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Abstract. If � is a random variable with values in a compact matrix group K , then the traces Tr(� j ) ( j ∈ N)

are real or complex valued random variables. As a crucial step in their approach to random matrix eigenvalues,

Diaconis and Shahshahani computed the joint moments of any fixed number of these traces if � is distributed

according to Haar measure and if K is one of Un, On or Spn , where n is large enough. In the orthogonal and

symplectic cases, their proof is based on work of Ram on the characters of Brauer algebras.

The present paper contains an alternative proof of these moment formulae. It invokes classical invariant theory

(specifically, the tensor forms of the First Fundamental Theorems in the sense of Weyl) to reduce the computation

of matrix integrals to a counting problem, which can be solved by elementary means.

Keywords: random matrices, matrix integrals, classical invariant theory, tensor representations, Schur-Weyl

duality

1. Introduction

In the 1980s and early 1990s, Diaconis, Mallows and Shahshahani devised a method for
studying the eigenvalues of random elements of the compact classical groups which are
chosen according to Haar measure. The paper [3] of Diaconis and Shahshahani is probably
the best-known reference, whereas the paper [2] of Diaconis and Evans contains the state
of the art, including many applications. In a nutshell, the method is Fourier analysis built
upon an explicit solution to the following problem: Fix n ∈ N and let K = Kn be one of
Un, On, Spn (n even in the last case). Consider a random variable � = �n with values
in K , whose distribution is Haar measure. Compute the joint moments of the real random
vector

(Tr(�), Tr(�2), . . . , Tr(�r )), (1.1)

i.e., matrix integrals of the form

∫
(Tr(g))a1 (Tr(g2))a2 . . . (Tr(gr ))ar ωK (dg) (1.2)
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(r ∈ N, a ∈ Nr
0, ωK Haar measure), in the cases K = On and K = Spn , and the joint

moments of the complex random vector

(Tr(�), . . . , Tr(�r ), Tr(�), . . . , Tr(�r )) (1.3)

in the case K = Un . It turns out that this is in fact possible if n is large enough, and that these
moments equal the corresponding moments of suitable multivariate normal distributions.
The proof which is given in [3] for the moment formula in the case K = Un uses nothing
more than basic character theory of groups together with a well-known explicit decompo-
sition of power sum symmetric functions, which is often referred to as Schur-Weyl duality.
On the other hand, the treatment of the cases K = On and K = Spn makes use of less
familiar material, namely, Ram’s work [9, 10] on the characters of Brauer algebras.

Nowadays there exist alternative methods to prove these moment formulae. Hughes
and Rudnick [7] have chosen an approach via the combinatorics of cumulants and Weyl’s
integration formula. Pastur and Vasilchuk [8] have used ideas from statistical mechanics to
obtain an entirely different proof. The present paper proposes yet another method, which
is based on classical invariant theory. This theory has undergone some refinement since
Weyl’s classic [12], and there exist accessible expository texts such as the monograph [4].
It will emerge from our discussion that the fundamentals of this theory (which include an
abstract version of Schur-Weyl duality) suffice to prove the moment formulae for all three
groups in a uniform way. Invariant theory serves to reduce the computation of integrals
directly to an easy counting problem, and there is no need to deal with special functions
explicitly.

The paper is organized as follows: Section 2 serves to fix notation, to review a fragment
of Lie theory (Theorem 2.5) and to present a version of Schur-Weyl duality, which will be
termed Double Centralizer Theorem, in a way that clearly brings out the connection with
invariant theory (Theorem 2.2 and Addendum 2.3). The central piece of the paper is Section
3, and there the orthogonal case is the paradigmatic one. The presentation of the symplectic
and unitary cases builds upon the previous discussion of the paradigm and explains how
the difficulties which are specific for the other groups can be overcome.

2. Preliminaries

For a subgroup H of a group G write G:H := {Hg : g ∈ G} for the set of right cosets
with respect to H . A G-space (M, G) is a set M together with a right action M × G →
M : (μ, g) �→ μg. For μ ∈ M set Gμ := {g ∈ G : μg = μ} and μG := {μg : g ∈ G}.
Then (μG, G) and ((G : Gμ), G) are isomorphic for any μ ∈ M .

If M = {1, . . . , k} (k ∈ N), write Sk for the symmetric group Sym(M). For each s ∈
Sym(M) define [s] := { j ∈ M : js �= j} and call it the support of s. If s is of the form

s =
r∏

j=1

a j∏
i=1

ζ
j

i ,
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where ζ
j

i is the i-th j-cycle (in some fixed order), we write type(s) for the partition

λ = (r, r, . . . , r︸ ︷︷ ︸
ar

, r − 1, r − 1, . . . , r − 1︸ ︷︷ ︸
ar−1

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
a1

),

which is in turn abbreviated to λ = (1a1 2a2 . . . rar ). l(λ) := ar + ar−1 + · · · + a1 is called
the length of λ.

If M is a finite set, k := #M < ∞, write Mr (M) for the set of all r -matchings in
M , where an r -matching is a partition of M into r two-element and k − 2r one-element
subsets. A matching in M is an r -matching for a suitable r . If k = 2r , then an r -matching is
also called a two-partition of M , and one writes M(M) := Mr (M). Abbreviate Mr (k) =
Mr ({1, . . . , k}) and M(k) = M({1, . . . , 2k}). Note that M(k) = Mk(2k). The natural
action of Sym(M) on M induces transitive actions on M(M) and Mr (M) in the obvious
way.

Lemma 2.1 Let k, r ∈ N, r ≤ � k
2
	.

#Mr (k) = k!

2r r ! (k − 2r )!
=

(
k

2r

)
(2r − 1)!!, (2.1)

#M(k) = (2k − 1)!!. (2.2)

Here we use for k ∈ N the shorthand (2k − 1)!! := (2k − 1)(2k − 3) . . . 5 · 3 · 1.

Let V be a finite-dimensional complex vector space and write V ⊗k for its k-fold tensor
power. Suppose that b = (b j ) j=1,...,n is a C-basis of V . Write F(k, n) for the set of all maps
from {1, . . . , k} to {1, . . . , n}. It is well known that the family

b⊗k := { ⊗k
i=1 biϕ : ϕ ∈ F(k, n)

}
is a C−basis of V ⊗k ( [5], Ch I §6). For s ∈ Sk, ⊗k

i=1biϕ ∈ b⊗k set(⊗k
i=1 biϕ

)
s := ⊗k

i=1b(is−1)ϕ (2.3)

and proceed by linear continuation. This defines an action of Sk on V ⊗k , which in turn
determines a homomorphism σk : Sk → GL(V ⊗k), hence a linear representation (V ⊗k, σk).

Given a representation (V, ρ) of G, we define on V ∗ = HomC(V, C) the contragredient
representation ρ∗ via

v∗ρ∗(g) := ρ(g−1)v∗ : V
ρ(g−1)→ V

v∗→ C. (2.4)

Given representations (Vi , ρi ) of Gi (i = 1, . . . , k), define a representation ρ1 ⊗ · · · ⊗ ρk

of G1 × · · · × Gk on V1 ⊗ · · · ⊗ Vk by setting(⊗k
i=1 vi

)
(⊗k

i=1ρi )((g1, . . . , gk)) := ⊗k
i=1vi (ρi (gi )) (2.5)
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and then proceeding by linear continuation. If one applies this procedure to k copies of the
same representation (V, ρ) of G and restricts the resulting tensor product representation to
the diagonal, then one obtains a representation ρk = ρ⊗k of G.

It is well known that a representation of a group G can be regarded as a representation of
its group algebra CG, and vice versa. A representation of CG on the complex vector space
V gives rise to a CG-module structure on V , and vice versa. If A is a C-algebra and V1, V2

are C-vector spaces with an additional structure as A-modules, write HomA(V1, V2) :=
{ϕ ∈ HomC(V1, V2) : (va)ϕ = (vϕ)a ∀v ∈ V, a ∈ A}. If A ⊆ EndC(V ), then
EndA(V ) = CEndC(V )(A) = {b ∈ EndC(V ) : ab = ba ∀a ∈ A}.

If ρ is a completely reducible representation of G, then the image of CG under ρ is a
semisimple subalgebra of EndC(V ) (see [4], Thm. 3.3.4), i.e., isomorphic to a direct product
of full matrix algebras. Therefore the following result is applicable:

Theorem 2.2 (Double Centralizer Theorem, DCT) Let V be a finite dimensional C-vector
space, A a semisimple subalgebra of EndC(V ), B := EndA(V ). Fix a family Vμ (μ ∈ M) of
mutually nonisomorphic irreducible A-submodules of V such that all isomorphism classes
of irreducible A-modules which occur in V have a representative among the Vμ. Set Uμ :=
HomA(Vμ, V ) for all μ ∈ M. Then the Uμ are mutually nonisomorphic irreducible B-
modules with respect to the action (ϕ, b) �→ ϕb (where on the right-hand side stands
the composition Vμ

ϕ→ V
b→ V ), and the following isomorphism of A- and of B-modules

holds:

V ∼=
⊕
μ∈M

Vμ ⊗ Uμ.

Proof 1: [4], Thm. 3.3.7.

Now consider the special case that A is the image of a group algebra CG under a
representation ρ (which we drop in what follows in order to simplify notation). Set

[V ]G := {v ∈ V : vg = v ∀g ∈ G}.

Since G acts linearly, [V ]G is a vector space. Its elements are called the G-invariants in V
(with respect to ρ). [V ]G is B-invariant (b ∈ B acting as an endomorphism of V ), because
for v ∈ [V ]G, b ∈ B, g ∈ G : (vb)g = (vg)b = vb. If v ∈ [V ]G, a = ∑

g∈G αgg ∈ A,

then va = ∑
g∈G αg(vg) = (

∑
g∈G αg)v ∈ Cv. (By the definition of group algebras we

are in fact dealing with a finite sum.) This means that Cv is a one-dimensional A-invariant
subspace of V , hence an irreducible A-module.

At a critical juncture in our application of Theorem 2.2 in Section 3 we will need an
answer to the following question: What does Uμ look like when Vμ = Cv0 for some
v0 ∈ [V ]G? We give our answer in the form of an addendum to the DCT.

Addendum 2.3 If A = ρ(CG), v0 ∈ [V ]G, Vμ = Cv0, then Uμ is isomorphic to [V ]G as
a B-module.
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Proof 2: For w ∈ [V ]G define ϕw ∈ HomC(Vμ, V ) by setting (cv0)ϕw := cw for all c ∈ C.
It is easily verified that ϕw ∈ HomA(Vμ, V ) = Uμ and that the map w �→ ϕw is a C-linear

bijection. As to the module operation, let w ∈ [V ]G, b ∈ B. Then ϕwb = ϕwb : Vμ

ϕw→
V

b→ V , because for any c ∈ C, (cv0)(ϕwb) = (cw)b = c(wb) = c(v0ϕwb) = (cv0)ϕwb.

For n ∈ N let In denote the identity matrix in Cn×n , and for n even set

Jn :=
(

0 I n
2

−I n
2

0

)
∈ Cn×n. (2.6)

Let I ⊆ N and consider families (Vn, βn, Gn, Kn)n∈I , where Vn is an n-dimensional C-
vector space, which we will for simplicity identify with Cn , βn : Vn × Vn → C a C-bilinear
form, Gn := {g ∈ GL(Vn) : βn(vg, wg) = βn(v, w) ∀v, w ∈ Vn}, Kn := Gn ∩ Un, where
Un is the unitary group. Consider the following cases:

(1) I = N, and for all n ∈ I βn ≡ 0. Here Gn = GL(n, C), Kn = Un.

(2) I = N, and for all n ∈ I βn is the nondegenerate symmetric form (x, y) �→ x ′In y.
Here Gn = O(n, C), Kn = On.

(3) I = {2m : m ∈ N}, and for all n ∈ I βn is the nondegenerate skew-symmetric form
(x, y) �→ x ′Jn y. Here Gn = Sp(n, C), Kn = Spn.

The relation in which the Kn stand to the Gn is but an instance of a general theory
which links compact to complex Lie groups (see [6], Ch. XVII). Nevertheless, a pedestrian
verification of the following important aspect of this correspondence is possible.

Lemma 2.4 In all three cases (1), (2), (3) for all n ∈ N

L(Gn) = L(Kn) ⊗R C,

i.e. the Lie algebra of Gn is the complexification (as a vector space) of the Lie algebra of
Kn.

Theorem 2.5 Let G and K be connected closed matrix groups, K ≤ G. Assume further
that K is compact and that L(G) = L(K )⊗R C. Let (V, ρ) be a holomorphic representation
of G. Then

(i) (V, ρ) is completely reducible.

(ii) (V, ρ) is irreducible if, and only if, (V, ρK ) is irreducible, where ρK is the restriction
of ρ to K .

Proof 3: [11], Lemma 4.11.13, together with the proof of Thm. 4.11.14.
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Since we wish to apply Theorem 2.5 to G = O(n, C), which has two connected com-
ponents, we give an addendum, which follows by a minor modification of the proof of
Maschke’s theorem roughly as in the proof of [4], Prop. 2.4.2.

Addendum 2.6 Theorem 2.5 remains true when the assumption that G and K be connected
is weakened to the requirement that G1, i.e. the connected component of the unit element,
have finite index in G.

Before this section comes to a close, let us prepare the ground for our subsequent appli-
cations of invariant theory by defining in the cases (2) and (3) two special bases ( fi )i=1,...,n,

( f i )i=1,...,n of Vn such that βn( fi , f j ) = δi j for all i, j = 1, . . . , n. In case (2), for all
i = 1, . . . , n set fi := ei =: f i , where (ei )i=1,...,n is the standard basis of Vn = Cn . In
case (3), n = 2m, there exists a symplectic basis b1, c1, b2, c2, . . . , bm, cm such that for all
i, j = 1, . . . , m:

βn(bi , b j ) = βn(ci , c j ) = 0, (2.7)

βn(bi , ci ) = 1, βn(bi , c j ) = 0 (i �= j). (2.8)

We then set for all i = 1, . . . , m

f2i−1 := bi , f2i := ci , f 2i−1 := ci , f 2i := −bi . (2.9)

3. Moment identities

3.1. The general setup

Fix n ∈ N, and let Kn be one of Un, On, Spn . Consider a random variable �n whose
distribution is the normalized Haar measure ωKn on Kn . In addition, fix r, q ∈ N, a =
(a1, . . . , ar ) ∈ Nr

0, b = (b1, . . . , bq ) ∈ Nq
0 . Set

ka :=
r∑

j=1

ja j (3.1)

and define kb analogously. It is our object to compute the a-moment

E

(
r∏

j=1

(
Tr

(
� j

n

))a j

)

of the random vector (Tr(�n), Tr(�2
n), . . . , Tr(�r

n)) in the cases Kn = On and Kn = Spn ,
and in the case Kn = Un the (a1, . . . , ar , b1, . . . , bq )-moment of the random vector

(Tr(�n), . . . , Tr(�r
n), Tr(�n), . . . , Tr(�

q
n )) . We will usually drop the subscript n.
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3.2. The trace lemma

Let ρ be the defining representation of GL(V ) on V . For k ∈ N write ρk for ρ⊗k : GL(V ) →
GL(V ⊗k), the k-fold tensor power of ρ. Recall from (2.3) the representation σk of Sk on V ⊗k .
Obviously the images of ρk and σk centralize each other. We thus can define a representation

ρk × σk : GL(V ) × Sk → GL(V ⊗k) (3.2)

by setting(⊗k
i=1 vi

)
(ρk × σk)((g, s)) := (⊗k

i=1 viρ(g)
)
σk(s), (3.3)

and proceeding by linear continuation. For g ∈ GL(V ) write ci (g) (i = 1, . . . , n) for
the (not necessarily distinct) complex roots of its characteristic polynomial (in any order).
If p ∈ C[X1, . . . , Xn] is a symmetric polynomial, then p(c1(g), . . . , cn(g)) is defined
unambiguously and will be abbreviated to p(g). For ν ∈ N define pν := ∑n

i=1 X ν
i ∈

C[X1, . . . , Xn], and for any partition λ set pλ := pλ1
pλ2

. . . pλl(λ)
.

We now specialize k to ka as in (3.1), consider (ρk ×σk)(g, s) as a linear operator on V ⊗k

and compute its trace.

Lemma 3.1 (Trace Lemma) For any g ∈ GL(V ),

r∏
j=1

(Tr(g j ))a j = Tr((ρk × σk)((g, s))), (3.4)

where s ∈ Sk is of type (1a1 2a2 . . . rar ).

The proof consists in the following two lemmata, the first of which is stated without
proof in [9], Thm. 4.6(a). The second one seems to be the starting point for the approach of
Diaconis and Shahshahani.

Lemma 3.2 For any g ∈ GL(V ), s ∈ Sk , we have

Tr((ρk × σk)((g, s))) = ptype(s)(g).

Proof 4: In the first step suppose that g is diagonalizable. Consider a basis (vi )i=1,...,n of
V consisting of eigenvectors of g, and let (ci )i=1,...,n denote the corresponding eigenvalues.
Then {⊗k

j=1v jϕ : ϕ ∈ F(k, n)} is a basis of V ⊗k . Evidently, (ρk × σk)((g, s)) maps any
basis tensor to a scalar multiple of another basis tensor. This means that in order to compute
the trace of (ρk × σk)((g, s)), we have to consider the fixed points of the action of s. Now
⊗k

j=1v jϕ is fixed by s if, and only if, ϕ is constant on the supports of the cycles of s. Writing
λ = (λ j ) j=1,...,l(λ) = type(s), this observation yields

Tr((ρk × σk)((g, s))) =
∑

ψ∈F(l(λ),n)

l(λ)∏
j=1

c
λ j

jψ.
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On the other hand,

pλ(g) =
l(λ)∏
j=1

pλ j (g) =
l(λ)∏
j=1

n∑
i=1

c
λ j

i ,

which is the same.
The general case follows from the well-known fact that the set of all complex matrices

whose characteristic polynomial has pairwise distinct roots is dense in Cn×n .

Lemma 3.3 For any g ∈ GL(V )

r∏
j=1

(Tr(g j ))a j = pλ(g),

where λ is the partition (1a1 2a2 . . . rar ).

Proof 5: If g is diagonalizable, then it is immediate that Tr(g j ) = ∑n
i=1(ci (g)) j . Hence

r∏
j=1

(Tr(g j ))a j =
r∏

j=1

(
n∑

i=1

(ci (g)) j

)a j

=
r∏

j=1

(p j (g))a j .

On the other hand, when one groups in pλ(g) = ∏l(λ)
ν=1 pλν

(g) the factors with the same
λν together, by the very definition of the partition λ one again arrives at

∏r
j=1(p j (g))a j . A

density argument yields the conclusion.

3.3. The orthogonal case

We consider the case (G, K ) = (O(n, C), On). Let Z1, . . . , Zr be iid standard normal
random variables. Set k = ka .

Theorem 3.4 If

2n ≥ k, (3.5)

then

E

(
r∏

j=1

(Tr(� j ))a j

)
= E

(
r∏

j=1

(
√

j Z j + η j )
a j

)
, (3.6)

where

η j :=
{

1, if j is even,

0, if j is odd.
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Remark 3.5 If k is odd, then (3.6) holds regardless of whether condition (3.5) is met or
not, both sides being equal to zero in this case.

The proof of Theorem 3.4 is the content of this subsection. Obviously the representation
ρk of GL(V ) can be regarded as a representation of G by restriction. We now apply the DCT
to V ⊗k in the place of V , and take A := ρk(CG). Note that σk(CSk) ⊆ B := EndA(V ⊗k).
The semisimplicity of A is guaranteed by Theorem 2.5, Addendum 2.6 and the remark
before the DCT. Using the Trace Lemma 3.1 we get

r∏
j=1

(Tr(g j ))a j = Tr((ρk × σk)((g, s))) =
∑
μ∈M

Tr(ρk(g)|Vμ
)Tr(σk(s)|Uμ

),

where Vμ, Uμ (μ ∈ M) are defined as in the DCT, and s ∈ Sk is of type (1a1 2a2 . . . rar ).
On the right the symbol ρk(g)|Vμ

is to indicate that ρk(g) ∈ EndC(V ⊗k) is considered as an
endomorphism of the invariant subspace Vμ, and analogously for σk(s)|Uμ

. Integration over
K yields

E

(
r∏

j=1

(Tr(� j ))a j

)
=

∑
μ∈M

Tr(σk(s)|Uμ
)

∫
Tr(ρk(g)|Vμ

)ωK (dg). (3.7)

Now for all μ ∈ M the map χμ : G → C : g �→ Tr(ρk(g)|Vμ
) is an irreducible character

of G, and by Theorem 2.5 its restriction to K is an irreducible character of K . If there exists
μ0 ∈ M such that Vμ0

is a trivial irreducible G-module (hence of the form Cv0 for some
v0 ∈ [V ⊗k]G), then by the orthogonality of irreducible characters we see that (3.7) reduces
to

Tr
(
σk(s)

∣∣
Uμ0

)
. (3.8)

Otherwise the expectation in (3.7) equals 0. Now we invoke our Addendum 2.3 to the
DCT. It says that Uμ0

is—up to an isomorphism of B-modules—nothing else than the space
[V ⊗k]G of G-invariant tensors (with respect to ρk). So, in order to compute (3.8), we can
apply the invariant theory of the complex orthogonal group. To simplify notation, we drop
the representation ρk . The first obvious question is whether there are any nontrivial G-
invariants. Since −I ∈ G, it is clear that the answer is negative if k is odd. So we assume
that k = 2l is even. Recall that f := ( fi )i=1,...,n is an orthonormal basis with respect to β. Set

θl :=
∑

ϕ∈F(l,n)

f1ϕ ⊗ f1ϕ ⊗ · · · ⊗ flϕ ⊗ flϕ. (3.9)

and

θ
S2l
l := {θlσ2l(s) : s ∈ S2l}.

In the sequel we will drop the representation σ2l .
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Theorem 3.6 (First Fundamental Theorem, FFT) [V ⊗p]G = {0} if p is odd, and for l ∈ N
one has

[V ⊗2l]G = spanC
(
θ

S2l
l

)
.

Proof 6: [4], Thm. 4.3.3.

Hence, to evaluate (3.8), we have to compute the trace of s ∈ S2l on spanC(θS2l
l ). We will

facilitate this computation by giving another description of the action of S2l on θ
S2l
l . Recall

thatM(l) denotes the set of all two-partitions of {1, . . . , 2l}. A family ({mν, nν})ν=1,...,l such
that {{mν, nν} : ν = 1, . . . , l} ∈ M(l) is called a labelled two-partition of {1, . . . , 2l}.
Write Ml(l) for the set of all labelled two-partitions of {1, . . . , 2l}. For ml, nl ∈ Ml(l)
write ml ≡ nl if ml equals nl up to a permutation of the index set {1, . . . , l}. Then M(l)
can be regarded as the system of equivalence classes in Ml(l) with respect to ≡.

For ml = ({mν, nν}) ∈ Ml(l), ϕ ∈ F(l, n) let [ml, ϕ] denote the tensor ⊗2l
i=1vi

with the property that vi = fνϕ if i ∈ {mν, nν}. Let S2l act on Ml(l) as follows: ml =
({mν, nν})ν=1,...,l is mapped to mls := ({mνs, nνs})ν=1,...,l . From the definitions, recalling
that S2l acts on V ⊗2l via σ2l , we see:

Lemma 3.7 For ml ∈ Ml(l), ϕ ∈ F(l, n), s ∈ S2l ,

[ml, ϕ]s = [mls, ϕ].

Let ml
0 := ({1, 2}, {3, 4}, . . . , {2l − 1, 2l}). Then we have the following

Corollary 3.8 For all s ∈ S2l

θl s =
∑

ϕ∈F(l,n)

[
ml

0s, ϕ
]
.

Remark 3.9 Since for π ∈ Sl the mapping ϕ �→ πϕ induces a permutation of F(l, n), the
sum

∑
ϕ∈F(l,n)[m

l, ϕ] is independent of the labelling in ml, hence depends only on ≡(ml).

The [ml
0, ϕ] (ϕ ∈ F(l, n)), i.e., the summands of θl , are pairwise distinct elements of the

basis f⊗2l of V ⊗2l , and S2l maps them again to elements of f⊗2l . By the very definition of a
basis this implies that θl s = θl if, and only if, s permutes the summands of θl . Now assume
n ≥ l (which is the same as 2n ≥ k, hence our assumption (3.5)). Then there exists some
ϕ0 ∈ F(l, n) which is injective. Write S for the stabilizer of ≡(ml

0) =: m0 with respect to
the induced action of S2l on M(l). Then for [ml

0, ϕ0]s = [ml
0s, ϕ0] to be a summand of θl

it is necessary that s ∈ S. Together with Corollary 3.8 and Remark 3.9 this implies

Lemma 3.10 If n ≥ l, then θl s = θl if, and only if, s ∈ S.
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Corollary 3.11 If n ≥ l

(M(l), S2l) ∼= (
S2l : S, S2l

) ∼= (
θ

S2l
l , S2l

)
.

Corollary 3.11 implies that the number of fixed points of s ∈ S2l in its action on θ
S2l
l is

the same as in its action on M(l). Now, if we can show that θ
S2l
l is not only a spanning

set, but also a basis of [V ⊗2l]G , the trace we are interested in will be this number of fixed
points. Note that the family (θl s)s∈S2l contains repetitions. We can introduce an injective
parametrization of the orbit as follows: For m ∈ M(l) choose sm ∈ S2l such that m0sm = m.
Then (sm)m∈M(l) is a system of representatives for the coset space S2l : S, and we have that

θ
S2l
l = (θl sm)m∈M(l).

Lemma 3.12 If n ≥ l, then {θl sm : m ∈ M(l)} is C-linearly independent.

Proof 7: For all m ∈ M(l) θl sm is a sum of suitable distinct elements of the basis f⊗2l .
Let ϕ0 ∈ F(l, n) be injective. Then for each m ∈ M(l) ≡(ml

0sm) = m, and [ml
0sm, ϕ0] =

[ml
0, ϕ0]sm is a summand of θl sm, but not of θl sn (n �= m). This proves the lemma.

Summing up, we have established the following

Theorem 3.13 If k = ka = ∑r
j=1 ja j is odd, then

E

(
r∏

j=1

(
Tr(� j )

)a j

)
= 0.

If k = 2l is even and 2n ≥ k, then this expectation equals the number of fixed points with
respect to the induced action on M(l) of any s ∈ S2l with cycle type (1a1 2a2 . . . rar ).

Theorem 3.13 has transformed our original problem into a purely combinatorial task,
which we are going to take up right now.

Theorem 3.14 Let l ∈ N, k = 2l, s ∈ Sk with cycle type (1a1 2a2 . . . rar ). Then, with
respect to the induced action of Sk on M(l) = M({1, . . . , 2l}), the number of fixed points
of s is

r∏
j=1

fa( j),
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where

fa( j) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if a j = 0,

0 if ja j is odd, a j ≥ 1,

j
a j
2 (a j − 1)!! if j is odd and a j is even, a j ≥ 2,

1 +
� a j

2
	∑

d=1

j d

(
a j

2d

)
(2d − 1)!! if j is even, a j ≥ 1.

(3.10)

Here for m ∈ N (2m − 1)!! = (2m − 1)(2m − 3) . . . 3 · 1. The empty sum is zero.

The proof of this theorem becomes more transparent when one makes explicit a series of
more or less trivial lemmata. Fix s ∈ S2l of the form

s =
r∏

j=1

a j∏
i=1

ζ
j

i .

Now let A ⊆ {1, . . . , 2l}, m = {{mν, nν} : ν = 1, . . . , l} ∈ M(l). We say that m can
be restricted to A, if there exists a subset IA ⊆ {1, . . . , l} such that A = ⋃

ν∈IA
{mν, nν}.

Lemma 3.15 Let m ∈ M(l) be s-invariant, j ∈ {1, . . . , r} with a j ≥ 1, i ∈ {1, . . . , a j }.
Then exactly one of the following cases occurs:
(a) m can be restricted to [ζ

j
i ].

(b) a j ≥ 2, and there exists a unique h ∈ {1, . . . , a j }, h �= i, such that m can be restricted
neither to [ζ

j
i ] nor to [ζ

j
h ], but to [ζ

j
i ] ∪ [ζ

j
h ].

In case (a) the restriction of m to [ζ
j

i ] is ζ
j

i -invariant, and in case (b) the restriction of m

to [ζ
j

i ] ∪ [ζ
j

h ] is ζ
j

i ζ
j

h -invariant.

Proof 8: Suppose that (a) does not hold. Then there exists {p, q} ∈ m with p ∈ [ζ
j

i ], q /∈
[ζ

j
i ]. Now there exist unique i ′, j ′ such that q ∈ [ζ

j ′
i ′ ]. We claim that j = j ′. Assume j �= j ′

and let ν = min( j, j ′). Then #({psν, qsν} ∩ {p, q}) = #({p(ζ
j

i )ν, q(ζ
j ′

i ′ )ν} ∩ {p, q}) = 1,

contradicting ms = m. Write h instead of i ′. Since p /∈ [ζ
j

h ], m cannot be restricted to [ζ
j

h ],

either. On the other hand, as (ζ
j

i ) j = 1S2l = (ζ
j

h ) j ,{{
p
(
ζ

j
i

)μ
, q

(
ζ

j
h

)μ}
: μ ∈ N

} = {{
p
(
ζ

j
i

)μ
, q

(
ζ

j
h

)μ}
: μ = 1, . . . , j

}
is the restriction of m to [ζ

j
i ] ∪ [ζ

j
h ]. The statements about invariance are obvious.

For A ⊆ {1, . . . , 2l} consider the following hypotheses:

(1) There exist j ∈ {1, . . . , r} with a j ≥ 1, i ∈ {1, . . . , a j } such that A = [ζ
j

i ].
(2) There exist j ∈ {1, . . . , r} with a j ≥ 2, i, h ∈ {1, . . . , a j }, i �= h, such that A =

[ζ
j

i ] ∪ [ζ
j

h ].
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Now suppose that P is a partition of {1, . . . , 2l} such that each A ∈ P satisfies (1) or (2).
Then it is obvious that any family (mA)A∈P where mA ∈ M(A) is ζ

j
i - (resp. ζ

j
i ζ

j
h -) invariant

gives rise to an s-invariant element of M(l).

Lemma 3.16 Let A ⊆ {1, . . . , 2l}.
(i) If A satisfies hypothesis (1), then M(A) = ∅ if j is odd, and M(A) contains exactly

one ζ
j

i -invariant element if j is even.

(ii) If A satisfies hypothesis (2), then M(A) contains exactly j elements which are ζ
j

i ζ
j

h -

invariant and which can be restricted neither to [ζ
j

i ] nor to [ζ
j

h ].

Proof 9:

(i) If j = #[ζ
j

i ] is odd, then [ζ
j

i ] admits no two-partition. If j = 2ι is even, write

ζ
j

i = (p1 p2 . . . p2ι) and let m ∈ M([ζ
j

i ]) be ζ
j

i -invariant. Suppose {p1, p1+ν} ∈ m.

Then {p1(ζ
j

i )ν, p1+ν(ζ
j

i )ν} = {p1+ν, p1+2ν} if 1 ≤ ν ≤ ι − 1, or = {p1+ν, p1+2(ν−ι)} if
ι ≤ ν ≤ 2ι − 1. By invariance only ν = ι is possible. On the other hand, {{pν, pν+ι} :
ν = 1, . . . , ι } is ζ

j
i -invariant.

(ii) Write ζ
j

i = (p1 p2 . . . p j ), ζ
j

h = (q1q2 . . . q j ), and consider an ζ
j

i ζ
j

h -invariant m ∈
M([ζ

j
i ] ∪ [ζ

j
h ]). If m can be restricted neither to [ζ

j
i ] nor to [ζ

j
h ], there are μ1, μ2 ∈

{1, . . . , j} such that {pμ1
, qμ2

} ∈ m. ζ
j

i ζ
j

h -invariance implies that

m = {{
pμ1

(
ζ

j
i

)ν
, qμ2

(
ζ

j
h

)ν}
: ν = 1, . . . , j

}
.

On the other hand, for all p ∈ [ζ
j

i ], q ∈ [ζ
j

h ],

m(p, q) := {{
p
(
ζ

j
i

)ν
, q

(
ζ

j
h

)ν}
: ν = 1, . . . , j

}
is ζ

j
i ζ

j
h -invariant. Now, for all ν = 1, . . . , j we have that m(p, q) = m(p(ζ

j
i )ν, q(ζ

j
h )ν),

hence {m(p1, qν) : ν = 1, . . . , j} = {m(p, q) : p ∈ [ζ
j

i ], q ∈ [ζ
j

h ]}.

Proof 10 (Proof of Theorem 3.14): We have seen so far that all s-invariant two-partitions
can be obtained by gluing together invariant two-partitions of the supports of the individual
cycles or of the union of the supports of two cycles. There is a degree of freedom in the way
one groups some of the cycles into pairs, but since only cycles of equal length can be paired,
it is possible to consider each cycle length j = 1, . . . , r separately. If a j ≥ 1, write fa( j)
for the number of

∏a j

i=1 ζ
j

i -invariant two-partitions of
⋃a j

i=1[ζ
j

i ]. If j is odd, then there exist
invariant partitions only if all cycles come in pairs, hence only if a j is even. In this case,
there are as many pairings of j-cycles as there are two-partitions of {1, . . . , a j }. Once a

pairing is fixed, each of the
a j

2
pairs, say (ζ

j
i , ζ

j
h ), gives rise to j ζ

j
i ζ

j
h -invariant partitions of

[ζ
j

i ] ∪ [ζ
j

h ]. If j is even, each j-cycle can remain single or be paired with another j-cycle,
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so there are as many possible configurations as there are matchings in the set {1, . . . , a j }.
Lemma 2.1 now yields our claim.

An easy computation shows that (3.6) follows from Theorems 3.13 and 3.14.

3.4. The symplectic case

We consider the case (G, K ) = (Sp(n, C), Spn) (n = 2m even). Let Z1, . . . , Zr be iid
standard normal random variables. Set k = ka .

Theorem 3.17 If

n ≥ k, (3.11)

then

E

(
r∏

j=1

(Tr(� j ))a j

)
= E

(
r∏

j=1

(
√

j Z j − η j )
a j

)
, (3.12)

where η j is as in the orthogonal case.

Remark 3.18 If k is odd, then (3.12) holds regardless of whether condition (3.11) is met
or not, both sides being equal to zero in this case.

The proof of Theorem 3.17 is the content of this subsection. As in the orthogonal case
we see that, if the trivial irreducible G-module occurs in V ⊗k ,

E

(
r∏

j=1

(Tr(� j ))a j

)
= Tr

(
σk(s)

∣∣
[V ⊗k ]G

)
, (3.13)

where s ∈ Sk has type (1a1 2a2 . . . rar ). Now let ( fi )i=1,...,n, ( f i )i=1,...,n be a dual basis pair
for V . Set

θl :=
∑

ϕ∈F(l,n)

f1ϕ ⊗ f 1ϕ ⊗ · · · ⊗ flϕ ⊗ f lϕ.

With this definition, the FFT looks like in the orthogonal case.

Theorem 3.19 [V ⊗p]G = {0} if p is odd, and for l ∈ N one has

[V ⊗2l]G = spanC
(
θ

S2l
l

)
.

Proof 11: [4], Thm. 4.3.3.
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What makes the symplectic case more delicate than the orthogonal one is precisely
that the definition of θl involves two bases, not one. This means that the proof of the
crucial Lemma 3.10 cannot be carried over to the symplectic case in a straightforward
manner. This problem can be overcome by choosing for ( fi )i=1,...,n, ( f i )i=1,...,n the spe-
cial dual basis pair which was constructed in (2.9) starting from a symplectic basis b =
(b1, c1, b2, c2, . . . , bm, cm) (m = n

2
). Then the action of S2l on θ

S2l
l can be described with

respect to b⊗2l , and this makes it possible to mimic the overall strategy of the above treat-
ment of the orthogonal case. But resorting to b comes at the price that one has to develop a
technology to deal with the minus sign which shows up in (2.9).

To begin with, consider an example. Assume as in (3.11) that n ≥ k, hence m ≥ l. Then
θl contains the summand

F := f1 ⊗ f 1 ⊗ f3 ⊗ f 3 ⊗ · · · ⊗ f2l−3 ⊗ f 2l−3 ⊗ f2l−1 ⊗ f 2l−1 (3.14)

= b1 ⊗ c1 ⊗ b2 ⊗ c2 ⊗ · · · ⊗ bl ⊗ cl . (3.15)

This means that for θl s = θl to hold it is necessary that s stabilize the two-partition
{{1, 2}, {3, 4}, . . . , {2l − 1, 2l}}. But this is not a sufficient condition because the trans-
position τ = (12) maps F to

Fτ = c1 ⊗ b1 ⊗ b2 ⊗ c2 ⊗ · · · ⊗ bl ⊗ cl (3.16)

= − f2 ⊗ f 2 ⊗ f3 ⊗ f 3 ⊗ · · · ⊗ f2l−3 ⊗ f 2l−3 ⊗ f2l−1 ⊗ f 2l−1. (3.17)

Let us analyze this situation more carefully. To this end we introduce the following termi-
nology. Define an ordered two-partition of {1, . . . , 2l} to be a family ((mν, nν))ν=1,...,l of
ordered pairs such that {{mν, nν} : ν = 1, . . . , l} ∈ M(l), and write Mo(l) for the system
of ordered two-partitions of {1, . . . , 2l}. Note that a two-partition can be regarded as an
equivalence class in Mo(l) with respect to the equivalence relation ≡ which is defined for
mo = ((mν, nν))ν=1,...,l , po = ((pν, qν))ν=1,...,l by

mo ≡ po :⇔ ∃π ∈ Sl ∀ν = 1, . . . , l :

(mν = pνπ and nν = qνπ ) or (mν = qνπ and nν = pνπ ).

For mo = ((mν, nν))ν=1,...,l ∈ Mo(l) define the sign

sgn(mo) :=
l∏

ν=1

nν − mν

|nν − mν | .

Define the equivalence relation ∼ in Mo(l) via

mo ∼ po :⇔ mo ≡ po and sgn(mo) = sgn(po).

An equivalence class in Mo(l) with respect to ∼ will be called a signed two-partition.
Write Ms(l) for the system of signed two-partitions. It is easily verified that the definition
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(∼(mo))s := ∼(mos) where

mos := ((mνs, nνs))ν=1,...,l (3.18)

yields a well defined action of S2l onMs(l). Note that the analogous definition (≡(mo))s :=
≡(mos) amounts to nothing else than the usual action of S2l on M(l).

Let mo = ((mν, nν))ν=1,...,l ∈ Mo(l), ϕ ∈ F(l, n). Write [mo, ϕ] for the tensor ⊗2l
i=1vi

which is defined as follows: If i = mν , then vi := fνϕ , if i = nν then vi := f νϕ . By the
definition of [mo, ϕ] and of the action σ2l we have

Lemma 3.20 For all mo ∈ Mo(l), ϕ ∈ F(l, n), s ∈ S2l ,

[mo, ϕ]s = [mos, ϕ],

where mos is defined as in (3.18).

Corollary 3.21 For all s ∈ S2l

θl s =
∑

ϕ∈F(l,n)

[
mo

0s, ϕ
]
,

where

mo
0 := ((

m0
ν, n0

ν

))
ν=1,...,l

:= ((1, 2), (3, 4), . . . , (2l − 1, 2l)). (3.19)

Generalizing the above counterexample (3.16), (3.17), one observes that for i = 1, . . . , m

f 2i−1 ⊗ f2i−1 = − f2i ⊗ f 2i and f 2i ⊗ f2i = − f2i−1 ⊗ f 2i−1. (3.20)

For ν = 1, . . . , l define a map Tν : F(l, n) → F(l, n) which assigns to ϕ the map ψ which
coincides with ϕ on {1, . . . , l}\{ν}, and which is defined for ν as follows: νψ := νϕ + 1 if
νϕ is odd and νψ := νϕ − 1 if νϕ is even. Note that indeed ψ ∈ F(l, n) because n is even,
and that Tν ◦ Tν = id. If mo = ((mν, nν))ν=1,...,l ∈ Mo(l) and τ is a transposition which
leaves ≡(mo) invariant, i.e. τ = (mνnν) for some ν = 1, . . . , l, then (3.20) says that

[moτ, ϕ] = −[mo, Tν(ϕ)].

Together with Lemma 3.20 and the obvious analog of Remark 3.9, this yields

Lemma 3.22 For any s ∈ S2l with (≡ (mo))s = ≡ (mo) we have

( ∑
ϕ∈F(l,m)

[mo, ϕ]

)
s =

∑
ϕ∈F(l,m)

[mos, ϕ] =

⎧⎪⎨⎪⎩
∑

ϕ∈F(l,m)

[mo, ϕ] if (∼(mo))s = ∼(mo),

−
∑

ϕ∈F(l,m)

[mo, ϕ] otherwise.
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Recall that one of the many equivalent definitions of the sign of a permutation s ∈ S2l is
as follows:

sgn(s) =
∏

1≤i< j≤2l

j s − is

j − i
.

From this it is not difficult to obtain the following

Lemma 3.23 For mo ∈ Mo(l), s ∈ S2l , the following statements are equivalent:
(i) (∼ (mo))s = ∼ (mo).

(ii) (≡ (mo))s = ≡ (mo) and sgn(s) = 1.

Denote by S the stabilizer of ∼ (mo
0) in S2l . By Lemma 3.23 S is contained in the

alternating group A2l . More precisely it is the stabilizer of ≡(mo
0) in A2l . By (3.15) and the

subsequent discussion on the one hand, and Lemma 3.22 and the other, it is evident that S
coincides with the stabilizer of θl in A2l if n ≥ k. Since A2l acts transitively on M(l), then,
(M(l), A2l) and (θA2l

l , A2l) are isomorphic.
If τ = (12), then S2l = A2l ∪ τA2l . Again by Lemma 3.22 we have θτ

l = −θl , hence

spanC(θA2l
l ) = spanC(θS2l

l ) = [V ⊗2l]G . Let (am)m∈M(l) be a set of representatives for the
coset space (A2l : S) such that m0am = m for all m ∈ M(l).

Lemma 3.24 If n ≥ k = 2l, then

{θlam : m ∈ M(l)} (3.21)

is a basis of [V ⊗2l]G.

Proof 12: Only the linear independence remains to be shown. For all m ∈ M(l), θlam is a
sum of suitable distinct elements of the basis b⊗2l . Let ϕ0 ∈ F(l, n) be such that [mo

0, ϕ0] =
F from (3.14). Then for each m ∈ M(l), ≡(mo

0am) = m, and [mo
0am, ϕ0] = [mo

0, ϕ0]am is
a summand of θlam, but not of θlan (n �= m).

Lemma 3.25 Assume n ≥ k, and let s ∈ S2l , m ∈ M(l). Then the following statements
are equivalent:

(i) When (θlam)s is expressed as a linear combination in the basis (3.21), then θlam has
nonzero coefficient.

(ii) (θlam)s = sgn(s) θlam.
(iii) ms = m.

Proof 13: Lemmata 3.22, 3.23 and 3.24.

Theorem 3.26 If n ≥ k, then for all s ∈ S2l

Tr
(
σ2l(s)|[V ⊗2l ]G

) = sgn(s) · #{m ∈ M(l) : ms = m}.
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Proof 14: Lemmata 3.24 and 3.25.

Now s ∈ S2l is odd if, and only if, it has an odd number of cycles of even length (≥2).
Suppose type(s) = (1a1 2a2 . . . rar ). In order to get a handy version of our main result, we
observe:

Lemma 3.27

r∑
j=1

j even

a j ≡
r∑

j=1

( j − 1)a j (mod 2).

Putting Theorems 3.14 and 3.26 and Lemma 3.27 together, we finally obtain

Theorem 3.28 If k = ∑r
j=1 ja j is odd, then

E

(
r∏

j=1

(Tr(� j ))a j

)
= 0.

If k = 2l is even and n ≥ k, then this expectation equals

r∏
j=1

(−1)( j−1)a j fa( j),

where fa is defined as in (3.10) above in the orthogonal case.

An easy computation shows that (3.12) follows from Theorem 3.28.

3.5. The unitary case

We consider the case (G, K ) = (GL(n, C), Un).

Theorem 3.29 If ka �= kb, then

α(a,b) := E

(
r∏

j=1

(Tr(� j ))a j

q∏
j=1

(Tr(� j ))b j

)
= 0, (3.22)

and if ka = kb and n ≥ ka, then

α(a,b) = δab

r∏
j=1

j a j a j ! (3.23)
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The interpretation of the right-hand side as a moment of a normal random vector requires
some preparation which will be deferred to the end of this subsection.

Since in the unitary case the conjugates come into play, we will have to prove an extension
of the Trace Lemma 3.1. Let γ be the standard scalar product on V = Cn , semilinear in the
first argument and linear in the second argument. To any orthonormal basis (vi )i=1,...,n of V
with respect to γ we assign a dual basis (v∗

i )i=1,...,n of V ∗ by defining v∗
i := (x �→ γ (vi , x))

for i = 1, . . . , n. Recall that ρ denotes the defining representation of G on V , and that ρ∗

is the contragredient representation on V ∗ (see (2.4)). Write ρ∗
kb

for (ρ∗)⊗kb . The image of

the tensor product representation ρka ⊗ ρ∗
kb

of G on V ⊗ka ⊗ (V ∗)⊗kb centralizes the image

of the tensor product representation σka ⊗ σkb of Ska × Skb on V ⊗ka ⊗ (V ∗)⊗kb .

Lemma 3.30 Let g ∈ K = Un, s ∈ Ska , t ∈ Skb , λs := type(s) = (1a1 2a2 . . . rar ), λt :=
type(t) = (1b1 2b2 . . . qbq ). Then

Tr
(((

ρka ⊗ ρ∗
kb

) × (
σka ⊗ σkb

))((
g, (s, t)

))) =
r∏

j=1

(Tr(g j ))a j

q∏
j=1

(Tr(g j ))b j .

Proof 15: Recall the notation of the proof of the Trace Lemma and observe that
xρ(g−1)v∗

i = (xg−1)v∗
i = γ (vi , xg−1) = γ (vi g, x) = γ (civi , x) = ci γ (vi , x) =

ci (xv∗
i ) = x(civ

∗
i ), hence v∗

i ρ
∗(g) = civ

∗
i . So we can argue exactly as in 3.1.

As to the proof of the moment formula, our standard application of the DCT shows that we
have to compute the trace of (s, t) ∈ Ska ×Skb on the space of G-invariants in V ⊗ka ⊗(V ∗)⊗kb .
Now for any 0 �= c ∈ C the scalar matrix cI is in G. By the definition of the contragredient
representation, for any v ∈ V ⊗ka ⊗(V ∗)⊗kb we have v((ρka ⊗ρ∗

kb
)(c I)) = cka−kbv. Therefore

there are no G-invariants unless ka = kb. Now assume that ka = kb and set k := ka . Let
(ei )i=1,...,n be the standard basis of V = Cn . For π ∈ Sk set

Cπ :=
∑

ϕ∈F(k,n)

(⊗k
i=1 eiπ−1ϕ

) ⊗ (⊗k
i=1 e∗

iϕ

)
.

We are now in a position to state the FFT for G.

Theorem 3.31

[V ⊗k ⊗ (V ∗)⊗k]G = spanC{Cπ : π ∈ Sk}.

Proof 16: [4], Thm. 4.3.1.

Lemma 3.32 If n ≥ k, then {Cπ : π ∈ Sk} is C-linearly independent.

Proof 17: Since n ≥ k there exists some ϕ0 ∈ F(k, n) which is injective. Then the
summand (⊗k

i=1eiπ−1ϕ0
) ⊗ (⊗k

i=1e∗
iϕ0

) occurs only in Cπ . This suffices to justify our claim,

because {(⊗k
i=1eiϕ) ⊗ (⊗k

i=1e∗
iψ ) : ϕ, ψ ∈ F(k, n)} is a basis of V ⊗k ⊗ (V ∗)⊗k .
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For s ∈ Sk , CSk (s) denotes the centralizer of s in Sk .

Lemma 3.33 If n ≥ k, then for any (s, t) ∈ Sk × Sk with type(s) = (1a1 2a2 . . . rar ),
type(t) = (1b1 2b2 . . . qbq ), the trace of (σk ⊗ σk)((s, t)) on spanC{Cπ : π ∈ Sk} equals
δab #(CSk (s)).

Remark 3.34 Note that if a = b, then #(CSk (s)) = #(CSk (t)), because in this case the
centralizers are conjugate.

Proof 18 (Proof of Lemma 3.33): If (sλ)λ∈Par(k) is a system of representatives for the
conjugacy classes in Sk , then (sλ, sμ)λ,μ∈Par(k) is such a system for Sk × Sk . Since we are
computing a trace we may assume that (s, t) is one such representative. (ϕ �→ tϕ) being a
bijection of F(k, n), we have

Cπ ((σk ⊗ σk)((s, t))) =
∑

ϕ∈F(k,n)

(⊗k
i=1 eis−1π−1ϕ

) ⊗ (⊗k
i=1 e∗

i t−1ϕ

)
=

∑
ϕ∈F(k,n)

(⊗k
i=1 eis−1π−1tϕ

) ⊗ (⊗k
i=1 e∗

iϕ

) = Ct−1πs .

Therefore (s, t) permutes the Cπ , and Lemma 3.32 implies that the trace we are interested in
equals the number of fixed points. Now fix ϕ0 ∈ Sk and regard it as an element of F(k, n). If
Ct−1πs = Cπ , then s−1π−1tϕ0 = π−1ϕ0, hence s−1π−1t = π−1, and therefore t = πsπ−1.
This implies that type(s) = type(t), i.e. a = b, and s = t by the above special choice for
(s, t). Then πs = sπ , hence π ∈ CSk (s).

On the other hand, if π ∈ CSk (s), a = b, then

Cπ ((σk ⊗ σk)(s, t)) = Cπ ((σk ⊗ σk)(s, s)) =
∑

ϕ∈F(k,n)

(⊗k
i=1 eis−1π−1ϕ

) ⊗ (⊗k
i=1 e∗

is−1ϕ

)
=

∑
ϕ∈F(k,n)

(⊗k
i=1 eiπ−1(s−1ϕ)

) ⊗ (⊗k
i=1 e∗

i(s−1ϕ)

) =
∑

ϕ∈F(k,n)

(⊗k
i=1 eiπ−1ϕ

) ⊗ (⊗k
i=1e∗

iϕ)

= Cπ .

The remaining assertion is obvious.

For an interpretation of the moment formula (3.23), let Z be an R2-valued random
vector with distribution N(0, 1

2
I2). By a standard result on rotationally invariant distributions

(see [1], Prop. 4.10) Z has the same distribution as a product RU of independent random
variables R and U , where U has the uniform distribution on the unit circle and R has
the same distribution as the euclidean norm ‖Z‖2 of Z . In the present case it is in fact
an exponential distribution with parameter 1, and one has E((R2)k) = k! for all k ∈ N0.
Now regard Z as a complex random variable and call it a standard complex normal random
variable. Write U = eiT , where T is uniformly distributed on [0, 2π ]. Let a, b ∈ N0. Then
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E(Za Z
b
) = E(R(a+b)) E(ei(a−b)T ) = δab E(R2a) = δab a! Hence for iid standard complex

normal random variables Z j ( j ∈ N) one has

α(a,b) = δrq

r∏
j=1

δa j b j j
a j +b j

2 a j ! = E

(
r∏

j=1

(
√

j Z j )
a j

q∏
j=1

(
√

j Z j )b j

)
.
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