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Abstract. Let S = GR(23, n) be the Galois ring of characteristic 23 and rank n and let R = S[X ]/(X2, 2X −4).
We give an explicit construction of Hadamard difference sets in (R, +) ∼= Z
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1. Introduction

Let G be a finite group of order v. A subset D ⊂ G is called a difference set in G with
parameters (v, k, λ) if |D| = k and d1d−1

2 (d1, d2 ∈ D, d1 �= d2) represents each element
in G \ {e} exactly λ times. A difference set with parameters (v, k, λ) = (4N 2, 2N 2 −
N , N 2 − N ) is called a Hadamard difference set. Initially studied by Menon [8], Hadamard
difference sets have received much attention ever since. A lot is known about Hadamard
difference sets: For example, in finite 2-groups, every nontrivial difference set is either a
Hadamard difference set or a complement of a Hadamard difference set [8]. A finite abelian
2-group G of order 22d+2 has a Hadamard difference if and only if exp(G) ≤ d + 2 [10,
6]. For a survey on Hadamard difference sets, the reader is referred to [2] by Davis and
Jedwab.

The existence of Hadamard difference sets in abelian 2-groups with |G| = 22d+2 and
exp(G) ≤ d + 2 was proved by Kraemer [6]. The construction in [6] is algorithmic. There
are still interests in more explicit constructions of Hadamard difference sets in abelian 2-
groups, as stated in one of the open problems in [2]. It seems that suitable ring structures
on the groups are the key to explicit constructions. (The reader may see [3] and [4] for ring
theoretic constructions of other types of difference sets.) In this note, we consider a finite
ring R = S[X ]/(X2, 2X − 4) where S = GR(23, n) is the Galois ring of characteristic 23

and rank n [7]. We give a simple and explicit construction of Hadamard difference sets in
(R, +) ∼= Z

n
8 × Z

n
2.
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2. The construction

Let S = GR(23, n) and

R = S[X ]/(X2, 2X − 4).

Denote the image of X in R by x . R is a local ring with maximal ideal 2R + x R. Note that
2R + x R is not a principal ideal, hence R is not a chain ring [7]. However, R has a unique
minimal ideal 4R, hence R is a finite Frobenius local ring [4]. In fact, the complete ideal
lattice of R is as follows:

2R x R

{0}

4R

2R + x R

R

��

��

��

��

It is easy to see that (R, +) ∼= Z
n
8 × Z

n
2 and that as an abelian group,

(2R + x R)/4R ∼= Z
2n
2 .

Let Tr : S → Z8 be the trace map of S. Define

λ : S[X ] → Z8

a0 + a1 X + · · · �→ Tr(a0 + 2a1)
(2.1)

Then (X2, 2X − 4) ⊂ ker λ, hence λ induces a Z8-linear map λ̄ : R → Z8. Let ξ = e2π i/8.
Then χ ( ) = ξ λ̄( ) is a character of (R, +). Note that the minimal ideal 4R �⊂ ker χ .
Hence χ is a generating character of (R, +), i.e., every character of (R, +) is of the form
χa( ) = χ (a · ) for some a ∈ R [4]. Let

V = {v ∈ 4S : Tr(v) = 0}. (2.2)

V is an (n − 1)-dimensional vector space over Z2. Note that

(S/2S) × 4S → 4Z8
∼= Z2

(a + 2S, v) �→ Tr(av), a ∈ S
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is a nondegenerate Z2-bilinear form. Thus

{a + 2S ∈ S/2S : Tr(av) = 0 for all v ∈ V }

is a 1-dimensional Z2-subspace of S/2S. Therefore, for a ∈ S,

Tr(av) = 0 for all v ∈ V iff a ≡ 0 or 1 (mod 2S). (2.3)

Let T be the Teichmüller set of S and put T ∗ = T \{0}. Define

D = T ∗(1 + xT + 2T + V ) ⊂ R\(2R + x R).

Clearly, |D| = (2n − 1)23n−1. For any subgroup H ⊂ (R, +), we use H⊥ to denote the
group of characters of (R, +) which are principal on H . The following lemma gives the
interesting character value distribution of D.

Lemma 2.1 Let ψ be a nonprincipal character of (R, +). We have




|ψ(D)| = 22n−1, if ψ /∈ (4R)⊥,

ψ(D) = 0, if ψ ∈ (4R)⊥\(2R + x R)⊥,

ψ(D) = −23n−1, if ψ ∈ (2R + x R)⊥ \ R⊥.

(2.4)

Proof:
Case 1. ψ /∈ (4R)⊥. In this case, ψ = χa for some a ∈ R×, where R× is the multiplicative

group of R and R× = T ∗(1 + xT + 2T + 4T ). We may assume that a = 1 + xb + 2c + 4d
(b, c, d ∈ T ). Thus

χa(D) =
∑

ε∈T ∗,v∈V
w,z∈T

χ(ε(1 + xw + 2z + v)(1 + xb + 2c + 4d))

=
∑
ε∈T ∗
w,z∈T

χ (ε(1 + xw + 2z)(1 + xb + 2c + 4d))
∑
v∈V

χ (εv).

It follows from (2.3) that

∑
v∈V

χ (εv) =
{|V |, if ε = 1,

0, otherwise.
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Hence

χa(D) = |V |
∑

w,z∈T

χ ((1 + xw + 2z)(1 + xb + 2c + 4d))

= |V |
∑

w,z∈T

χ (1 + xb + 2c + 4d + xw + 2xwc + 2z + 2xzb + 4zc)

= |V |
∑

w,z∈T

χ (1 + 2b + 2c + 4d + 2w + 4wc + 2z + 4zb + 4zc) (by (2.1)).

Therefore,

|χa(D)| = |V |
∣∣∣∣∣
∑
w∈T

χ (2w + 4wc)

∣∣∣∣∣
∣∣∣∣∣
∑
z∈T

χ (2z + 4(b + c)z)

∣∣∣∣∣.
In the above,

∣∣∣∣∣
∑
w∈T

χ (2w + 4wc)

∣∣∣∣∣ =
∣∣∣∣∣
∑
w∈T

χ (2w2 + 4wc)

∣∣∣∣∣
=

∣∣∣∣∣
∑
w∈T

χ (2(w + c)2)

∣∣∣∣∣
=

∣∣∣∣∣
∑
w∈T

χ (2w)

∣∣∣∣∣
= 2

n
2 ,

where the last step follows from the well known result about the exponential sum over the
Teichmüller set of GR(4, n) [1, 11]. Of course, we also have | ∑z∈T χ (2z + 4(b + c)z)| =
2n/2. Therefore,

|χa(D)| = |V |2n = 22n−1.

Case 2. ψ ∈ (4R)⊥\(2R+x R)⊥. In this case we may write ψ = χa where a = xb+2c+4d
(b, c, d ∈ T , b and c not both 0). We then have

χa(D) =
∑

ε∈T ∗,v∈V
w,z∈T

χ(ε(1 + xw + 2z + v)(xb + 2c + 4d))

= |V |
∑
ε∈T ∗
w,z∈T

χ (ε(xb + 2c + 4d + 2xwc + 2xzb + 4zc))

= |V |
[ ∑

ε∈T ∗
χ (ε(2b + 2c + 4d))

][ ∑
w∈T

χ (4wc)

][ ∑
z∈T

χ (4z(b + c))

]
.
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At least one of c and b + c is nonzero. Thus[ ∑
w∈T

χ (4wc)

][ ∑
z∈T

χ (4z(b + c))

]
= 0.

Case 3. ψ ∈ (2R + x R)⊥\R⊥. We can assume that ψ = χ4. Clearly,

χ4(D) = |T |2|V |
∑
ε∈T ∗

χ (4ε) = −|T |2|V | = −23n−1.

Theorem 2.2 Let E ⊂ (2R + x R)/4R ∼= Z
2n
2 be any Hadamard difference set. Let Ē ⊂

2R + x R be the preimage of E . Then D ∪ Ē is a Hadamard difference set in (R, +).

Proof: First we have

|D ∪ Ē | = |D| + |4R||E | = (2n − 1)23n−1 + 2n(22n−1 − 2n−1) = 24n−1 − 22n−1.

Let ψ be any nonprincipal character of (R, +). By the well known characterization of
difference sets in abelian groups in terms of character values [10], we only have to show
that |ψ(D ∪ Ē)| = 22n−1. We have

ψ(Ē) =




0, if ψ /∈ (4R)⊥,

±2n2n−1, if ψ ∈ (4R)⊥\(2R + x R)⊥,

2n(22n−1 − 2n−1), if ψ ∈ (2R + x R)⊥\R⊥.

(2.5)

Combining (2.4) and (2.5), we always have |ψ(D ∪ Ē)| = 22n−1.

In the above construction, there are two independent pieces: a shell D in R\(2R + x R)
and a core Ē in 2R + x R. We mention that this kind of shell-nesting method is common in
constructions of Latin square type partial difference sets [5].

We compare the above construction with known constructions of Hadamard difference
sets in finite abelian 2-groups. First, if the group is of the form H × H , there is a very general
construction of Hadamard difference sets using finite local rings [4]. However, when n is
odd, Z

n
8 × Z

n
2 is not of the form H × H . Next, we consider the Menon construction [8]: Let

G1 and G2 be finite groups and D1 ⊂ G1, D2 ⊂ G2. Then

(D1 × (G2\D2)) ∪ ((G1\D1) × D2) (2.6)

is a Hadamard difference set in G1 × G2 if and only if Di is a Hadamard difference set in
Gi for i = 1, 2. When G1 �= 0 and G2 �= 0, we call a subset in G1 × G2 of the type (2.6)
decomposable.
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Proposition 2.3 In Theorem 2.2, if D ∪ Ē is decomposable in (R, +), then E is decom-
posable in (2R + x R)/4R ∼= Z

2n
2 .

Proof: Assume that R = G1 × G2, (Gi �= 0, i = 1, 2), Di ⊂ Gi (i = 1, 2) and

D ∪ Ē = (D1 × (G2\D2)) ∪ ((G1\D1) × D2).

Note that all elements in D have order 8 and all elements in Ē have order ≤4. Let Hi =
{g ∈ Gi : 4g = 0} and put Fi = Di ∩ Hi (i = 1, 2). Then 2R + x R = H1 × H2 and

Ē = (F1 × (H2\F2)) ∪ ((H1\F1) × F2). (2.7)

We have

Z
2n
2

∼= 2R + x R

4R
= H1

4G1
× H2

4G2
,

where Hi/4Gi �= 0 (i = 1, 2). (Otherwise we would have rank ( H1
4G1

× H2
4G2

) < 2n.) We
claim that Fi is a union of cosets of 4Gi in Hi (i = 1, 2). If Fi = ∅ or Hi for some
i = 1 or 2, the claim is obviously true. So assume that Fi �= Hi (i = 1, 2). Choose a
nonprincipal character ψ2 of H2 such that ψ2(F2) �= 0. Let ψ1 be any character of H1 which
is not principal on 4G1. Then ψ1 × ψ2 is a character of H1 × H2 = 2R + x R which is
nonprincipal on 4G1 × 4G2 = 4R. Thus

0 = (ψ1 × ψ2)(Ē) = ψ1(F1)ψ2(H2\F2) + ψ1(H1\F1)ψ2(F2) = −2ψ1(F1)ψ2(F2).

It follows that ψ1(F1) = 0 for all ψ1 /∈ (4G1)⊥. Therefore F1 is a union of cosets of 4G1 in
H1. In the same way, F2 is a union of cosets of 4G2 in H2. Mapping both sides of (2.7) to
2R+x R

4R = H1
4G1

× H2
4G2

, we have

E =
[

F̃1 ×
(

H2

4G2

∖
F̃2

)]
∪

[(
H1

4G1

∖
F̃1

)
× F̃2

]

where F̃i is the image of Fi in Hi/4Gi . Thus E is decomposable.

Hadamard difference sets in Z
2n
2 are precisely supports of bent functions on Z

2n
2 [9]. There

are many indecomposable bent functions. For example, any bent function on Z
2n
2 of degree

n is indecomposable [9]. Choose any indecomposable bent function on Z
2n
2 and let E be the

corresponding indecomposable Hadamard difference set in Z
2n
2 . Then by Proposition 2.3,

the Hadamard difference set D ∪ Ē in Theorem 2.2 is indecomposable hence can not be
obtained from the Menon construction.

The construction in [6] works for all abelian groups G with |G| = 22d+2 and exp(G) ≤
d + 2. However, we find it difficult to compare the constructions in this note and in [6]
because of the algorithmic nature of the latter.



RING THEORETIC CONSTRUCTION OF HADAMARD DIFFERENCE SETS IN Z
n
8 × Z

n
2 187

References
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