ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Modular Data: The Algebraic Combinatorics of Conformal Field Theory

Terry Gannon
Department of Mathematical Sciences University of Alberta Edmonton Canada T6G 1G8

DOI: 10.1007/s10801-005-2514-2

Abstract

This paper is primarily intended as an introduction for mathematicians to some of the rich algebraic combinatorics arising in for instance conformal field theory (CFT). It tries to refine, modernise, and bridge the gap between papers [6] and [55]. Our paper is essentially self-contained, apart from some of the background motivation (Section 1) and examples (Section 3) which are included to give the reader a sense of the context. Detailed proofs will appear elsewhere. The theory is still a work-in-progress, and emphasis is given here to several open questions and problems.

Pages: 211–250

Keywords: keywords fusion ring; modular data; conformal field theory; affine Kac-Moody algebra

Full Text: PDF

References

1. D. Altschuler, P. Ruelle, and E. Thiran, “On parity functions in conformal field theories,” J. Phys. A: Math. Gen. 32 (1999), 3555-3570.
2. Z. Arad and H.I. Blau, “On table algebras and applications to finite group theory,” J. Alg. 138 (1991) 137-185.
3. M. Atiyah, “Topological quantum field theories,” Publ. Math. IHES 68 (1989), 175-186.
4. H. Awata and Y. Yamada, “Fusion rules for the fractional level \hat sl(2) algebra,” Mod. Phys. Lett. A7 (1992), 1185-1195.
5. B. Bakalov and A. Kirillov Jr, “Lectures on tensor categories and modular functors,” Amer. Math. Soc., Providence, 2001.
6. E. Bannai, “Association schemes and fusion algebras (an introduction),” J. Alg. Combin. 2 (1993), 327-344.
7. E. Bannai, E. Bannai, O. Shimabukuro, and M. Tagami, “Modular invariants of the modular data of finite groups,” preprint.
8. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings, Menlo Park California, 1984.
9. P. Bantay, “The Frobenius-Schur indicator in conformal field theory,” Phys. Lett. B394 (1997) 87-88.
10. P. Bantay, “The kernel of the modular representation and the Galois action in RCFT,” Commun. Math. Phys. 233 (2003), 423-438.
11. V. Batyrev, “Vertex algebras and mirror symmetry,” (talk, University of Warwick, October 1999).
12. M. Bauer, A. Coste, C. Itzykson and P. Ruelle, “Comments on the links between SU(3) modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards,” J. Geom. Phys. 22 (1997), 134-189.
13. L. Bégin, P. Mathieu, and M.A. Walton, “ \hat su(3)k fusion coefficients,” Mod. Phys. Lett. A7 (1992), 3255-3265.
14. L. Bégin, A.N. Kirillov, P. Mathieu, and M.A. Walton, “Berenstein-Zelevinsky triangles, elementary couplings, and fusion rules,” Lett. Math. Phys. 28 (1993), 257-268.
15. R.E. Behrend, P.A. Pearce, V.B. Petkova, and J.-B. Zuber, “Boundary conditions in rational conformal field theories,” Nucl. Phys. B579 (2000), 707-773.
16. B. Bertram, I. Ciocan-Fontanine, and W. Fulton, “Quantum multiplication of Schur polynomials,” J. Alg. 219 (1999), 728-746.
17. L. Birke, J. Fuchs, and C. Schweigert, “Symmetry breaking boundary conditions and WZW orbifolds,” Adv. Theor. Math. Phys. 3 (1999), 671-726.
18. H.I. Blau, “Quotient structures in C-algebras,” J. Alg. 175 (1995), 297-337.
19. J. B\ddot ockenhauer and D.E. Evans, “Modular invariants and subfactors,” in Mathematical Physics in Mathematics and Physics, R. Longo (Ed.), Amer. Math. Soc., Providence, 2001, pp. 11-37.
20. J. B\ddot ockenhauer and D.E. Evans, “Modular invariants from subfactors,” in Quantum Symmetries in Theoretical Physics and Mathematics, R. Coquereaux et al. (Eds.), Amer. Math. Soc., Providence, 2002, pp. 95- 131.
21. R.E. Borcherds, “Vertex algebras, Kac-Moody algebras, and the Monster,” Proc. Natl. Acad. Sci. (USA) 83 (1986), 3068-3071.
22. R.E. Borcherds, “What is Moonshine?,” in Proc. Intern. Congr. Math., Berlin, 1998, pp. 607-615.
23. P. Bouwknegt, P. Dawson, and D. Ridout, “D-branes on group manifolds and fusion rings,” J. High Energy Phys. 0212 (2002), 065.
24. A.S. Buch, A. Kresch, and H. Tamvakis, “Gromov-Witten invariants on Grassmannians,” J. Amer. Math. Soc. 16 (2003), 901-915.
25. A. Cappelli, C. Itzykson, and J.-B. Zuber, “The A-D-E classification of minimal and A(1) conformal invariant 1 theories,” Commun. Math. Phys. 113 (1987), 1-26.
26. J. Cardy, “Boundary conditions, fusion rules and the Verlinde formula,” Nucl. Phys. B324 (1989), 581-596.
27. M. Caselle and G. Ponzano, “Analyticity, modular invariance and the classification of three operator fusion algebras,” Phys. Lett. B242 (1990), 52-58.
28. H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, Springer, New York, 1988.
29. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn, Springer, Berlin, 1999.
30. A. Coste and T. Gannon, “Remarks on Galois in rational conformal field theories,” Phys. Lett. B323 (1994), 316-321.
31. A. Coste and T. Gannon, “Congruence subgroups and conformal field theory,” preprint (math.QA/0002044).
32. A. Coste, T. Gannon, and P. Ruelle, “Finite group modular data,” Nucl. Phys. B581 (2000), 679-717.
33. L. Crane and D.N. Yetter, “Deformations of (bi)tensor categories,” Cah. Top. Géom. Diff. Catég. 39 (1998), 163-180.
34. P. Di Francesco and J.-B. Zuber, “SU(N ) lattice integrable models associated with graphs,” Nucl. Phys. B338 (1990), 602-646.
35. P. Di Francesco and J.-B. Zuber, “SU(N ) lattice integrable models and modular invariance,” in Recent Developments in Conformal Field Theory, World Scientific, (1990), pp. 179-215.
36. Ph. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Springer, New York, 1997.
37. R. Dijkgraaf, “The mathematics of fivebranes,” in Proc. Intern. Congr. Math., Berlin, Vol. III, (1998), pp. 133-142. GANNON
38. R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, “The operator algebra of orbifold models,” Commun. Math. Phys. 123 (1989), 485-526.
39. R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Commun. Math. Phys. 129 (1990), 393-429.
40. C. Dong, “Vertex algebras associated with even lattices,” J. Alg. 160 (1993), 245-265.
41. C. Dong, H. Li, and G. Mason, “Simple currents and extensions of vertex operator algebras,” Commun. Math. Phys. 180 (1996), 671-707.
42. C. Dong, H. Li, and G. Mason, “Vertex operator algebras associated to admissible representations of \hat sl2,” Commun. Math. Phys. 184 (1997), 65-93.
43. C. Dong, H. Li, and G. Mason, “Modular-invariance of trace functions in orbifold theory and generalised moonshine,” Commun. Math. Phys. 214 (2000), 1-56.
44. W. Eholzer, “On the classification of modular fusion algebras,” Commun. Math. Phys. 172 (1995), 623-660.
45. F. Englert, L. Houart, A. Taormina, and P. West, “The symmetry of M-theories,” J. High Energy Phys. 9 (2003), 020.
46. P. Etingof and S. Gelaki, “Isocategorical groups,” Intern. Math. Res. Notices (2) (2001), 59-76.
47. D.E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Oxford University Press, 1998.
48. G. Faltings, “A proof for the Verlinde formula,” J. Alg. Geom. 3 (1994), 347-374.
49. B. Feigin and F. Malikov, “Modular functor and representation theory of \hat sl(2) at a rational level,” in Operads, Contemp. Math. 202, Amer. Math. Soc., Providence, 1997, pp. 357-405.
50. A.J. Feingold and M.D. Weiner, “Type A fusion rules from elementary group theory,” in Recent Developments in Infinite-Dimensional Lie algebras and Conformal Field Theory, S. Berman et al. (Eds.), Amer. Math. Soc., Providence, 2002, pp. 97-115.
51. M. Finkelberg, “An equivalence of fusion categories,” Geom. Funct. Anal. 6 (1996), 249-267.
52. D.S. Freed, M.J. Hopkins, and C. Teleman, “Twisted K-theory and loop group representations,” math.AT/0312155.
53. I.B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math, Vol. 134, Academic Press, London-New York, 1988.
54. I.B. Frenkel and Y. Zhu, “Vertex operator algebras associated to representations of affine and Virasoro algebras,” Duke Math. J. 66 (1992), 123-168.
55. J. Fuchs, “Fusion rules in conformal field theory,” Fortsch. Phys. 42 (1994), 1-48.
56. J. Fuchs, B. Gato-Rivera, B. Schellekens, and C. Schweigert, “Modular invariants and fusion rule automorphisms from Galois theory,” Phys. Lett. B334 (1994), 113-120.
57. J. Fuchs, S. Hwang, A.M. Semikhatov, and I.Y.U. Tipunin, “Nonsemisimple fusion algebras and the Verlinde formula,” hep-th/0306274.
58. J. Fuchs, A.N. Schellekens, and C. Schweigert, “From Dynkin diagram symmetries to fixed point structures,” Commun. Math. Phys. 180 (1996), 39-97.
59. J. Fuchs and C. Schweigert, “Branes: from free fields to general backgrounds,” Nucl. Phys. B530 (1998), 99-136.
60. L. Funar, “On the TQFT representations of the mapping class groups,” Pac. J. Math. 188 (1999), 251-274.
61. P. Furlan, A. Ganchev, and V. Petkova, “Quantum groups and fusion rules multiplicitites,” Nucl. Phys. B343 (1990), 205-227.
62. P. Furlan, A. Ganchev, and V.B. Petkova, “An extension of the character ring of sl(3) and its quantisation,” Commun. Math. Phys. 202 (1999), 701-733.
63. M.R. Gaberdiel, “Fusion rules and logarithmic representations of a WZW model at fractional level,” Nucl. Phys. B618 (2001), 407-436.
64. M.R. Gaberdiel and T. Gannon, “Boundary states for WZW models,” Nucl. Phys. 639 (2002), 471-501.
65. M.R. Gaberdiel and P. Goddard, “An introduction to meromorphic conformal field theory and its representations,” in Conformal Field Theory, Y. Nutka et al. (Eds.), Perseus Publishing, Cambridge MA, 2000.
66. M.R. Gaberdiel and H.G. Kausch, “A rational logarithmic conformal field theory,” Phys. Lett. B386 (1996), 131-137.
67. T. Gannon, “Symmetries of the Kac-Peterson modular matrices of affine algebras,” Invent. Math. 122 (1995), 341-357.
68. T. Gannon, “The level 2 and 3 modular invariants for the orthogonal algebras,” Canad. J. Math. 52 (2000), 503-521.
69. T. Gannon, “The Cappelli-Itzykson-Zuber A-D-E classification,” Rev. Math. Phys. 12 (2000), 739-748.
70. T. Gannon, “Boundary conformal field theory and fusion ring representations,” Nucl. Phys. B627 (2002), 506-564.
71. T. Gannon, “The ADE7 modular invariants of the affine algebras” (in preparation).
72. T. Gannon, “The theory of fusion rings and modular data” (in preparation).
73. T. Gannon, “The modular invariants for the low rank affine algebras” (in preparation).
74. T. Gannon, Ph. Ruelle, and M.A. Walton, “Automorphism modular invariants of current algebras,” Commun. Math. Phys. 179 (1996), 121-156.
75. F.R. Gantmacher, The Theory of Matrices, Chesea Publishing, New York, 1990.
76. G. Georgiev and O. Mathieu, “Catégorie de fusion pour les groupes de Chevalley,” C. R. Acad. Sci. Paris 315 (1992), 659-662.
77. D. Gepner and E. Witten, “Strings on group manifolds,” Nucl. Phys. B278 (1986), 493-549.
78. F.M. Goodman and H. Wenzl, “Littlewood-Richardson coefficients for Hecke algebras at roots of unity,” Adv. Math. 82 (1990), 244-265.
79. A. Hanaki and I. Miyamoto, “Classification of primitive association schemes of order up to 22,” Kyushu J. Math. 54 (2000), 81-86.
80. J.A. Harvey and G. Moore, “Algebras, BPS states, and strings,” Nucl. Phys. 463 (1996), 315-368.
81. M. Hazewinkel, W. Hesselink, D. Siersma, and F.D. Veldkamp, “The ubiquity of Coxeter-Dynkin diagrams (an introduction to the A-D-E problem),” Nieuw Arch. Wisk. 25 (1977), 257-307.
82. I.M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
83. V.G. Kac, “Simple Lie groups and the Legendre symbol,” in Algebra, Lecture Notes in Math 848, Springer, New York, 1981, pp. 110-123.
84. V.G. Kac, Infinite Dimensional Lie Algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.
85. V.G. Kac, Vertex Algebras for Beginners, 2nd edn (AMS, Providence, 1998).
86. V.G. Kac and M. Wakimoto, “Modular invariant representations of infinite-dimensional Lie algebras and superalgebras,” Proc. Natl. Acad. Sci. USA 85 (1988), 4956-4960.
87. S. Kass, R.V. Moody, J. Patera, and R. Slansky, Affine Lie Algebras, Weight Multiplicities, and Branching Rules, Vol. 1, Univ. Calif. Press, Berkeley, 1990.
88. C. Kassel, Quantum Groups, Springer, New York, 1995.
89. T. Kawai, “On the structure of fusion algebras,” Phys. Lett. B217 (1989), 247-251.
90. H. Kosaki, A. Munemasa, and S. Yamagami, “On fusion algebras associated to finite group actions,” Pac. J. Math. 177 (1997), 269-290.
91. F. Lesage, P. Mathieu, J. Rasmussen, and H. Saleur, “The su(2) - 1/2 WZW model and beta-gamma system,” Nucl. Phys. B647 (2002), 363-403.
92. D.C. Lewellen, “Sewing constraints for conformal field theories on surfaces with boundaries,” Nucl. Phys. B372 (1992), 654-682.
93. G. Lusztig, “Exotic Fourier Transform,” Duke Math. J. 73 (1994), 227-241.
94. R.V. Moody and J. Patera, “Computation of character decompositions of class functions on campact semisimple Lie groups,” Math. Comput. 48 (1987), 799-827.
95. G. Moore and N. Seiberg, “Classical and quantum conformal field theory,” Commun. Math. Phys. 123 (1989), 177-254.
96. A. Munemasa, “Splitting fields of association schemes,” J. Combin. Th. A57 (1991), 157-161.
97. A. Ocneanu, “Paths on Coxeter diagrams: From Platonic solids and singularities to minimal models and subfactors,” in Lectures on Operator Theory, Amer. Math. Soc., Providence, 1999.
98. A. Ocneanu, “The classification of subgroups of quantum SU (N ),” in Quantum Symmetries in Theoretical Physics and Mathematics, R. Coquereaux et al. (Eds.), Amer. Math. Soc., Providence, 2002.
99. V.B. Petkova and J.-B. Zuber, “The many faces of Ocneanu cells,” Nucl. Phys. B603 (2001), 449-496.
100. K.-H. Rehren, “Braid group statistics and their superselection rules,” in The Algebraic Theory of Superselection Sectors, D. Kastler (Ed.), World Scientific, Singapore, 1990, pp. 333-355.
101. P. Ruelle, E. Thiran, and J. Weyers, “Implications of an arithmetic symmetry of the commutant for modular invariants,” Nucl. Phys. B402 (1993), 693-708. GANNON
102. A. Sagnotti, Y.S. Stanev, “Open descendents in conformal field theory,” preprint (hep-th/9605042).
103. A.N. Schellekens and S. Yankielowicz, “Modular invariants from simple currents. An explicit proof,” Phys. Lett. B227 (1989), 387-391.
104. A. Schilling and M. Shimozono, “Bosonic formula for level restricted paths,” in Combinatorial Methods in Representation Theory, Math. Soc. Japan, Tokyo, 2000, pp. 305-325.
105. G. Segal, “The definition of conformal field theory,” in Topology, Geometry and Quantum Field Theory (Oxford, 2002), Cambridge University Press, Cambridge, 2004, pp. 423-577.
106. P. Slodowy, “Platonic solids, Kleinian singularities, and Lie groups,” in Algebraic Geometry, Lecture Notes in Math 1008, Springer, Berlin, 1983, pp. 102-138.
107. N. Sousa and A.N. Schellekens, “Orientation matters for NIMreps,” Nucl. Phys. B653 (2003), 339-368.
108. I. Tuba and H. Wenzl, “Representations of the braid group B3 and of SL(2, Z),” Pac. J. Math. 197 (2001), 491-510.
109. G. Tudose, “A special case of sl(n)-fusion coefficients,” preprint (math.CO/0008034).
110. V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Math. 18, Berlin, 1994.
111. C. Vafa, “Toward a classification of conformal theories,” Phys. Lett. 206B (1988), 421-426.
112. E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory,” Nucl. Phys. B300 (1988), 360-376.
113. M.A. Walton, “Algorithm for WZW fusion rules: a proof,” Phys. Lett. B241 (1990), 365-368.
114. A.J. Wassermann, “Operator algebras and conformal field theory,” in Proc. Intern. Congr. Math, Zurich, Birkh\ddot auser, Basel, 1995, pp. 966-979.
115. N.J. Wildberger, “Duality and entropy of finite commutative hypergroups and fusion rule algebras,” J. London Math. Soc. 56 (1997), 275-291.
116. E. Witten, “The Verlinde formula and the cohomology of the Grassmannian,” in Geometry, Topology and Physics, Conf. Proc. Lecture Notes in Geom. Top. Vol. VI (1995), pp. 357-422.
117. Y. Zhu, “Modular invariance of characters of vertex operator algebras,” J. Amer. Math. Soc. 9 (1996), 237-302.
118. J.-B. Zuber, “Conformal, integrable and topological theories, graphs and Coxeter groups,” in Proc. Intern. Conf. of Math. Phys., D. Iagnolnitzer (Ed.), Intern. Press, Cambridge MA, 1995, pp. 674-689.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition