ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Counting Monomials

Mordechai Katzman
University of Sheffield Department of Pure Mathematics Hicks Building Sheffield S3 7RH UK Hicks Building Sheffield S3 7RH UK

DOI: 10.1007/s10801-005-4531-6

Abstract

This paper presents two enumeration techniques based on Hilbert functions. The paper illustrates these techniques by solving two chessboard problems.

Pages: 331–341

Keywords: keywords Hilbert function; chessboard problem

Full Text: PDF

References

1. W.W. Adams and P. Loustaunau, An Introduction to Gr\ddot obner Bases, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994.
2. W.W. Rouse Ball, Mathematical Recreations & Essays, Macmillan, London, 1940.
3. M. Gardner, A Gardner's Workout, A K Peters, Ltd., Natick, MA, 2001.
4. D. Grayson and M. Stillman, Macaulay 2-a Software System for Algebraic Geometry and Commutative Algebra, Available at http://www.math.uiuc.edu/Macaulay2.
5. M. Katzman, FreeSquares Available from http://www.shef.ac.uk/katzman/ComputerAlgebra/ ComputerAlgebra.html
6. F.S. Macaulay, “Some properties of enumeration in the theory of modular systems,” Proceedings of the London Mathematical Society 26, 531-555.
7. B. Sturmfels, Gr\ddot obner Bases and Convex Polytopes, University Lecture Series,
8. American Mathematical Society, Providence, RI, 1996.
8. Richard P. Stanley, Combinatorics and Commutative Algebra, Second edition. Progress in Mathematics,
41. Birkh\ddot auser Boston, Inc., Boston, MA, 1996.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition