ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Row and Column Removal Theorems for Homomorphisms of Specht Modules and Weyl Modules

Sinéad Lyle and Andrew Mathas
School of Mathematics and Statistics F07 University of Sydney NSW 2006 Australia

DOI: 10.1007/s10801-005-2511-5

Abstract

We prove a q-analogue of the row and column removal theorems for homomorphisms between Specht modules proved by Fayers and the first author [16]. These results can be considered as complements to James and Donkin's row and column removal theorems for decomposition numbers of the symmetric and general linear groups. In this paper we consider homomorphisms between the Specht modules of the Hecke algebras of type A and between the Weyl modules of the q-Schur algebra.

Pages: 151–179

Keywords: keywords Hecke algebras; Schur algebras

Full Text: PDF

References

1. J. Brundan, R. Dipper, and A.S. Kleshchev, “Quantum linear groups and representations of G Ln(Fq ),” Memoirs A.M.S. 706, (2001).
2. R.W. Carter and G. Lusztig, “On the modular representations of the general linear and symmetric groups,” Math. Z. 136 (1974), 193-142.
3. J. Chuang, H. Miyachi, and K.M. Tan, “Row and column removal in the q-deformed Fock space,” J. Algebra 254 (2002), 84-91.
4. E. Cline, B. Parshall, and L. Scott, “Abstract Kazhdan-Lusztig theories,” T\hat ohoku Math. J. 45 (1993), 511- 534.
5. E. Cline, B. Parshall, and L. Scott, “On Ext-transfer for algebraic groups,” Trans. Groups 9 (2004), 213- 236.
6. R. Dipper and G. James, “Representations of Hecke algebras of general linear groups,” Proc. L.M.S. (3) 52 (1986), 20-52.
7. R. Dipper and G. James, “The q-Schur algebra,” Proc. L.M.S. (3) 59 (1989), 23-50.
8. R. Dipper and G. James, “q-Tensor space and q-Weyl modules,” Trans. A.M.S. 327 (1991), 251-282.
9. S. Donkin, “A note of decomposition numbers for general linear groups and symmetric groups,” Math. Proc. Cambridge Phil. Soc. 97 (1985), 57-62.
10. S. Donkin, “Rational Representations of Algebraic Groups: Tensor Products and Filtrations, SLN 1140, Springer-Verlag, 1985.
11. S. Donkin, “On Schur algebras and related algebras I,” J. Algebra 104 (1986), 310-328.
12. S. Donkin, “Standard homological properties for quantum G Ln,” J. Algebra 181 (1996), 235-266.
13. S. Donkin, The q-Schur algebra, L.M.S. Lecture Notes 253, CUP, Cambridge, 1999.
14. S. Donkin, “Tilting modules for algebraic groups and finite dimensional algebras,” in The handbook of Tilting Theory, D. Happel and H. Krause (Eds.), Cambridge University Press, to appear, 2004.
15. K. Erdmann, “Ext1 for Weyl modules of S L2(K ),” Math. Z. 218 (1995), 447-459.
16. M. Fayers and S. Lyle, “Row and column removal theorems for homomorphisms between Specht modules,” J. Pure Appl. Algebra 185 (2003), 147-164.
17. J.J. Graham and G.I. Lehrer, “Cellular algebras,” Invent. Math. 123 (1996), 1-34.
18. J.A. Green, Polynomial Representations of G Ln, SLN vol. 830, Springer-Verlag, New York, 1980.
19. D.J. Hemmer, “Fixed-point functors for symmetric groups and Schur algebras,” J. Algebra 280 (2004), 295- 312.
20. D.J. Hemmer, “A row removal theorem for the ext1 quiver of symmetric groups and Schur algebras,” J. Algebra 280 (2004), 295-312.
21. D.J. Hemmer and D.K. Nakano, “Specht filtrations for Hecke algebras of type A,” J. London Math. Soc. (2) 69 (2004), 623-638.
22. G.D. James, The Representation Theory of the Symmetric Groups, SLN 682, Springer-Verlag, New York, 1978.
23. G.D. James, “On the decomposition matrices of the symmetric groups III,” Math. Z. 71 (1981), 115-122.
24. G.D. James, “Representations of General Linear Groups,” L.M.S. Lecture Notes 94, CUP, 1984.
25. G.D. James, “The decomposition matrices of G Ln(q) for n \leq 10,” Proc. L.M.S. (3) 60 (1990), 225-264.
26. J.C. Jantzen, Representations of Algebraic Groups, Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, second ed., 2003.
27. M. Kashiwara and T. Tanisaki, “Kazhdan-lusztig conjecture for affine algebras with negative level,” Duke J. Math. 77 (1995), 21-62.
28. D. Kazhdan and G. Lusztig, “Tensor structures arising from affine lie algebras I-IV,” J. A.M.S. 6 (1993), 9-1011 (7) (1994), 335-453.
29. A.S. Kleshchev and J. Sheth, “On extensions of simple modules over symmetric and algebraic groups,” J. Algebra 221 (1999), 705-722.
30. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Hecke algebras at roots of unity and crystal bases of quantum affine algebras,” Comm. Math. Phys. 181 (1996), 205-263.
31. B. Leclerc, “Decomposition numbers and canonical bases,” Alg. Represent. Theory 3 (2000), 277- 287.
32. B. Leclerc and J.-Y. Thibon, “Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials,” in Combinatorial methods in representation theory, M. Kashiwara et al., Eds., Adv. Pure Math. vol. 28, 2000, pp. 155-220.
33. A. Mathas, “Hecke algebras and Schur algebras of the symmetric group,” Univ. Lecture Notes 15, A.M.S., (1999).
34. G.E. Murphy, “The representations of Hecke algebras of type An,” J. Algebra 173 (1995), 97-121.
35. M. Varagnolo and E. Vasserot, “On the decomposition matrices of the quantized Schur algebra,” Duke J. Math. 100 (1999), 267-297.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition