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Abstract. We use elements in the quantum hyperalgebra to define a quantum version of the Désarménien matrix.
We prove that our matrix is upper triangular with ones on the diagonal and that, as in the classical case, it gives
a quantum straightening algorithm for quantum bideterminants. We use our matrix to give a new proof of the
standard basis theorem for the q-Weyl module. As well, we show that the standard basis for the q-Weyl module
and the basis dual to the standard basis for the q-Schur module are related by the quantum Désarménien matrix.
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1. Introduction

Let K be an infinite field, n and r fixed positive integers, and λ a fixed partition of r . In
the classical case, the Désarménien matrix corresponding to λ and n is an upper triangular
unimodular matrix that plays an interesting role in the representation theory of the general
linear group GL(n, K ). It was first introduced in [4] where it was defined using Capelli
operators which, although it is not pointed out there, are elements in the hyperalgebra for
GL(n, K ). Its original purpose was to act as tool for writing a given bideterminant as a
linear combination of bideterminants which come from semistandard λ-tableaux. In [3],
Désarménien showed that the entries in the matrix may be determined in a combinatorial
manner by examining pairs of semistandard λ-tableaux with entries from the set {1, . . . , n}.

Since its introduction, the Désarménien matrix has appeared in a number of places relating
to the polynomial representations of GL(n, K ). J. A. Green gives a very nice proof of the
Carter-Lusztig basis theorem (see [1]) for the Weyl module �(λ) for GL(n, K ) in [7]. At the
heart of his proof is the Désarménien matrix. The proof directly shows that the Désarménien
matrix is the change of basis matrix between the Carter-Lusztig basis for �(λ) and the basis
dual to the standard basis for the Schur module. In [6], J. A. Green uses a version of the
Désarménien matrix to give a basis of codeterminants for the Schur algebra S(n, r ).

A symplectic version of the Désarménien matrix is given in [13]. This matrix has many
of the properties of the original Désarménien matrix and a version of it has proved useful
in providing bases of symplectic codeterminants for the symplectic Schur algebras in [2].

In Section 4 we will define quantum versions of the Capelli operators and use them to
define a quantum Désarménien matrix. We prove that our matrix is upper triangular with
ones on the diagonal. As well, we show that it can be used to give a quantum straightening
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algorithm for quantum bideterminants. Another quantum straightening algorithm is given
in [11].

A quantum version of the Carter-Lusztig standard basis theorem for the q-Weyl module
corresponding to λ was proved by R. M. Green in [8]. The contravariant dual to the q-Weyl
module, called the q-Schur module, has a basis of bideterminants given by semistandard λ-
tableaux so the q-Weyl module also has a basis which is dual to this basis. Our Désarménien
matrix turns out to be the connection between these two bases. We prove this by giving a
new proof of the standard basis theorem from which this fact emerges.

2. Young tableaux

Throughout the article, K shall be an infinite field, n and r shall be fixed positive integers,
and λ shall be a fixed partition of r .

A k-tuple λ = (λ1, λ2, . . . , λk) of positive integers is a partition of r if λ1 ≥ λ2 ≥ · · · ≥
λk and

∑k
i=1 λi = r. The Young diagram of shape λ is a collection of r boxes arranged in k

left justified rows with the i th row consisting of λi boxes. A λ-tableau is obtained by filling
the Young diagram of shape λ with entries from the set {1, 2, . . . , n}. A λ-tableau is called
semistandard if the entries in its rows are weakly increasing from left to right and strictly
increasing from top to bottom.

Let I (n, r ) denote the set of r -tuples with entries from the set {1, 2, . . . , n}. It is often
convenient to associate to a given λ-tableau a sequence I = (i1, i2, . . . , ir ) in I (n, r ) and
to associate to a sequence I in I (n, r ) a λ-tableau TI . We do this by letting TI denote the
λ-tableau obtained by filling the Young diagram of shape λ canonically down the columns
with the entries in I working from left to right and from top to bottom.

Example 2.1 Let λ = (3, 2). Then T = 1 2 3
4 6

is a semistandard λ-tableau. We may

write T = TI where I = (1, 4, 2, 6, 3).

We will often make use of the basic tableau, which we denote by Tλ. If s is the number
of rows in the Young diagram of shape λ, then Tλ is the λ-tableau in which every entry in
the i th row is equal to i , for 1 ≤ i ≤ s. We denote by J (λ) the sequence in I (n, r ) that
satisfies Tλ = TJ (λ).

Example 2.2 If λ = (3, 2), then Tλ = 1 1 1
2 2

and J (λ) = (1, 2, 1, 2, 1).

The symmetric group Sr acts on I (n, r ) on the right by

I · σ = (i1σ , . . . , irσ ), I = (i1, i2, . . . , ir ) ∈ I (n, r ).

This action induces an action of Sr on the set of λ-tableaux with entries from {1, 2, . . . , n}
by TI · σ = TI ·σ . Let I = (1, 2, . . . , r ). We denote the tableau TI , for this particular choice
of I , by T̂λ. The column stabilizer of T̂λ, denoted C(T̂λ), is the set of σ ∈ Sr which preserve
the columns of T̂λ under this action.
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3. The quantum hyperalgebra

In this section, we construct the quantum analogue of the hyperalgebra for GL(n, K ). We
then discuss the quantum analogues of the Schur and Weyl modules.

Let q be an indeterminate and let A = Z[q, q−1] denote the ring of Laurent polynomials
in q . Let Q(q) be the field of quotients of A. The quantum enveloping algebra, which we
denote by UQ(q), is the associative Q(q)-algebra with generators Ei , Fi , K j , K −1

j with
1 ≤ i < n, 1 ≤ j ≤ n, subject to the relations that follow. We let Ki,i+1 denote Ki K −1

i+1.

Ki K −1
i = K −1

i Ki = 1 Ki K j = K j Ki

Ki E j = qδi, j −δi, j+1 E j Ki Ki Fj = qδi, j+1−δi j Fj Ki

Ei E j = E j Ei if |i − j | > 1 Fi Fj = Fj Fi if |i − j | > 1

Ei Fj − Fj Ei = δi j
Ki,i+1 − K −1

i,i+1

q − q−1

E2
i E j − (q + q−1)Ei E j Ei + E j E2

i = 0 if |i − j | = 1

F2
i Fj − (q + q−1)Fi Fj Fi + Fj F2

i = 0 if |i − j | = 1.

The algebra UQ(q) is a Hopf algebra over Q(q) with comultiplication

� : UQ(q) → UQ(q) ⊗ UQ(q)

defined by

�(Ei ) = 1 ⊗ Ei + Ei ⊗ Ki,i+1, �(Fi ) = K −1
i,i+1 ⊗ Fi + Fi ⊗ 1, �(Ki ) = Ki ⊗ Ki .

(3.1)

Note that UQ(q) possesses other comultiplications which are preferred by some authors.
Let a be a nonnegative integer. Define

[a] = qa − q−a

q − q−1
,

and quantum factorial as

[a]! = [a][a − 1] . . . [1].

For X ∈ UQ(q) and a ∈ N, let

X (a) = Xa

[a]!
and

(
K j

a

)

=
a∏

s=1

q−s+1 K j − qs−1 K −1
j

qs − q−s
.
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The integral form UA of UQ(q), given in [12], is a quantum version of Kostant’s Z-form.
It is the Hopf A-subalgebra of UQ(q) generated by the elements

E (a)
i , F (a)

i , K j , K −1
j ,

(
K j

a

)

, a ∈ N, 1 ≤ i < n, 1 ≤ j ≤ n.

Let t be a unit in K such that t2 �= 1. We may regard our field K as an A-algebra by
letting q ∈ A act on K by multiplication by t ∈ K . The quantum hyperalgebra is defined as

UK = UA ⊗A K .

We will often say that M is a UK -module, meaning that M is a UA-module so we have a
UK -module via base change. We write u ∈ UK to mean the image of u in UK via the map
φ : UA → UK defined by φ(u) = u ⊗ 1.

Let VQ(q) be the n-dimensional vector space over Q(q) with basis v1, . . . , vn . Then VQ(q)

is a UQ(q)-module, called the natural module, via

Eiv j = δi+1, jvi , Fiv j = δi jvi+1, Kiv j = qδi j v j , K −1
i v j = q−δi j v j .

Denote the UA-submodule of VQ(q) generated by v1, . . . , vn by VA. The coassociative
comultiplication � defined in (3.1) defines a UA-module action on V ⊗r

A . We will let V ⊗r

denote the UK -module obtained by base change. Given I = (i1, i2, . . . , ir ) ∈ I (n, r ), define
vI ∈ VA by vI = vi1 ⊗ vi2 ⊗ · · · ⊗ vir .

Define zλ ∈ V ⊗r
A by

zλ =
∑

σ∈C(T̂λ)

(−q)−l(σ )vJ (λ)·σ (3.2)

where l(σ ) denotes the length of the permutation σ ∈ Sr and J (λ) and C(T̂λ) are defined
in Section 2. Let �(λ)A denote the left UA-submodule of V ⊗r

A generated by zλ. The q-Weyl
module is the left UK -module defined by

�q (λ) = �(λ)A ⊗A K .

We now define a quantum version of the algebra of polynomial functions on the set of
n × n matrices over K . As in [15], an n × n matrix A = (ai j )1≤i, j≤n with entries in an
A-algebra is a q-matrix if its entries satisfy the following relations:

aikail = q−1ailaik 1 ≤ k < l ≤ n

aika jk = q−1a jkaik 1 ≤ i < j ≤ n

aila jk = a jkail 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n

aika jl − a jlaik = (q−1 − q)aila jk 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

(3.3)
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Define Aq (n) to be the A-algebra with generators xi j subject to the relations which require
X = (xi j )1≤i, j≤n to be a q-matrix.

It can be checked (see [15]) that Aq (n) is a UA-module with action

Ei xkl = δi+1,l xki , Fi xkl = δil xk,i+1, Ki xkl = qδil xkl , K −1
i xkl = q−δil xkl (3.4)

and Ei (PQ) = P(Ei Q)+ (Ei P)(Ki,i+1 Q), Fi (PQ) = (K −1
i,i+1 P)(Fi Q)+ (Fi P)Q, Ki (PQ)

= (Ki P)(Ki Q) where P, Q ∈ Aq (n). Of course we get a UK -module by base change and
we also denote this module by Aq (n).

If I = (i1, . . . , ir ) and J = ( j1, . . . , jr ) belong to I (n, r ) with i1 < i2 < · · · < ir , define
detq X I

J in Aq (n) by

detq X I
J =






∑

σ∈Sr

(−q)−�(σ )xi1 jσ (1) xi2 jσ (2) . . . xir jσ (r ) if j1 < j2 < · · · < jr

∑

σ∈Sr

(−q)−�(σ )xiσ−1(1) j1 xσ−1(2) j2 . . . xiσ−1(r ) jr otherwise.

Given λ-tableaux S and T , where S is column increasing, the quantum bideterminant
(S : T ) ∈ Aq (n) is defined as

(S : T ) = (
detq X S(1)

T (1)

)(
detq X S(2)

T (2)

) · · · (detq X S(s)
T (s)

)

where s is the number of columns in the Young diagram of shape λ and T (i) (respectively
S(i)) denotes the subsequence corresponding to the entries in the i th column of T (respec-
tively S). In this article, we are only interested in bideterminants of the form (Tλ : T ), where
Tλ is the basic λ-tableau defined in Section 2. We take [T ] to represent the bideterminant
(Tλ : T ). Note that λ is fixed throughout, so T is always a λ-tableau.

Let ∇(λ)A be the A-span of the quantum bideterminants [T ], where the set runs over all
λ-tableaux T with entries from the set {1, . . . , n}. The fact that ∇(λ)A is a UA-invariant
submodule of Aq (n) follows from [14, Proposition 2.1]. The q-Schur module, denoted ∇q (λ)
is the UK -module given by base change.

There is an antiautormorphism τ : UA → UA defined by

τ (Ei ) = Fi , τ (Fi ) = Ei , τ (Ki ) = Ki . (3.5)

We denote the induced map on UK by τ as well.
If M is a UK -module, the contravariant dual of M , denoted M◦, is just the dual space M∗

with action defined as

u f (m) = f (τ (u)m), u ∈ UK , m ∈ M, f ∈ M∗.

In Section 5, we define a contravariant form on V ⊗r and use it to explicitly construct the
contravariant dual to ∇q (λ). The resulting module will be isomorphic to �q (λ). For a proof
of the following, see [5, Proposition 4.1.6].
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Theorem 3.1 The q-Weyl module is the contravariant dual to ∇q (λ); that is

(∇q (λ))◦ ∼= �q (λ).

We shall frequently use the following standard basis theorem for ∇q (λ). There are several
different proofs of this result; see for instance [9] or [10].

Theorem 3.2 The set {[T ] : T is a semistandard λ-tableau} forms a K -basis for ∇q (λ).

4. A quantum version of the Désarménien matrix

In this section we define a quantum version of the Désarménien matrix. We introduce a
number of technical lemmas which will ease our task. Using (3.4), we may determine
the action of Ei , Fi or Ki on a bideterminant [T ]. For a discussion of this action on
bideterminants, see [11, p. 7 and Example 2.2].

To define quantum analogues of the Capelli operators, we first define Ei j and Fi j recur-
sively in UK as follows:

Ei = Ei,i+1, Ei j = Ei Ei+1, j − q−1 Ei+1, j Ei and Fi j = Fi+1, j Fi − q−1 Fi Fi+1, j .

It can be quite difficult to compute Ei j [T ] for an arbitrary λ-tableau T . We will frequently be
encountering tableaux for which the task becomes simplified, as illustrated by the following
example and Lemma 4.2.

Example 4.1 Let T =
1 1 1 1 1
2 2 2 2
3 3 6 8
4 5

. Then

E36[T ] = (E3 E46 − q−1 E46 E3)[T ]
= E3 E46[T ], since E3[T ] = 0 (see [11, Example 2.2])
= E3(E4 E5 − q−1 E5 E4)[T ]
= E3 E4 E5[T ] since E3 E5 E4[T ] = 0.

Lemma 4.2 Suppose that T is a column increasing λ-tableau that coincides with Tλ in
the first i − 1 rows. Suppose also that if m is an integer with i < m < j, then m does not
appear in the i th row of T . Then Ei j [T ] = Ei Ei+1 . . . E j−1[T ].

Proof: We fix j and induct on i in the operator Ei j . If i = j − 1, the result is trivial.
Suppose that Ekj [T ] = Ek Ek+1 . . . E j−1[T ] for i < k ≤ j − 1. If an i + 1 appears
in T , our hypotheses force an i to appear in a column above it so Ei [T ] = 0. Thus
Ei j [T ] = Ei Ei+1, j [T ] − q−1 Ei+1, j Ei [T ] = Ei Ei+1 . . . E j−1[T ].
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Given I ∈ I (n, r ), define d(I ) to be the number of pairs (a, b) which satisfy a < b and
ia < ib. For instance, if I = (1, 2, 1, 4, 3), then d(I ) = 7.

Lemma 4.3 Suppose that j > i . Then Er
i j (x

r
1 j ) = [r ]!xr

1i .

Proof: We will show that Es
i j [T ] = [s]!

∑
I q−d(I )[TI ] for 1 ≤ s ≤ r where the sum runs

over all r -tuples I which contain s entries equal to i and r − s entries equal to j and T is
the one-row tableau with r entries equal to j . Then, if we let s = r , this is precisely the
statement of the Lemma. The statement holds for s = 1 since

Ei j [T ] = Ei Ei+1 . . . E j−1[T ] = Ei Ei+1 . . . E j−2

∑

M

q−d(M)[TM ] =
∑

J

q−d(J )[TJ ],

where the sum runs over the r -tuples J which contain one i and r − 1 entries equal to j .
Now suppose that for all 1 ≤ m ≤ s we have Em

i j [T ] = [m]!
∑

I q−d(I )[TI ] where the
sum runs over all r -tuples I which contain m entries equal to i and r − m entries equal to j .
Then Es

i j [T ] = [s−1]!
∑

I q−d(I ) Ei j [TI ] where the sum is over the r -tuples I which contain
s − 1 entries equal to i and r − (s − 1) entries equal to j . Now

∑
I Ei j [TI ] = ∑

J γI J [TJ ]
where γI J ∈ Z[q, q−1] and the sum runs over all J which contain s entries equal to i and
r − s entries equal to j . Furthermore, γI J = 0 in case J cannot be formed by changing a
j in I to an i . Thus Es

i j [T ] = [s − 1]!
∑

J

∑
I q−d(I )γI J [TJ ], where the sum runs over all

J which contain s entries equal to i and r − s entries equal to j and all I which contain
s − 1 entries equal to i and r − (s − 1) entries equal to j . We now prove that for each J
with s entries equal to i and r − s entries equal to j , we have

∑
I q−d(I )γI J = [s]q−d(J ),

where the sum is over all I which yield J when a j in I is changed to an i . Fix such a
J . Let I1 be the r -tuple that comes from changing the first i from the right in J to a j , I2

the r -tuple that comes from changing the second i from the right in J to a j , etc. Then∑
I q−d(I )γI J = ∑s

k=1 q−d(Ik )γIk J .

For each k with 1 ≤ k ≤ s, let αk be the number of j’s to the right of the kth i from the
right in J . Then d(Ik) = ∑s

i=1 αi − αk + (s − k) = d(J ) − αk + (s − k). To examine γIk J

we apply Ei Ei+1 . . . E j−1 to [TIk ] and look at the coefficient of the portion of this sum that
gives J . Since q−α j is introduced by the E j−1 operator and qk−1 is introduced by the Ei

operator, γIk J = q−αk qk−1.

It follows that

s∑

k=1

q−d(Ik )γIk J =
s∑

k=1

q−d(J )q−s+2k−1 =
s∑

k=1

q−d(J )[s]

and this completes the proof.

Lemma 4.4 Let T be a semistandard λ-tableau that coincides with Tλ in the first i − 1
rows. Suppose that there are r entries equal to j in the i th row of T . Suppose also that if m is
an integer with i < m < j then m does not occur in the i th row of T . Then Er

i j [T ] = [r ]![S]
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where S is identical to T except that the r entries equal to j in the i th row of T have been
replaced by i’s.

Proof: Suppose that the r entries equal to j appear in the i th row of T in columns a
through b = a + r . We argue that applying Er

i j affects only the portion of the tableau in
which these j’s occur. The lemma then follows from Lemma 4.3.

From our assumptions on T , it follows that if k > b there are no entries between i − 1
and j +1 in the kth column T (k) of T . Thus, the operators Ei , . . . , E j−1 do not affect these
columns and K −1

�,�+1[T (k)] = [T (k)] for k > b and i ≤ � ≤ j − 1.
If i < m < j and m appears in T , it must appear below the i th row in some column

T (k) with k < a. Suppose that [S] is a bideterminant in the sum E j−1[T ] that comes
from changing a j below the i th row of T to a j − 1. Any bideterminant in the sum
Ei (Ei+1 . . . E j−2[S]) comes from changing an i + 1 below the i th row to an i in some
bideterminant [S′] in the sum Ei+1 . . . E j−1[S]. There is an i in the i th row above this i ,
so Ei [S′] = 0 and Ei (Ei+1 . . . E j−2[S]) = 0. Thus all bideterminants in the sum E j−1[T ]
come from changing a j in the i th row of T to a j − 1. Continuing this argument, we see
that every bideterminant in the sum Ei Ei+1 . . . E j−1[T ] comes from changing a j in the i th
row to an i . Inductively, it follows that Er

i j affects only those j’s in the i th row of T .

We now define operators ET and FT in UK . The operators FT also appear in [8]. Given
a semistandard λ-tableau T with k ≤ n rows, define

ET =
∏

1≤i≤k
i< j≤n

E
(γi j )
i j and FT =

∏

1≤i≤k
i< j≤n

F
(γi j )
i j (4.1)

where γi j is the number of entries equal to j in row i of T . The product ET is ordered

ET = E (γkn )
kn . . . E (γk,k+1)

k,k+1 . . . E (γ2n )
2n . . . E (γ23)

23 E (γ1n )
1n . . . E (γ13)

13 E (γ12)
12 and

FT = F (γ12)
12 F (γ13)

13 . . . F (γ1n )
1n F (γ23)

23 . . . F (γ2n )
2n . . . F (γk,k+1)

k,k+1 . . . F (γkn )
kn .

Definition 4.5 Given a semistandard λ-tableau T and a column increasing λ-tableau S,
define 
q (S, T ) = c where c is the coefficient of [Tλ] in the expansion of ET [S] into a
linear combination of basis elements.

Order the set of λ-tableaux by declaring S < T if the row sequence of S is less than the
row sequence of T with respect to the lexicographic order on I (n, r ). In Example 4, for
instance, T1 < T2.

Definition 4.6 The quantum Désarménien matrix is the matrix


q = [
q (TI , TJ )]I,J∈Iλ

where Iλ = {I ∈ I (n, r ) : TI is a semistandard λ-tableau}.
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We begin with an example to motivate the next theorem.

Example 4.7 Let T = 1 1 6
5 5

. Then ET [T ] = E (2)
25 E16[T ] = [ 1 1 1

2 2
] so 
q (T, T )

= 1.

Theorem 4.8 Suppose that T is a semistandard λ-tableau. Then 
q (T, T ) = 1.

Proof: By Lemma 4.4, we have Eγ12
12 [T ] = [γ12]![U ] where U is the single tableau that

results from changing the γ12 entries equal to 2 in the first row of T to ones. Thus, E (γ12)
12 [T ] =

[U ]. Suppose that E
(γ1, j−1)
1, j−1 . . . E (γ12)

12 [T ] = [U ] where the first γ11+γ12+· · ·+γ1, j−1 columns
of the first row of U contain ones while the remainder of U is identical to T . By Lemma
4.4, we have E

(γ1 j )
1 j [U ] = [U ′], where the entries in the first γ11 + γ12 + · · · + γ1 j columns

of the first row of U ′ are ones and the remainder of U coincides with T . This proves
that E (γ1n )

1n · · · E (γ12)
12 [T ] = [U ] where the first row of U consists entirely of ones and the

remainder of U ′ is identical to T . The general result follows by repeating the argument for
each of the rows in T .

If V is a UK -module and χ = (χ1, . . . , χn) an n-tuple of non-negative integers, the
weight space associated to χ is the subspace

V χ = {v ∈ V : Kiv = qχi v, 1 ≤ i ≤ n}.

A vector v ∈ V χ is a weight vector of weight χ . The weight of a bideterminant [T ] in
∇q (λ) is χ = (χ1, . . . , χn) where χi is equal to the number of i’s that occur in the tableau
T . In particular, [Tλ] is the unique bideterminant in ∇q (λ) with weight λ. We will require
the following fact, which is easily shown by induction.

Lemma 4.9 Suppose that [T ] has weight χ = (χ1, χ2, . . . , χn). Then Ei j [T ] belongs to
the weight space �q (λ)α where α = (χ1, . . . , χi + 1, . . . , χ j − 1, . . . , χn).

Theorem 4.10 Suppose that S and T are column-increasing λ-tableaux and suppose that
T is semistandard.

1. If 
q (S, T ) �= 0 then [S] and [T ] have the same weight.
2. If S is semistandard and 
q (S, T ) �= 0 then S ≤ T .

Proof: By Lemma 4.9, if [S] and [T ] do not have the same weight, ET takes [S] and [T ]
to different weight spaces. By Theorem 4, ET [T ] lies in the weight space ∇q (λ)λ. Thus

q (S, T ) = 0, which completes the proof of 1.

To prove 2 we assume that [S] and [T ] have the same weight. Suppose that S > T and
let t be the first entry in the row sequence of T which differs from the corresponding entry
s in the row sequence of S so that s > t . Let i be the row of the Young diagram in which t
occurs in T . Suppose that the number of t’s in the i th row of S is equal to k so γi t > k. Thus
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ET [S] = . . . E (γi t −k)
i t E (k)

i t . . . E (γ12)
12 [S] where γi t − k > 0. Repeatedly applying Theorem

4.4 we have Ek
it . . . Eγ13

13 Eγ12
12 [S] = [k]! . . . [γ13]![γ12]![U ] where the first i − 1 rows of U

and the first γi i + γi,i+1 + · · · + k columns of the i th row of U coincide with Tλ and the
remainder of U coincides with S. But there are no t’s in the i th row of U and any which
appear below the i th are in the first γi i + γi,i+1 + · · · + k columns. Since each of these
columns contains an i in a row above such a t , we have Eγi t −k

i t [U ] = 0 so ET [S] = 0.

Corollary 4.11 The quantum Désarménien matrix is an invertible upper triangular matrix.

The following lemma allows us to deduce a straightening algorithm for quantum bide-
terminants. For an alternative straightening algorithm, see [11].

Lemma 4.12 Suppose that S and T are column-increasing λ-tableaux and that T is
semistandard. Suppose also that [S] and [T ] have the same weight. Then

ET [S] = 
q (S, T )[Tλ].

Proof: Since [S] and [T ] have the same weight, ET [S] and ET [T ] both lie in the weight
space ∇q (λ)λ. Thus ET [S] = c[Tλ] = 
q (S, T )[Tλ].

To get a q-straightening algorithm, we use the fact that any bideterminant with weight χ

can be expressed as a linear combination of semistandard bideterminants of weight χ and
then call on the Désarménien matrix to give us the coefficients in the decomposition. Let

q,χ be the submatrix of 
q that runs over the 
q (S, T ) where [S] and [T ] have weight
χ . Let Iχ

λ = {I ∈ Iλ : [TI ] has weight χ}. If U is a column increasing λ-tableau such that
[U ] has weight χ , then [U ] = ∑

I∈Iχ
λ

aI [TI ]. If J ∈ Iχ

λ then


q (U, TJ )[Tλ] = ETJ [U ] by Lemma 4
=

∑

I∈Iχ
λ

aI ETJ [TI ]

=
∑

I∈Iχ
λ

aI 
q (TI , TJ )[Tλ].

Thus [
q (U, TI )]I∈Iχ
λ

= [aI ]I∈Iχ
λ

q,χ and since 
q,χ is invertible, we have

[aI ]I∈Iχ
λ

= [
q (U, TI )]I∈Iχ
λ
(
q,χ )−1. (4.2)

Example 4.13 Let λ = (2, 1), n = 3, and χ = (1, 1, 1). There are two semistandard
λ-tableaux which give bideterminants of weight χ ;

T1 = 1 2
3

and T2 = 1 3
2

.
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To find 
q (T1, T2), we compute ET2 [T1] = E13[T1] = (q − q−1)[Tλ]. Thus,


χ
q =

(
1 q − q−1

0 1

)

.

Let T = 2 1
3

. Then ET1 [T ] = E23 E12[T ] = q[Tλ], so 
q (T, T1) = q. Furthermore,


q (T, T2) = −1. Let aT1 and aT2 be the coefficients of [T1] and [T2] respectively in the
straightening decomposition of [T ]. Then

(aT1 , aT2 ) = (q, −1)

(
1 q−1 − q

0 1

)

= (q, −q2), and [T ] = q[T1] − q2[T2].

5. The connection between two bases of ∆q (λ)

A quantum version of the Carter-Lusztig basis theorem was proved by R. M. Green, [8].
The q-Weyl module also has basis dual to the basis of ∇q (λ) in Theorem 3. We would like
to discover the relationship between these two bases. We shall prove the standard basis
theorem using the quantum Désarménien matrix at the end of this section. Our proof also
shows that the standard basis for �q (λ) and the basis dual to the basis of semistandard
bideterminants for ∇q (λ) are connected by the quantum Désarménien matrix.

We first construct the contravariant dual to ∇q (λ). We begin with a map φ : V ⊗r → ∇q (λ).

Proposition 5.1 The K -linear map φ : V ⊗r → ∇q (λ) given by φ(vI ) = [TI ] is a UK -
epimorphism.

Proof: It is clear that φ is an epimorphism, so we need only prove that φ(uvJ ) = u[TJ ] for
each r -tuple J and each u ∈ UK . Suppose first that λ = (1r ) so that φ(vJ ) = [TJ ] where TJ

is a one-column tableau. Let a denote the number of entries equal to i in TJ . If a ≥ 2 then
φ(KivJ ) = qa[TJ ] = 0 = Kiφ(vJ ). If a < 2, we also have φ(KivJ ) = qa[TJ ] = Kiφ(vJ ).

To prove φ(EivJ ) = Eiφ(vJ ), we may assume that J contains at least one i + 1, for
otherwise equality follows trivially. Suppose first that the number of entries equal to i + 1
in J is larger than two. Then Eiφ(vJ ) = Ei [TJ ] = 0 = φ(Ei [TJ ]). Next suppose that the
number of entries equal to i + 1 is less than or equal to two. Then if J also contains an i ,
EivJ = ∑

aMvM where each M in the sum has at least two entries equal to i , from which
it follows that φ(EivJ ) = 0 = Eiφ(vJ ).

Now suppose that J contains no entries equal to i and one or two entries equal to i +1. If
J contains exactly one i +1, then EivJ = vM where M is identical to J except that the i +1
has been replaced with an i . Thus, φ(EivJ ) = [TM ] = Ei [TJ ]. Now suppose that J contains
exactly two entries equal to i +1 and no entries equal to i . Then Eiφ(vJ ) = Ei [TJ ] = 0. As
well, φ(EivJ ) = [TM ] + q−1[TM ′ ] where the tableaux TM and TM ′ are the same except that
an i and an i + 1 have been interchanged. But [TM ] + q−1[TM ′ ] = 0 (see [14, Proposition
2.1]) so φ(EivJ ) = 0. The proof that φ(FivJ ) = Fiφ(vJ ) is similar.
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For the general case, let µ = (µ1, . . . , µs) be the conjugate of the partition λ =
(λ1, . . . , λk). Given I ∈ I (n, r ), let I = (i11, i21, . . . , iµ11, . . . , i1s, . . . , iµs s), I1 =
(i11, i21, . . . , iµ11), . . . , Is = (i1s, i2s, . . . , iµs s) so that vI = vI1 ⊗ vI2 ⊗· · ·⊗ vIs . The map
θ : V ⊗r → ∇q (µ1) ⊗ ∇q (µ2) ⊗ · · · ⊗ ∇q (µs) defined by

θ
(
vI1 ⊗ vI2 ⊗ · · · ⊗ vIs

) = φ
(
vI1

) ⊗ φ
(
vI2

) ⊗ · · · ⊗ φ
(
vIs

)

is a UK -homomorphism. As well, the map ψ : ∇q (µ1) ⊗ ∇q (µ2) ⊗ . . . ⊗ ∇q (µs) → ∇q (λ)
given by ψ([TI1 ] ⊗ [TI2 ] ⊗ · · ·⊗ [TIs ]) = [TI1 ][TI2 ] . . . [TIs ] is a UK -homomorphism. Thus,
φ = ψ ◦ θ is a UK -homomorphism as well.

If V and W are two UK -modules, a bilinear form 〈, 〉 : V × W → K is said to be
UK -contravariant if for all u ∈ UK , v ∈ V , and w ∈ W , we have 〈uv, w〉 = 〈v, τ (u)w〉,
where τ is the antiautomorphism defined in (3.5). We want to define a UK -contravariant
form on V ⊗r and use it to construct the q-Weyl module as is done in the classical case
by J. A. Green in [7]. To do so, we introduce the following notation. Given I ∈ I (n, r ),
define β(I ) to be the number of pairs (a, b) for which a < b and ia �= ib. For example, if
I = (1, 3, 2, 1) then β(I ) = 5. Define a bilinear form 〈, 〉q : V ⊗r × V ⊗r → K by

〈vI , vJ 〉q = qβ(I )δI J .

For example, 〈v1 ⊗ v3 ⊗ v2 ⊗ v1, v1 ⊗ v3 ⊗ v2 ⊗ v1〉 = q5.

Theorem 5.2 The form 〈 , 〉q : V ⊗r × V ⊗r → K is a UK -contravariant form.

Proof: Let I, J ∈ I (n, r ) and let a be the number of entries equal to i which occur in I
and let b denote the number of entries equal to i which occur in J . Then 〈KivI , vJ 〉q =
qa〈vI , vJ 〉q and 〈vI , KivJ 〉q = qb〈vI , vJ 〉q . Both are equal to zero if I �= J and if I = J
then a = b so 〈KivI , vJ 〉q = 〈vI , KivJ 〉q .

Let I = (i1, . . . , ir ) and J = ( j1, . . . , jr ). Applying (3.1), we have

Fi (vI ) = (
K −1

i,i+1vi1

) ⊗ · · · ⊗ (
K −1

i,i+1vir−1

) ⊗ (
Fivir

) + · · · + (
Fivi1

) ⊗ vi2 ⊗ · · · ⊗ vir and

Ei (vJ ) = v j1 ⊗ v j2 ⊗ · · · ⊗ (
Eiv jr

) + · · · + (
Eiv j1

) ⊗ (
Ki,i+1v j2

) ⊗ . . . ⊗ (
Ki,i+1v jr

)
.

We will prove that 〈K −1
i,i+1vi1 ⊗ · · · ⊗ K −1

i,i+1vik−1 ⊗ Fivik ⊗ · · · ⊗ vir , vJ 〉q is equal to
〈vI , v j1 ⊗ · · · ⊗ Eiv jk ⊗ Ki,i+1v jk+1 ⊗ · · · ⊗ Ki,i+1v jr 〉q for a fixed k with 1 ≤ k ≤ r . We
may assume that the r -tuples I and J coincide before and after the kth place so we replace
all such il’s in the first form by jl’s. We may also assume that vik = vi and v jk = vi+1. Thus
I = ( j1, . . . , jk−1, i, jk+1, . . . , jr ), J = ( j1, . . . , jk−1, i +1, jk+1, . . . , jr ). Suppose that
there are a1 entries equal to i which occur in the r -tuple J prior to the kth place and suppose
that there are a2 entries equal to i + 1 which occur in J prior to the kth place. Let b1 denote
the number of entries equal to i which appear in J after the kth place and b2 the number of
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entries equal to i + 1 that appear after the kth place. Then

〈
K −1

i,i+1v j1 ⊗ · · · ⊗ K −1
i,i+1v jk−1 ⊗ Fivi ⊗ · · · ⊗ v jr , vJ

〉
q = q−a1 qa2 qβ(J ), and

〈
vI , v j1 ⊗ · · · ⊗ Eivi+1 ⊗ Ki,i+1v jk+1 ⊗ · · · ⊗ Ki,i+1v jr

〉
q

= qb1 q−b2 qβ(I ).

But q−a1 qa2 qβ(J ) = q−a1 qa2 qβ(I )+a1+b1−a2−b2 = qb1 q−b2 qβ(I ) and this completes the proof.

We now take Vλ,q to be the orthogonal complement to N = kerφ with respect to the form
〈, 〉q . It is clear that Vλ,q is a UK -submodule of V ⊗r and the form (, )q : Vλ,q × ∇q (λ) → K
defined by

(x, φ(y))q = 〈x, y〉q , x ∈ Vλ,q , y ∈ V ⊗r (5.1)

is a non-degenerate contravariant form since 〈, 〉q is non-degenerate and contravariant and
φ is a UK -homomorphism. Thus Vλ,q

∼= (∇q (λ))◦ via the map ψ : Vλ,q → (∇q (λ))◦ defined
by

ψ(x)(y) = (x, y)q , x ∈ Vλ,q , y ∈ ∇q (λ).

One can adjust [7, Proposition 2.7e] appropriately to get a quantum version of that result
from which it follows that Vλ,q

∼= �q (λ).

The following proof of the standard basis theorem for �q (λ) shows that this basis and
the basis dual to the basis of Theorem 3 are related by the Désarménien matrix. Recall the
definitions of FT and zλ from (4.1) and (3.2).

Standard basis theorem— The set {FT zλ : T is a semistandard λ-tableau} is a K -basis
for �q (λ).

Proof: By definition zλ ∈ �q (λ). Let TI and TJ be semistandard λ-tableaux and let ( , )q

be the non-degenerate contravariant form on �q (λ) × ∇q (λ) defined in (5.1). Then

(
FTI zλ, [TJ ]

)
q

= (
zλ, ETI [TJ ]

)
q

= (zλ, 
q (TJ , TI )[Tλ] +
∑

M

aM [TM ])q ,

where each [TM ] in the sum has weight different from λ. But for each M in the sum, we
have (zλ, [TM ])q = 〈zλ, vM 〉q = 0. Thus

(FTI zλ, [TJ ])q = (zλ, 
q (TJ , TI )[Tλ])q = 
q (TJ , TI )
〈
zλ, vJ (λ)

〉
q

= qβ(J (λ))
q (TJ , TI ).

So for each J ∈ Iλ we have (FTI zλ, [TJ ])q = qβ(J (λ))
q (TJ , TI ). Since 
q =
[
q (TJ , TI )]I∈Iλ

is an upper triangular invertible matrix and the set of semistandard
λ-tableaux forms a K -basis for ∇q (λ), the set {FT zλ : T is a semistandard λ-tableau} is
a K -basis for �q (λ).
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