1

2

∞∑

n=0

T Q
n (s)

tn

B(n)
·

∞∑

m=0

m∑

k=0

[m

k

] tm

B(m)
.
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We may solve this for
∑∞

n=0 T Q
n (s)(tn/B(n)) and get

∞∑

n=0

T Q
n (s)

tn

B(n)
=

∑∞
n=0

tn

B(n)
s+1

2 − s−1
2

∑∞
m=0

∑m
k=0

[m
k

]
tm

B(m)

(20)

If Q is the “ladder” poset in figure 1 then (20) may be simplified to

1 +
∞∑

n=1

Tn(s)
tn

2n−1
= 4 − t2

4 − 4st + t2
,

a well-known formula. If Q is the partially ordered set of all finite subsets of an infinite set,
ordered by inclusion, then (20) takes the form

∞∑

n=0

T Q
n (s)

tn

n!
= et

s+1
2 − s−1

2 e2t
= 1

s+1
2 e−t − s−1

2 et
.

Replacing t with i t (where i = √−1) yields

∞∑

n=0

T Q
n (s)

(i t)n

n!
= 1

cos(t) − s · i · sin(t)
.

The function 1/(cos(t) − u sin(t)) may be written as

1

cos(t) − u · sin(t)
=

∞∑

n=0

Qn(u)
tn

n!
,

where the derivative polynomials Qn(u) are defined by

dn

dun
sec(u) = Qn(tan u) sec u, (21)

as stated in the introduction of Hoffman’s paper [9].2

Corollary 9.3 For the partially ordered set Q consisting of the finite subsets of an infinite
set, we have

T Q
n (s) = i−n Qn(s · i)

where the polynomials Qn(u) are the derivative polynomials given in (21).

This example shows that the sequence T Q
n (s) does not have to be a sequence of orthogonal

polynomials in general, but is likely to have many interesting combinatorial aspects, as
witnessed by Hoffman’s paper [9]. The interested reader may find a different generalization
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of the methods of [6] in [7] which yields orthogonal polynomial sequence generalizations
of the poset constructions associated to Tchebyshev polynomials.

Appendix A. The proof of Theorem 1.10

Part (i) of Theorem 1.10 is a trivial consequence of Lemma 1.4. To show (i i), observe first
that we may assume that y2 covers x2. In the contrary event, any (u, v) ∈ ((x1, y2), (x2, y2))
either satisfies v ≤ x2 or u = x2. Let ẋ2 be any element covering x2. If v ≤ x2 then (u, v)
belongs to ((x1, y2), (x2, ẋ2)), and it is easy to see that this open interval contains the same
elements, no matter which ẋ2 we choose. Moreover, any (u, v) satisfying v ≤ x2 is less than
any (u′, v′) satisfying u′ = x2. In analogy to Lemma 1.4, the set of (u, v)’s satisfying u = x2

and (u, v) < (x2, y2) is easily seen to be isomorphic to the open interval (x2, y2) ⊂ Q. Hence
the order complex of ((x1, y1), (x2, y2)) is isomorphic to the join of � (((x1, y1), (x2, ẋ2)))
and of �((x2, y2)). Since the suspension operation “commutes” with taking the join, i.e.,
� (�1) ∗ �2 = � (�1 ∗ �2) = �1 ∗ � (�2) holds for any pair of simplicial complexes on
disjoint vertex sets, since for x2 ≺ ẋ2 we have �((x2, ẋ2)) = {∅}, and since � ∗ {∅} = �
holds for any simplicial complex �, we are done if we are able to show our statement
for the case x2 ≺ y2. In that case (ii) is equivalent to stating that � (((x1, y1), (x2, y2))) is
isomorphic to a triangulation of � (�((y1, x2))). We show this by proving the following
generalization of [6, Proposition 4.3].

Lemma A.1 Assume x1 < y1 ≤ x2 ≺ y2, and consider the Euclidean space E whose
orthonormal basis is the set {x1} ∪ [y1, x2). Realize each face of � ({x1} ∪ [y1, x2)) in E as
the convex hull of its vertices. Let η : ((x1, y1), (x2, y2)) → E be given by

η(u, v) =
{

u if v = x2,

(u + v)/2 if v < x2.

Then η induces a geometric realization of � ([(x1, y1), (x2, y2))) as a triangulation of the
realization of � ({x1} ∪ [y1, x2)).

Proof: Since {x1} ∪ [y1, x2) is the basis of the space, the faces of � ({x1} ∪ [y1, x2)) are
represented as convex hulls of affine independent vertex sets. The description given in
the first part of Lemma 2.3 may be generalized to arbitrary chains in [(x1, y1), (x2, y2))
as follows: given σ = {(u1, v1), . . . , (uk, vk)} ⊆ [(x1, y1), (x2, y2)) satisfying (u0, v0) :=
(x1, y1) ≤ (u1, v1) < · · · < (uk, vk) < (x2, y2), we must have y1 ≤ v0 < v1 < · · · < vk ≤
x2 (here we use x2 ≺ y2) and, for each i ≥ 1, either ui = ui−1 or vi−1 ≤ ui < vi must
hold. Using this observation it is easy to show that the set {u1, v1, . . . , uk, vk} must be a
partial chain in {x1} ∪ [y1, x2), and so for any σ ∈ � ([(x1, y1), (x2, y2))) , the convex hull
of η(σ ) is contained in the geometric realization of some face of � ({x1} ∪ [y1, x2)). Next
we show that each σ ∈ � ([(x1, y1), (x2, y2))) is realized with affine independent vertices.
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If not, consider a smallest counterexample σ = {(u1, v1), . . . , (uk, vk)} satisfying

k∑

i=1

αi · η(ui , vi ) = 0 and
k∑

i=1

αi = 1.

By the minimality of σ we may assume that all αi ’s are nonzero. By the nature of the map
η, if any z ∈ {x1} ∪ [x2, y2) appears in the list (u1, v1, . . . , uk, vk) only once then we reach
a contradiction, since then the z-component of

∑k
i=1 αi · η(ui , vi ) is nonzero. In particular,

u1 must occur for a second time in the list, and so we must have k ≥ 2 and u2 = u1. But
then v1 satisfies u1 = u2 < v1 < v2, it is different from all other ui ’s and v j ’s, and it is
less than x2. This contradiction proves that η induces a faithful geometric realization of
� ([(x1, y1), (x2, y2))).

We are left to show that the convex hull of every facet F of � ({x1} ∪ [y1, x2)) is a union
of convex hulls of sets η(σ ) for some faces σ ∈ � ([(x1, y1), (x2, y2))). We show this by
induction on the number of elements in {x1} ∪ [x2, y2). A facet F of � ({x1} ∪ [y1, x2))
is of the form x1 ≺ y1 ≺ ẏ1 ≺ . . . , where ẏ1 covers y1 even in the original poset Q
from which we take our intervals. By our induction hypothesis η induces a geometric
realization of �([(x1, ẏ1), (x2, y2))) as a triangulation of �({x1} ∪ [ẏ1, x2)) and a geometric
realization of �([(y1, ẏ1), (x2, y2))) as a triangulation of �({y1} ∪ [ẏ1, x2)). (Note that both
�([(x1, ẏ1), (x2, y2))) and �([(y1, ẏ1), (x2, y2))) are subcomplexes of �([(x1, y1), (x2, y2))),
the sets {x1} ∪ [ẏ1, x2) and {y1} ∪ [ẏ1, x2) are subsets of {x1} ∪ [y1, x2), spanning Euclidean
subspaces of E, and the function η is defined by the same rule in all three situations,
since the role of x2 is the same each time.) Hence the convex hull of F\{x1} and the
convex hull of F\{y1} are unions of convex hulls of sets η(σ ) where each σ belongs to (a
subcomplex of) �([(x1, y1), (x2, y2))). Adding in the convex hull of all sets η(σ ) satisfying
σ ∈ �([(x1, y1), (x2, y2))) and (x1, y1) ∈ σ “fills in” the convex hull of the facet F as
indicated in figure 3. In the picture, the convex hull of F\{x1} is represented by the line
segment connecting y1 and ẏ1, the convex hull of F\{y1} is represented by the line segment
connecting x1 and ẏ1, and the facet F is represented by the convex hull of {x1, y1, ẏ1}.
Omitted are from the picture all other elements of F, which belong to F\{x1} and F\{y1}
as well. Including them would make the picture many dimensional, but would only involve
“coning” over each missing vertex. �

Using Lemma A.1 we may conclude the proof of the missing special case of Theorem 1.10
as follows. Assume x1 < y1 ≤ x2 ≺ y2 and consider the triangulation of �({x1} ∪
[y1, x2)) using the map η : ((x1, y1), (x2, y2)) → E described in the Lemma. Note that
the abstract simplicial complex �({x1} ∪ [y1, x2)) is a cone over x1 and over y1 and that
the triangulating complex �([(x1, y1), (x2, y2))) is a cone over (x1, y1). The map η sends
(x1, y1) into the midpoint of the line segment connecting x1 and y1. Let us restrict now
η to �(((x1, y1), (x2, y2))). The union of the convex hulls of the sets η(σ ) where σ ∈
�(((x1, y1), (x2, y2))) is the same as the union of the convex hulls of those τ ∈ �({x1} ∪
[y1, x2)) which do not contain η(x1, y1). It is easy to see that these sets τ are precisely those
elements of �({x1} ∪ [y1, x2)) which contain at most one of x1 and y1, but not both. The
family of sets {τ ∈ �({x1} ∪ [y1, x2)) : {x1, y1} �⊆ τ } is isomorphic to the suspension of
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Figure 3. The effect of adding the faces η(σ ) containing η(x1, y1).

�((y1, x2)). (The “suspending” vertices are x1 and y1.)
We conclude the Appendix with a conjecture generalizing [6, Theorem 5.2].

Conjecture A.2 If the order complex of every open interval in a poset Q is shellable, then
the same holds for the order complex of every open interval in Ť (Q).

As a consequence of Theorem 1.10 we get a valid statement if we replace “shellable” with
“Cohen-Macaulay”, since the Cohen-Macaulay property depends only on the geometric
realization of the simplicial complex (see [14, Proposition 4.3]). A possible way to at-
tempt proving Conjecture A.2 is trying to generalize the proof of [6, Theorem 5.2] using
Lemma 2.3.
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Notes

1. This notation is consistent with the one introduced in [6]. Alas on figure 2 the cover relations labeled with R
are vertical and the cover relations labeled with L represent a move northeast. We wish to stress that the letters
are meant to indicate the coordinate to be removed and not the direction in a picture.

2. For proof Hoffman cites his earlier work [8] where the treatment of this classical question is embedded into a
broader framework. The actual function 1/(cos(t)−u sin(t)) appears as part of [8, Example 2], where Hoffman
mentions the historic source [12]. This reference is older than the papers by Haigh [5] and by Knuth and
Buckholtz [11], cited by “The Online Encyclopedia of Integer Sequences” as reference to sequence A008294,
which consists of the table of coefficients for the polynomials Qn(x).
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