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Abstract. A certain squarefree monomial ideal HP arising from a finite partially ordered set P will be studied
from viewpoints of both commutative algbera and combinatorics. First, it is proved that the defining ideal of
the Rees algebra of HP possesses a quadratic Gröbner basis. Thus in particular all powers of HP have linear
resolutions. Second, the minimal free graded resolution of HP will be constructed explicitly and a combinatorial
formula to compute the Betti numbers of HP will be presented. Third, by using the fact that the Alexander
dual of the simplicial complex � whose Stanley–Reisner ideal coincides with HP is Cohen–Macaulay, all the
Cohen–Macaulay bipartite graphs will be classified.

Introduction

Let P be a finite partially ordered set (poset for short) and write J (P) for the finite poset
which consists of all poset ideals of P , ordered by inclusion. Here a poset ideal of P is a
subset I of P such that if x ∈ I , y ∈ P and y ≤ x , then y ∈ I . In particular the empty set
as well as P itself is a poset ideal of P . It follows easily that J (P) is a finite distributive
lattice [12, p. 106]. Conversely, Birkhoff’s fundamental structure theorem [12, Theorem
3.4.1] guarantees that, for any finite distributive lattice L, there exists a unique poset P such
that L = J (P).

Let P be a finite poset with |P| = n, where |P| is the cardinality of P , and let
S = K [{x p, yp}p∈P ] denote the polynomial ring in 2n variables over a field K with each
deg x p = deg yp = 1.

We associate each poset ideal I of P with the squarefree monomial

uI =
( ∏

p∈I

x p

)( ∏
p∈P\I

yp

)

of S of degree n. In particular u P = ∏
p∈P x p and u∅ = ∏

p∈P yp.
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The normal affine semigroup ring K [{uI }I∈J (P)] is studied in [9] from viewpoints of
both commutative algebra and combinatorics.

In the present paper, however, we are interested in the squarefree monomial ideal

HP = ({uI }I∈J (P)
)

of S generated by all uI with I ∈ J (P).
The outline of the present paper is as follows. First, in Section 1 we study the Rees algebra

R(HP ) of HP and establish our fundamental Theorem 1.1 which says that the defining ideal
ofR(HP ) possesses a reduced Gröbner basis consisting of quadratic binomials whose initial
monomials are squarefree. Thus R(HP ) turns out to be normal and Koszul (Corollary 1.2),
and all powers of HP have linear resolutions (Corollary 1.3).

Second, in Section 2 the minimal graded free S-resolution of HP is constructed explicitly.
See Theorem 2.1. The resolution tells us how to compute the Betti numbers βi (HP ) of HP

in terms of the combinatorics of the distributive lattice L = J (P). In fact, if bi (L) is
the number of intervals [I, J ] of L = J (P) which are Boolean lattices of rank i , then
the i th Betti number βi (HP ) of HP coincides with bi (L). See Corollary 2.2. (A Boolean
lattice of rank i is the distributive lattice Bi which consists of all subsets of {1, . . . , i},
ordered by inclusion.) Thus in particular for a finite distributive lattice L = J (P), one has∑

i≥0(−1)i bi (L) = 1. See Corollary 2.3. In addition, it is shown that the ideal HP is of
height 2 and a formula to compute the multiplicity of S/HP will be given. See Proposition
2.4 (and Corollary 2.5).

Let �P denote the simplicial complex on the vertex set {x p, yp}p∈P such that the square-
free monomial ideal HP coincides with the Stanley–Reisner ideal I�P . In Section 3 the
Alexander dual �∨

P of �P will be studied. Since the Stanley–Reisner ideal HP = I�P has
a linear resolution, it follows from [4, Theorem 3] that �∨

P is Cohen–Macaulay. It will turn
out that the Stanley–Reisner ideal I�∨

P
of �∨

P is an edge ideal of a finite bipartite graph.
Somewhat surprisingly, this simple observation enables us to classify all Cohen–Macaulay
bipartite graphs. In fact, Theorem 3.4 says that a finite bipartite graph G is Cohen–Macaulay
if and only if G comes from the comparability graph of a finite poset.

1. Monomial ideals arising from distributive lattices

Work with the same notation as in Introduction. Let P be a finite poset with |P| = n and
S = K [{x p, yp}p∈P ] the polynomial ring in 2n variables over a field K with each deg x p =
deg yp = 1. Recall that we associate each poset ideal I of P with the squarefree monomial
uI = (

∏
p∈I x p)(

∏
p∈P\I yp) of S of degree n, and introduce the ideal HP = ({uI }I∈J (P))

of S.
Let R(HP ) denote the Rees algebra of HP and WP the defining ideal of R(HP ). In other

words, R(HP ) is the affine semigroup ring

R(HP ) = K
[{x p, yp}p∈P , {uI t}I∈J (P)

]
(⊂ K [{x p, yp}p∈P , t])
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and WP is the kernel of the surjective ring homomorphism ϕ : K [x, y, z] → R(HP ), where

K [x, y, z] = K
[{x p, yp}p∈P , {zI }I∈J (P)

]
is the polynomial ring over K and where ϕ is defined by setting ϕ(x p) = x p, ϕ(yp) = yp

and ϕ(zI ) = uI t .
For the convenience of our discussion, in the remainder of the present section, we will

use the notation P = {p1, . . . , pn} and write xi , yi instead of x pi , ypi . Let <lex denote the
lexicographic order [5, p. 329] on S induced by the ordering x1 > · · · > xn > y1 > · · · > yn

and <� the reverse lexicographic order [5, p. 330] on K [{zI }I∈J (P)] induced by an ordering
of the variables zI ’s such that zI > z J if J ⊂ I in J (P). We then introduce the new
monomial order <

�

lex on T by setting

(
n∏

i=1

xai
i ybi

i

)(
zI1 · · · zIq

)
<

�

lex

(
n∏

i=1

x
a′

i
i y

b′
i

i

)(
zI ′

1
· · · zI ′

q′

)

if either

(i)
∏n

i=1 xai
i ybi

i <lex
∏n

i=1 x
a′

i
i y

b′
i

i

or

(ii)
∏n

i=1 xai
i ybi

i = ∏n
i=1 x

a′
i

i y
b′

i
i and zI1 · · · zIq <� zI ′

1
· · · zI ′

q′ .

Theorem 1.1 The reduced Gröbner basis G
<

�
lex

(WP ) of the defining idealWP ⊂ K [x, y, z]
with respect to the monomial order <

�

lex consists of quadratic binomials whose initial
monomials are squarefree.

Proof: The reduced Gröbner basis of WP ∩ K [{zI }I∈J (P)] with respect to the reverse
lexicographic order <� coincides with G

<
�

lex
(WP ) ∩ K [{zI }I∈J (P)]. It follows from [9] that

G
<

�
lex

(WP ) ∩ K [{zI }I∈J (P)] consists of those binomials

zI z J − zI∧J z I∨J

such that I and J are incomparable in the distributive lattice J (P).
It is known [14, Corollary 4.4] that the reduced Gröbner basis of WP consists of irre-

ducible binomials of K [x, y, z]. Let

f =
(

n∏
i=1

xai
i ybi

i

)(
zI1 · · · zIq

) −
(

n∏
i=1

x
a′

i
i y

b′
i

i

)(
zI ′

1
· · · zI ′

q

)
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be an irreducible binomial of K [x, y, z] belonging to G
<

�
lex

(WP ) with

(
n∏

i=1

xai
i ybi

i

)(
zI1 · · · zIq

)

its initial monomial, where zI1 ≤ · · · ≤ zIq and zI ′
1
≤ · · · ≤ zI ′

q
.

Let f �∈ K [{zI }I∈J (P)]. Let j denote an integer for which I ′
j �⊂ I j . Such an integer exists.

In fact, if I ′
j ⊂ I j for all j , then each ai = 0 and each b′

i = 0. This is impossible since
(
∏n

i=1 xai
i ybi

i )(zI1 · · · zIq ) is the initial monomial of f .
Let pi ∈ I ′

j\I j . Then pi belongs to each of I ′
j , I ′

j+1, . . . , I ′
q , and does not belong to each

of I1, I2, . . . , I j . Hence ai > 0.
Let pi0 ∈ P with pi0 ∈ I ′

j\I j such that I j ∪{pi0} ∈ J (P). Thus ai0 > 0. Let J = I j ∪{pi0}.
Then the binomial g = xi0 zI j − yi0 z J belongs to WP with xi0 zI j its initial monomial. Since
xi0 zI j divides the initial monomial of f , it follows that the initial monomial of f must
coincides with xi0 zI , as desired. �

It is well known that a homogeneous affine semigroup ring whose defining ideal has an
initial ideal which is generated by squarefree (resp. quadratic) monomials is normal (resp.
Koszul). See, e.g., [14, Proposition 13.15] and [6].

Corollary 1.2 Let P be an arbitrary finite poset. Then the Rees algebra R(HP ) is normal
and Koszul.

On the other hand, Stefan Blum [2] proved that if the Rees algebra of an ideal is Koszul,
then all powers of the ideal have linear resolutions.

Corollary 1.3 Let P be an arbitrary finite poset. Then all powers of HP have linear reso-
lutions.

2. The free resolution and Betti numbers of HP

Corollary 1.3 says that the monomial ideal HP arising from a finite poset P has a linear
resolution. The main purpose of the present section is to construct a minimal graded free
S-resolution F = FP of HP explicitly.

Let P be a finite poset with |P| = n and S = K [{x p, yp}p∈P ] the polynomial ring in 2n
variables over a field K with each deg x p = deg yp = 1. Recall that, for each poset ideal I
of P , we associate the squarefree monomial uI = (

∏
p∈I x p)(

∏
p∈P\I yp) of S of degree n.

Let HP denote the ideal of S generated by all uI with I ∈ J (P).
The maximal elements of a poset ideal I of P are called the generators of I . Let M(I )

denote the set of generators of I .
The construction of a minimal graded free S-resolution F = FP of HP is achieved as

follows: For all i ≥ 0 let Fi denote the free S-module with basis

e(I, T ),
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where

I ∈ J (P), T ⊂ P, I ∩ T ⊂ M(I ), |I ∩ T | = i and |I ∪ T | = n + i.

Extending the partial order on P to a total order, we define for i > 0 the differential

∂ : Fi → Fi−1

by

∂(e(I, T )) =
∑

p∈I∩T

(−1)σ (I∩T,p)(x pe(I\{p}, T ) − ype(I, T \{p})),

where for a subset Q ⊂ P and p ∈ Q we set σ (Q, p) = |{q ∈ Q : q < p}|.
With the notation introduced we have

Theorem 2.1 The complex F is a graded minimal free S-resolution of HP .

Proof: We define an augmentation ε : F0 → HP by setting

ε(e(I, T )) = uI

for all e(I, T ) ∈ F0. Note that if e(I, T ) is a basis element of F0, then T = [n]\I , so that ε

is well defined.
We first show that

· · · ∂−−−−→ F1
∂−−−−→ F0

ε−−−−→ HP −−−−→ 0

is a complex.
Let e(I, T ) ∈ F1 with I ∩ T = {p}. Then

(ε ◦ ∂)(e(I, T )) = x pε(e(I\{p}, T )) − ypε(e(I, T \{p}))
= x pu I\{p} − ypu I = 0.

Thus ∂ ◦ ε = 0, as desired.
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Next we show that ∂ ◦ ∂ = 0. Let e(I, T ) ∈ Fi+1 and set L = I ∩ T . Then

∂ ◦ ∂(e(I, T ))

=
∑
p∈L

(−1)σ (L ,p)(x p∂(e(I\{p}, T )) − yp∂(e(I, T \{p}))

=
∑
p∈L

(−1)σ (L ,p)

[
x p

( ∑
q∈L ,q �=p

(−1)σ (L\{p},q)

× (xqe(I\{p, q}, T ) − yqe(I\{p}, T \{q}))
)

− yp

( ∑
q∈L ,q �=p

(−1)σ (L\{p},q)(xqe(I\{q}, T \{p}) − yqe(I, T \{p, q}))
)]

=
∑

p,q∈L ,p �=q

(−1)σ (L ,p)+σ (L\{p},q)x pxqe(I\{p, q}, T )

−
∑

p,q∈L ,p �=q

(−1)σ (L ,p)+σ (L\{p},q)x p yqe(I\{p}, T \{q})

−
∑

p,q∈L ,p �=q

(−1)σ (L ,p)σ (L\{p},q)xq ype(I\{q}, T \{p})

+
∑

p∈L ,p �=q

(−1)σ (L ,p)+σ (L\{p},q) yp yqe(I, T \{p, q})

= 0.

The last equality holds since (−1)σ (L ,p)+σ (L\{p},q) = −(−1)σ (L ,q)+σ (L\{q},p).
In order to prove that the augmented complex

· · · −−−−→ F1
∂−−−−→ F0

ε−−−−→ HP −−−−→ 0

is exact we show:

(1) H0(F) = HP ,
(2) F is acyclic.

For the proof of (1) we note that the Taylor relations

rI,J = xJ\I yI\J e(I ) − xI\J yJ\I e(J ), I, J ∈ J (P)

generate the first syzygy module of HP . Here we set for simplicity e(I ) for the basis element
e(I, P\I ) in F0, and denote by xA yB the monomial

∏
p∈A x p

∏
q∈B yq .

Observe that

rI,J = xJ\I rI,I∩J − xI\J rJ,I∩J .
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Hence it suffices to show that rI,J ∈ ∂(F1) for all I, J ∈ L with J ⊂ I . To this end we choose
a sequence J = I0 ⊂ I1 ⊂ . . . Im−1 ⊂ Im = I of poset ideals such that I j = I j−1 ∪ {p j }
for j = 1, . . . , m. Then

rI,J =
m∑

j=1

(
m∏

k= j+1

x pk

j−1∏
k=1

ypk

)
rI j ,I j−1 .

The assertion follows since rI j ,I j−1 = −∂(e(I j , P\I j−1)) for all j .

We prove (2), that is, the acyclicity of F by induction on |P|. If P = {p}, then HP =
(x p, yp), and F can be identified with the Koszul complex associated with {x p, yp}, and
hence is acyclic.

Suppose now that |P| > 1. Let q ∈ P be a maximal element and let Q be the subposet
P\{q}. We define a map

φ : FQ → FP , ei (I, T ) �→ ei (I, T ∪ {q})

It is clear that φ is an injective map of complexes whose induced map HQ = H0(FQ) →
H0(FP ) = HP is multiplication by yq . Let G be the quotient complex FP/FQ . Since the
multiplication map is injective, the short exact sequence of complexes

0 −−−−→ FQ −−−−→ FP −−−−→ G −−−−→ 0

induces the long exact homology sequence

· · · −−−−→ H2(G) −−−−→ H1(FQ) −−−−→ H1(FP ) −−−−→ H1(G) −−−−→ 0

By induction hypothesis, Hi (FQ) = 0 for i > 0. Hence it suffices to show that Hi (G) = 0
for i > 0.

The principal order ideal (q) consists of all p ∈ P with p ≤ p. Let R be the subposet
P\(q), and let C be the mapping cone of the complex homomorphism

FR
−yq−−−−→ FR .

Then we get an exact sequence

0 −−−−→ FR −−−−→ C −−−−→ FR[−1] −−−−→ 0

Here FR[−1] is the complex FR shifted to the ‘left’, that is, (FR[−1])i = (FR)i−1 for all i .
By our induction hypothesis FR is acyclic. Thus from the long exact sequence

H1(C) −−−−→ H0(FR)
−yq−−−−→ H0(FR) −−−−→ H0(C) −−−−→ 0

· · · −−−−→ H2(C) −−−−→ H1(FR)
−yq−−−−→ H1(FR) −−−−→
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we deduce that Hi (C) = 0 for i > 1. We also get H1(C) = 0, since H0(FR) = HR , and
since multiplication by yq is injective on HR . Thus we see that C is acyclic.

We now claim that C ∼= G, thereby proving that G is acyclic, as desired.
In order to prove this claim we first notice that Ci = (FR)i−1 ⊕ (FR)i for i ≥ 0 (where

(FR)−1 = 0). Thus if r = |R|, then Ci has the basis Ci = Bi−1 ∪ Bi , where

Bi = {e(I, T ) : I ∈ L(R), T ⊂ R, I ∩ T ⊂ M(I ), |I ∩ T | = i, |I ∪ T | = r + i}.

On the other hand Gi has the basis

Gi = {e(I, T ) : I ∈ L(P), (q) ⊂ I, T ⊂ P, I ∩ T ⊂ M(I ), |I ∩ T | = i,

|I ∪ T | = n + i}.

Let ψi : Ci → Gi be the S-linear homomorphism with

ψi (e(I, T )) =
{

e(I ∪ (q), T ∪ {q}) if e(I, T ) ∈ Bi−1;

e(I ∪ (q), T ) if e(I, T ) ∈ Bi .

It is easy to see that all ψi are bijections and induce an isomorphism of complexes. �

Suppose P is of cardinality n and P is an antichain, i.e., any two elements of P are
incomparable. Then Bn = J (P) is called the Boolean lattice of rank n.

Let now L be an arbitrary finite distributive lattice, and let I, J ∈ L with I ≤ J . Then
the set

[I, J ] = {M ∈ L : I ≤ M ≤ J }

is called an interval in L. The interval [I, J ] with the induced partial order is again a
distributive lattice. Let bi (L) denote the number of intervals of L which are isomorphic to
Boolean lattices of rank i . In particular, b0(L) = |L|. These numbers have an algebraic
interpretation.

Recall that for a graded S-module M ,

βi (M) = dimK TorS
i (M, K )

is called the i th Betti-number of M . If F is a graded minimal free resolution of M , then
βi (M) is nothing but the rank of Fi .

Corollary 2.2 Let P be a finite poset, L = J (P) the distributive lattice and HP the
squarefree monomial ideal arising from P. Then

(a) bi (L) = βi (HP ) for all i ;
(b) the following three numbers are equal:
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(i) the projective dimension of HP ;
(ii) the maximum of the ranks of Boolean lattices which are isomorphic to an interval

of L;
(iii) the Sperner number of P, i.e., the maximum of the cardinalities of antichains of P.

Proof: (a) For each i ≥ 0, let Ji be the set of pairs (I, S), where I ∈ L, S ⊂ M(I ) and
|S| = i , and let Bi be the set of basis elements e(I, T ) of Fi . Then

Bi −→ Ji , e(I, T ) �→ (I, I ∩ T )

establishes a bijection between these two sets.
Since for each (I, S) ∈ Ji , the elements in S are pairwise incomparable it is clear that

[I\S, I ] is isomorphic to a Boolean lattice of rank i .
Conversely, suppose [J, I ] is isomorphic to a Boolean lattice of rank i . Then S = I\J

is of a set of cardinality i , and J ∪ T ∈ L for all subsets T ⊂ S.
Suppose that S �⊂ M(I ). Then there exists, q ∈ S and p ∈ I such that p > q. If p ∈ J ,

then q ∈ J , a contradiction. Thus p ∈ S, and hence (J, p) ∈ L. This is again a contradiction,
because it would imply that q ∈ (J, p). Hence we have shown that (I, S) ∈ Ji .

It follows that the assignment e(I, T ) �→ [I\(I ∩ T ), I ] establishes a bijection between
the basis of Fi and the intervals of [J, I ] in L which are isomorphic to Boolean lattices.

(b) is an immediate consequence of (a) and its proof. �

Corollary 2.3 Let L be a finite distributive lattice. Then∑
i≥0

(−1)i+1bi (L) = 1.

Corollary 2.3 is a special case of [12, Exercise 3.19 (b)] and the resolution constructed in
Theorem 2.1 is the cellular resolution [1] of the cubical complex appearing in Topological
Remark [12, pp. 178–179]. In the forthcoming paper [8], we construct such the resolutions
in more general contexts and show that these resolutions are cellular in some cases.

Let �P be the simplicial complex attached to the squarefree monomial ideal HP . In
the next section we will see (Lemma 3.1) that the Stanley–Reisner ideal attached to the
Alexander dual �∨

P is generated by the monomials x p yq such that p ≤ q. Hence for the
Stanley–Reisner ideal of �P we have

I�P =
⋂

p,q∈P,p≤q

(x p, yq ).

In particular we get

Proposition 2.4 Let P be a finite poset. Then the squarefree monomial ideal HP is of height
2, and the multiplicity of S/HP is given by

e(S/HP ) = |{(p, q) : p, q ∈ P, p ≤ q}|.
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Let I ⊂ S be an arbitrary graded ideal with graded minimal free resolution

0 −−−−→ ⊕βs

j=1 S(−asj ) −−−−→ · · · −−−−→ ⊕β1
j=1 S(−a1 j ) −−−−→ S

−−−−→ S/I −−−−→ 0.

Suppose the height of I equals h. Then by a formula of Peskine and Szpiro [11] one has

e(S/I ) = (−1)h

h!

s∑
i=1

(−1)i
βi∑

j=1

ah
i j .

Applying this formula in our situation and using Corollary 2.2 and Proposition 2.4 we get

Corollary 2.5 Let P be a finite poset with |P| = n, and let L = J (P) be the distributive
lattice. Then

|{(p, q) : p, q ∈ P, p ≤ q}| = 1

2

∑
i≥0

(−1)i+1bi (L)(n + i)2.

We close this section with an example. Let P be the poset with Hasse diagram

The distributive lattice L = J (P) has the Hasse diagram

Thus HP = (uvwx, avwx, buwx, abwx, bduw, abcx, abdw, abcd). Here we use for con-
venience the indeterminates a, b, c, d, u, v, w, x instead of x p and yp. The free resolution
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of HP is given by

0 −−−−→ S3(−6) −−−−→ S10(−5) −−−−→ S8(−4) −−−−→ HP −−−−→ 0.

We see from the Hasse diagram that the i th Betti number of HP coincides with number
of intervals of L which are isomorphic to Boolean lattices of rank i . The number of pairs
(p, q) in the poset P with p ≤ q is equal to 7, and this is also the number we get from
Corollary 2.5, namely (1/2)(−8 · 16 + 10 · 25 − 3 · 36) = 7.

3. Alexander duality and Cohen–Macaulay bipartite graphs

We refer the reader to, e.g., [3, 10, 13] for fundamental information about Stanley–Reisner
rings.

Let P = {p1, . . . , pn} be a finite poset and S = K [x1, . . . , xn, y1, . . . , yn] the polyno-
mial ring in 2n variables over a field K with each deg xi = deg yi = 1. We will use the
notation xi , yi instead of x pi , ypi , and set Vn = {x1, . . . , xn, y1, . . . , yn}.

Recall that HP is the ideal of S which is generated by those squarefree monomials
uI = (

∏
pi ∈I xi )(

∏
pi ∈P\I yi ) with I ∈ J (P). It then follows that there is a unique simplicial

complex �P on Vn such that the Stanley–Reisner ideal I�P coincides with HP . We study
the Alexander dual �∨

P of �P , which is the simplicial complex

�∨
P = {Vn\F : F �∈ �P}

on Vn .

Lemma 3.1 The Stanley–Reisner ideal of �∨
P is generated by those squarefree quadratic

monomials xi y j such that pi ≤ p j in P.

Proof: Let w = x1 . . . xn y1 . . . yn . If u is a squarefree monomial of S, then we write
supp(u) for the support of u, i.e., supp(u) = {xi : xi divides u} ∪ {y j : y j divides u}.
Now since {supp(uI ) : I ∈ J (P)} is the set of minimal nonfaces of �P , it follows that
{supp(w/uI ) : I ∈ J (P)} is the set of facets (maximal faces) of �∨

P . Our work is to find
the minimal nonfaces of �∨

P . Since supp(w/u∅) = x1 · · · xn and supp(w/u P ) = y1 · · · yn ,
both {x1, . . . , xn} and {y1, . . . , yn} are faces of �∨

P . Let F ⊂ Vn be a nonfaces of �∨
P . Let

Fx = F ∩ {x1, . . . , xn} and Fy = {x j : y j ∈ F}. Then Fx �= ∅ and Fy �= ∅. Since {xi , yi }
is a minimal nonface of �∨

P , we will assume that Fx ∩ Fy = ∅. Since F is a nonface, there
exists no poset ideal I of P with Fx ∩ {xi : pi ∈ I } = ∅ and Fy ⊂ {xi : pi ∈ I }. Hence
there are xi ∈ Fx and x j ∈ Fy such that pi < p j . Thus {xi , y j } is a nonface of �∨

P . Hence
the set of minimal nonfaces of �∨

P consists of those 2-element subsets {xi , y j } of Vn such
that pi ≤ p j in P , as required. �

Let G be a finite graph on the vertex set [N ] = {1, . . . , N } with no loops and no multiple
edges. We will assume that G possesses no isolated vertex, i.e., for each vertex i there is an
edge e of G with i ∈ e. A vertex cover of G is a subset C ⊂ [N ] such that, for each edge
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{i, j} of G, one has either i ∈ C or j ∈ C . Such a vertex cover C is called minimal if no
subset C ′ ⊂ C with C ′ �= C is a vertex cover of G. We say that a finite graph G is unmixed
if all minimal vertex covers of G have the same cardinality.

Let K [z] = K [z1, . . . , zN ] denote the polynomial ring in N variables over a field K . The
edge ideal of G is the ideal I (G) of K [z] generated by those squarefree quadratic monomials
zi z j such that {i, j} is an edge of G. A finite graph G on [N ] is called Cohen–Macaulay
over K if the quotient ring K [z]/I (G) is Cohen–Macaulay. Every Cohen–Macaulay graph
is unmixed ( [15, Proposition 6.1.21]).

A finite graph G on [N ] is bipartite if there is a partition [N ] = W ∪ W ′ such that each
edge of G is of the form {i, j} with i ∈ W and j ∈ W ′. A basic fact on the graph theory says
that a finite graph G is bipartite if and only if G possesses no cycle of odd length. A tree
is a connected graph with no cycle. A tree is Cohen–Macaulay if and only if it is unmixed
( [15, Corollary 6.3.5]).

Given a finite poset P = {p1, . . . , pn}, we write G(P) for the bipartite graph on the
vertex set {x1, . . . , xn} ∪ {y1, . . . , yn} whose edges are those {xi , y j } such that pi ≤ p j

in P . Lemma 3.1 says that the Stanley–Reisner ideal of �∨
P is equal to the edge ideal

of G(P). Since the Stanley–Reisner ideal HP = I�P has a linear resolution, it follows
from [4, Theorem 3] that �∨

P is Cohen–Macaulay. Then [15, Theorem 6.4.7] says that �∨
P

is shellable. Hence I�P has linear quotients (e.g., [7]).

Corollary 3.2 The Alexander dual �∨
P is shellable and the ideal HP has linear quotients.

We now turn to the problem of classifying the Cohen–Macaulay bipartite graphs by using
the Alexander dual �∨

P .
Let G be a finite bipartite graph on the vertex set W ∪ W ′ with W = {i1, . . . , is} and

W ′ = { j1, . . . , jt }, where s ≤ t . For each subset U of W , we write N (U ) for the set of
those vertices j ∈ W ′ for which there is a vertex i ∈ U such that {i, j} is an edge of G. The
well-known “marriage theorem” in graph theory says that if |U | ≤ |N (U )| for all subsets
U of W , then there is a subset W ′′ = { j
1 , . . . , j
s } ⊂ W ′ with |W ′′| = s such that {ik, j
k }
is an edge of G for k = 1, 2, . . . , s.

Let G be a finite bipartite graph on the vertex set W ∪ W ′ and suppose that G is unmixed.
Since each of W and W ′ is a minimal vertex cover, one has |W | = |W ′|. Let W =
{x1, . . . , xn} and W ′ = {y1, . . . , yn}. Since (W\U ) ∪ N (U ) is a vertex cover of G for all
subsets U of W and since G is unmixed, it follows that |U | ≤ |N (U )| for all subsets U
of W . Thus the marriage theorem enables us to assume that G satisfies the condition as
follows: (�) {xi , yi } is an edge of G for all 1 ≤ i ≤ n.

Lemma 3.3 Work with the same notation as above and, furthermore, suppose that G
is a Cohen–Macaulay graph. Then, after a suitable change of the labeling of variables
y1, . . . , yn, the edge set of G satisfies the condition (�) together with the condition as
follows: (��) if {xi , y j } is an edge of G, then i ≤ j .

Proof: Let � be the Cohen–Macaulay complex on the vertex set W ∪ W ′ whose Stanley–
Reisner ideal I� coincides with I (G). Recall that every Cohen–Macaulay complex is
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strongly connected and that all links of a Cohen–Macaulay complex are again Cohen–
Macaulay. Since both W and W ′ are facets of �, it follows (say, by induction on n) that,
after a suitable change of the labeling of variables x1, . . . , xn and y1, . . . , yn , the subset
Fi = {y1, . . . , yi , xi+1, . . . , xn} is a facet of � for each 0 ≤ i ≤ n, where F0 = W and
Fn = W ′. In particular {xi , y j } cannot be an edge of G if j < i . In other words, the edge
set of G satisfies the conditions (�) and (��), as required. �

Theorem 3.4 Let G be a finite bipartite graph on the vertex set W ∪ W ′, where W =
{x1, . . . , xn} and W ′ = {y1, . . . , yn}, and suppose that the edge set of G satisfies the
conditions (�) and (��). Then G is a Cohen–Macaulay graph if and only if the following
condition (���) is satisfied:

(���) If {xi , y j } and {x j , yk} are edges of G with i < j < k, then {xi , yk} is an edge of G.

Proof: (“Only if”) Let G be a Cohen–Macaulay graph satisfying (�) and (��) and � the
Cohen–Macaulay complex on the vertex set W ∪W ′ whose Stanley–Reisner ideal coincides
with I (G). Let {xi , y j } and {x j , yk} be edges of G with i < j < k and suppose that {xi , yk}
is not an edge of G. Since every Cohen–Macaulay complex is pure and since {xi , yk} is a
face of �, it follows that there is an n-element subset F ⊂ W ∪ W ′ of G with {xi , yk} ⊂ F
such that F is independent in G, i.e., no 2-element subset of F is an edge of G. One has
y j �∈ F and x j �∈ F since {xi , y j } and {x j , yk} are edges of G. Since {x
, y
} is an edge of G
for each 1 ≤ 
 ≤ n, the independent subset F can contain both xi and yi for no 1 ≤ i ≤ n.
Thus to find such an n-element independent set F is impossible.

(“If”) Now, suppose that a finite bipartite graph G on the vertex set W ∪ W ′ satisfies
the conditions (�), (��) together with (���). Let ≤ denote the binary relation on P =
{p1, . . . , pn} defined by setting pi ≤ p j if {xi , y j } is an edge of G. By (�) one has pi ≤ pi

for each 1 ≤ i ≤ n. By (��) if pi ≤ p j and p j ≤ pi , then pi = p j . By (���) if pi ≤ p j and
p j ≤ pk , then pi ≤ pk . Thus ≤ is a partial order on P . Lemma 3.1 then guarantees that
G = G(P). Hence G is Cohen–Macaulay, as desired. �

Corollary 3.5 Let G be a finite bipartite graph and� the simplicial complex whose Stanley–
Reisner ring coincides with I (G). Then G is Cohen–Macaulay if and only if � is pure and
strongly connected.

Work with the same situation as in the “if” part of the proof of Theorem 3.4. Let com(P)
denote the comparability graph of P , i.e., com(P) is the finite graph on {p1, . . . , pn} whose
edges are those {pi , p j } with i �= j such that pi and p j are comparable in P . It then follows
from [15, pp. 184–185] that the Cohen–Macaulay type of the Cohen–Macaulay ring S/I (G),
where S = K [x1, . . . , xn, y1, . . . , yn], is the number of maximal independent subsets of
com(P), i.e., the number of maximal antichains of P . Hence G is Gorenstein, i.e., S/I (G)
is a Gorenstein ring, if and only if P is an antichain.

Corollary 3.6 A Cohen-Macaulay bipartite graph G is Gorenstein if and only if G is the
disjoint union of edges.
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