
J Algebr Comb (2006) 23: 231–242

DOI 10.1007/s10801-006-7395-5

A basis for the non-crossing partition lattice top homology

Eliana Zoque

Received: July 31, 2003 / Revised: September 14, 2005 / Accepted: September 15, 2005
C© Springer Science + Business Media, Inc. 2006

Abstract We find a basis for the top homology of the non-crossing partition lattice Tn .

Though Tn is not a geometric lattice, we are able to adapt techniques of Björner (A. Björner,

On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107–128) to

find a basis with Cn−1 elements that are in bijection with binary trees. Then we analyze the

action of the dihedral group on this basis.
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1. Preliminaries

Let �n be the set of all partitions of the set [n] = {1, 2, . . . , n}. Elements Y of �n are denoted

by Y = B1/ · · · /Bk , where the subsets B1, . . . , Bk partition [n] and are called the blocks

of Y. With the refinement ordering, X ≤ Y if each block of X is contained in a block of Y ,

and the rank function, r�n (B1/ · · · /Bk) = n − k, the set �n is a ranked lattice. Two disjoint

subsets A and B of [n] are said to be crossing if there are a, b ∈ A and x, y ∈ B such that

a < x < b < y or x < a < y < b. A partition Y = B1/ · · · /Bk of [n] is called non-crossing if

no two of its blocks cross. Let Tn denote the ranked lattice of all non-crossing partitions of

[n] ordered by refinement and with the same rank function as for �n .

Let n ≥ 3. Kreweras shows in [8] that μ(Tn) = μTn (0, 1) = (−1)n−1Cn−1 where

1 = /12 · · · n/, 0 = 1/2/ · · · /n and Ck is the k-th Catalan number:

Ck = 1

k + 1

(
2k

k

)
.
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The lattice Tn is EL-shellable [3] and thus Cohen-Macaulay. Then H̃n−3(Tn) is a free

abelian group of rank |μ(Tn)| = Cn−1.

2. NC-bases

An element M of the partition lattice�n is an atom if M has n − 1 blocks. We write M = / i j/
to denote the atom with the block {i, j} and all other blocks singletons.

Definition 2.1. A set B of atoms of �n is an NC-base if |B| = n − 1, the blocks of its elements
do not cross pairwise and the equality

∨
B = 1 holds in �n.

Theorem 2.2. If B = {b1, . . . , bn−1} is an NC-base then the equality rTn (b1 ∨ b2 ∨ · · · ∨
bi ) = i holds.

Proof: Since �n is semimodular, r�n (b1 ∨ b2 ∨ · · · ∨ bi ∨ bi+1) ≤ r�n (b1 ∨ b2 ∨ · · · ∨
bi ) + 1. Since B is an NC-base, r�n (b1 ∨ · · · ∨ bn−1) = r�n (1) = n − 1. Therefore the num-

bers r�n (b1), r�n (b1 ∨ b2), . . . , r�n (b1 ∨ · · · ∨ bn−1) are increasing by at most 1, starting

with 1, and ending with n − 1. This can only happen if r�n (b1 ∨ · · · ∨ bi ) = i. It remains to

prove that in �n , b1 ∨ · · · ∨ bi is a non-crossing partition.

We will show by induction on i that b1 ∨ · · · ∨ bi is non-crossing. For i = 1 it is clear.

Suppose x < y < z < w with x, z ∈ B1 and y, w ∈ B2 where B1 and B2 are blocks of

b1 ∨ · · · ∨ bi . By hypothesis, b1 ∨ · · · ∨ bi−1 is non-crossing and so B1 and B2 cannot both be

blocks of b1 ∨ · · · ∨ bi−1. Assume that B1 is the union of two blocks C1, C2 of b1 ∨ · · · ∨ bi−1

with x ∈ C1 and z ∈ C2. There exists an atom bi = /x ′z′/ with x ′ ∈ C1, z′ ∈ C2. Because

the blocks in b1 ∨ · · · ∨ bi−1 do not cross and y < z < w, it follows that y < z′ < w and so

we can assume that z = z′. Similarly, we may assume that x = x ′.
Write u ∼ v if /u v/ = b j for some j = 1, . . . , i. There is a sequence of vertices t1, . . . , tk

such that y = t0 ∼ t1 ∼ · · · ∼ tk ∼ tk+1 = w. Since the atoms b1, . . . , bi do not cross,

x < t0 < z implies x < t1 < z and so on, so we conclude that x < tk+1 < z, a contradiction.

�

Definition 2.3. Let B = {b1, . . . , bn−1} be an NC-base. If π ∈ Sn−1 let σπ (B) in Tn be the
maximal chain given by

σπ (B) = [bπ (1), bπ (1) ∨ bπ (2), . . . , bπ (1) ∨ bπ(2) ∨ · · · ∨ bπ (n−2)].

By Theorem 2.2 this is in fact a maximal chain in Tn \ {0, 1} and therefore a simplex
of dimension n − 3 in K (Tn).

Define

ρB =
∑

π∈Sn−1

(−1)πσπ (B)

where (−1)π is the sign of the permutation π .

A simple calculation proves the following

Theorem 2.4. If B is an NC-base then ∂n−2(ρB) = 0 and thus ρB ∈ H̃n−3.
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3. The construction of the basis

Recall from [12] that there is a bilinear form 〈, 〉 defined on chains by

〈c1, c2〉 =
{

1 if c1 = c2,

0 otherwise

and extended by linearity. Using this bilinear form, the homology and comology are dual

spaces. The following lemma is a useful tool for finding bases of homology and cohomology.

Lemma 3.1. Let P be a finite poset. If Hr (P) has dimension m and there are elements
ρ1, ρ2, . . . , ρm ∈ Hr (P) and γ1, γ2, . . . , γm ∈ Hr (P) such that 〈ρi , γ j 〉 = δi, j for all i, j =
1, . . . , m, then {ρ1, ρ2, . . . , ρm} is a basis for Hr (P) with dual basis {γ1, γ2, . . . , γm} for
Hr (P).

We will use binary trees to construct a set of Cn−1 elements of Hn−3(Tn) and a set of Cn−1

elements of H n−3(Tn) such that the previous lemma holds.

Definition 3.2. A binary tree is an ordered rooted tree where each node has two subtrees,
which can be empty. We distinguish between the left and the right subtree. The root of the
left(right) subtree is the left(right) son of the root. The vertices of a binary tree are ordered
recursively, with the left subtree ordered first, then the root, and finally the right subtree.

Definition 3.3. A binary tree is a right tree if its left subtree is empty. Let Mn be the set of
all right trees.

It is well-known that Cn is the number of binary trees with n vertices. Since the root of an

ordered right tree has the label 1, there is an obvious bijection between the set Mn of right

trees with n vertices and the set of binary trees with n − 1 vertices. Thus |Mn| = Cn−1.

Example 3.4. The five right trees with 4 vertices are shown in Figure 1.

Fig. 1 All right trees with five vertices
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Enumerate the vertices of a right tree as above. Each vertex will be identified with its

label. For each A ∈ Mn let BA be the set of atoms such that / i j/ ∈ BA if and only if (i, j)

is an edge of A. In the following we shall let / i j/ represent either the atom or the edge.

Theorem 3.5. If A ∈ Mn then BA is an NC-base.

Proof: Since A has n − 1 edges, |BA| = n − 1. Since A is a tree every pair of vertices is

joined by a sequence of edges. This implies that
∨

BA = 1 in �n .

We will show that the elements of BA do not cross. Consider the atoms /a, c/ and /b, d/

and assume they cross. Without loss of generality suppose that a < b < c < d . Then A
has edges (a, c) and (b, d). In such a binary tree the root is less than every vertex in the

right subtree and greater than every vertex in the left subtree. There is an edge between

a and c and therefore a is a son of c or vice versa. Suppose that c is a son of a. Then

c must be the right son of a and, since b was enumerated after a and before c, b must

be in the left subtree of c. But then every vertex connected to b must also be in this sub-

tree and hence is less than or equal to c. Thus there cannot be an edge between b and

d . The case when a is a son of c is similar. It follows that the atoms of BA do not cross

pairwise. �

For brevity, let ρA denote the simplex ρBA associated to the NC-basis BA. Recall that BA

is a set of atoms.

Example 3.6. Let A be the right tree in Figure 2.

The edges are: b1 = (1, 2), b2 = (2, 4), b3 = (3, 4).

ρA = (b1, b1 ∨ b2) − (b1, b1 ∨ b3) − (b2, b2 ∨ b1) + (b2, b2 ∨ b3) + (b3, b3 ∨ b1)

− (b3, b3 ∨ b2) = (1 2/3/4, 1 2 4/3) − (1 2/3/4, 1 2/3 4) − (1/2 4/3, 1 2 4/3)

+ (1/2 4/3, 1/2 3 4) + (1/2 4/3, 1 2/3 4) − (1/2 4/3, 1/2 3 4).

Definition 3.7. Enumerate the edges of a binary tree depth recursively with the edge joining
the root with the left subtree first, then the edges of the left subtree, then the edge joining the
root with the right subtree, and, finally, the edges of the right subtree.

Let b1, . . . , bn−1 be the edges of A ∈ Mn in this order. The characteristic chain of A is
SA = [b1, b1 ∨ b2, . . . , b1 ∨ · · · ∨ bn−2]. By Theorem 2.2 it is a maximal chain in Tn.

The following lemma is clear.

Fig. 2 A right tree
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Lemma 3.8. For every j = 1, . . . , n − 1 the edges b1, . . . , b j form a connected component
of A, which contains the root.

Lemma 3.9. Every block of b1 ∨ · · · ∨ bk has only one element, except the one containing
the vertex 1. If a > 1 belongs to this block, then the father of a also belongs to it.

Proof: The first part is clear from Lemma 3.8. Suppose a > 1 belongs to the connected

component but its father b does not. Then there is a path from a to 1 which does not contain

the vertex b. But this implies that there is a cycle in A contradicting that A is a tree. �

Theorem 3.10. 〈SA, ρA′ 〉 = δA,A′

Proof: It is clear from the definition of ρA that SA is a chain of ρA and that it appears

with the sign +. Assume that ±SA is a chain of ρA′ and that the atoms of ρA and ρ ′
A

are b1, b2, . . . , bn−1 and b′
1, b′

2, . . . , b′
n−1, respectively (ordered by depth). Then there is a

permutation k1, k2, . . . , kn−1 of 1, 2, . . . , n − 1 such that b1 ∨ · · · ∨ bm = b′
k1

∨ · · · ∨ b′
km

for m = 1, . . . , n − 1.

We will show, by induction on m, that bm = b′
km

and that the connected component formed

by the edges b1, . . . , bm in A is equal to the connected component formed by the edges

b′
k1

, . . . , b′
km

in A′. For m = 1 we have b1 = b′
k1

= /1, i/. Assume that b1 = b′
k1

, . . . , bm−1 =
b′

km−1
. Let U, V be blocks with more than one element in b1 ∨ · · · ∨ bm−1 = b′

k1
∨ · · · ∨ b′

km−1

and b1 ∨ · · · ∨ bm = b′
k1

∨ · · · ∨ b′
km

, respectively (they exist by Lemma 3.9). Then V =
U ∪ {x}, where bm = /x, y/, b′

km
= /x, z/, with y, z ∈ U . It must happen that, in the tree

A′, x is a son of z or vice versa. But z ∈ U , and if z is a son of x then x ∈ U , which is

impossible. Therefore x is a son of z in A′. In the same way, x is a son of y in A. Let E
be the tree formed by the edges b1, . . . , bm−1. The vertices of this tree are the elements of

U . Consider the trees F and F ′ whose edges are b1, . . . , bm and b′
k1

, . . . , b′
km

, respectively.

These two trees are obtained by adding the edges bm and b′
km

, respectively, to the tree E and

therefore they can only differ in the edge containing the vertex x . Assume that y �= z. Let

1 = a1, a2, . . . , at = x, 1 = a′
1, a′

2, . . . , a′
s = x be the paths from 1 to x in the trees F and

F ′, respectively. We have at−1 = y, a′
s−1 = z. Let j = max{l|al = a′

l} < min{s − 1, t − 1}.
Then a j = a′

j , a j+1 �= a′
j+1. This situation is shown in Figure 3.

Since j + 1 < s, t , a j+1 �= x and a′
j+1 �= x and therefore a j+1 and a′

j+1 are in the tree E ,

given that a j+1 and a′
j+1 are sons of a j = a′

j .

Without loss of generality we may assume that x < a j . Then a j+1 must be the left son of

a j in E . In the same way, a′
j+1 must be the left son of a′

j = a j in E , which contradicts that

a j+1 �= a′
j+1. We conclude that y = z and therefore bm = b′

km
. Finally, when we adjoin the

same edge to two equal connected components, we obtain the same connected component.

This completes the induction. �

The next theorem follows from Lemma 3.1.

Theorem 3.11. {ρA|A ∈ Mn} is a basis of H̃n−3(Tn).

Note that this base is different from the one that is obtained from an EL-labeling because

there is no maximal chain that is shared by all the elements of the basis. In fact, every atom

belongs to at least one chain.

In [12], several bases for H (�n) are described, using node labeled trees. Although our

basis is described in terms of node labeled trees and the construction itself is almost the same,
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the trees in Wachs’ article are increasing (meaning that every vertex except the root is less

than its father) while the binary trees used here are not. It is the fact that the trees we consider

here have their vertices ordered that guarantees that the partitions are non-crossing.

4. The action of the dihedral group

Let Dn be the dihedral group. The elements of Dn have the form τ aγ b, with 0 ≤ a ≤ n −
1, 0 ≤ b ≤ 1, where τ is the rotation given by τ (i) = i − 1 for 2 ≤ i ≤ n and τ (1) = n; and

γ is the reflection defined by γ (1) = 1 and γ (i) = n − i + 2. We want to analyze the action

of Dn on the homology. To do this we analyze the action of τ and γ .

It is proved in [12] that, under the hypothesis of Lemma 3.1, the representation matrix

M(g) for g acting on Hr (P) with respect to the basis {ρ1, . . . , ρm} has i, j component given

by Mi, j (g) = 〈gρ j , γi 〉. As a consequence, we have the following lemma.

Lemma 4.1. For every element g in the dihedral group Dn, the entries Mi, j (g) of its repre-
sentation matrix with respect to the basis in Theorem 3.11 are −1, 0 or 1.

In the following sections we will give a method for calculating the representation matrices

M(g) with respect to the basis in Theorem 3.11.

4.1. Action of the reflection

Lemma 4.2. For every tree A ∈ Mn there exists a tree D ∈ Mn such that γ (ρA) = ±ρD.

Proof: Let A ∈ Mn , with edges a1, . . . , an−1, ordered by depth. Then γ (a1), . . . , γ (an−1)

are the edges of a tree D = γ (A) ∈ Mn . When these edges are enumerated by depth, they

may appear in a different order γ (aβ(1)), . . . , γ (aβ(n−1)). Then, for every π ∈ Sn−1,

γ (σπ (A)) = [γ (aπ (1)), . . . , γ (aπ (1)) ∨ γ (aπ (2)) ∨ · · · ∨ γ (aπ (n−2))]

= [γ (aπ◦β−1◦β(1)), · · · , γ (aπ◦β−1◦β(1)) ∨ . . . ∨ γ (aπ◦β−1◦β(n−2))] = σπ◦β−1 (D),

Fig. 3 An impossible situation
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and therefore

γ (ρA) =
∑

π∈Sn−1

(−1)πγ (σπ (A))

=
∑

π∈Sn−1

(−1)πσπ◦β−1 (D) = (−1)β
∑

π∈Sn−1

(−1)π◦β−1

σπ◦β−1 (D)

= (−1)β
∑

π∈Sn−1

(−1)πσπ (D) = ±ρD.

�

As a consequence of this lemma, the representation matrix of γ is the direct sum of

matrices of the forms

(
0 1

1 0

)
,

(
0 −1

−1 0

)
, (1) , (−1) .

Example 4.3. Let A be the tree on the left in Figure 4.

The edges of A are a1 = (1, 2), a2 = (2, 4), a3 = (3, 4), a4 = (4, 5), a5 = (5, 6). Then

γ (a1) = (1, 6), γ (a2) = (4, 6), γ (a3) = (4, 5), γ (a4) = (3, 4), γ (a5) = (2, 3). In order,

the edges of D are (1, 6), (4, 6), (3, 4), (2, 3), (4, 5) and the corresponding permutation is

β = 1 2 4 5 3. Since this permutation is even, we conclude that γ (ρA) = ρD.

Now we want to find the number of times that each of the matrices given above appears in

the representation matrix M(γ ). The following lemma is clear from the proof of the Lemma

4.2.

Lemma 4.4. For A ∈ Mn, γ (ρA) = ±ρA if and only if the right subtree of A (the tree with
vertices 2, 3, . . . , n) is symmetric, i.e., if it is invariant under the action of γ .

Now we give a method to determine the sign in the expression γ (ρA) = ±ρD.

In A, let k be the son of 1, and let Al and Ar be the left and right subtrees of k, respectively.

Then Al has k − 2 vertices and Ar has n − k vertices. The edges in Al , including the one

that joins its root with k, are a2, . . . , ak−1. As in the proof of the Lemma 4.2, let βl be the

permutation of the edges of Al such that γ (aβl (2)), . . . , γ (aβl (k−1)) are the edges of γ (Al ),

ordered by depth. Define βr in an analogous way.

Fig. 4 A tree and its reflection
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Then the edges of γ (A), ordered by depth, are

γ (aβ(1)), . . . , γ (aβ(n−1)) = a1, γ (aβr (k)), . . . , γ (aβr (n)), γ (aβl (2)), . . . , γ (aβl (k−1)).

From this we conclude that the sign of β, which is also the sign in the expression γ (ρA) =
±ρD , is (−1)(k−2)(n−k)(−1)βl (−1)βr . We will use this fact in the proof of the following

theorem.

Theorem 4.5. The number of trees A ∈ Mn such thatγ (ρA) = ρA is C(n−2)/2 if n is congruent
to 2 mod 4, and 0 otherwise.

The number of trees A ∈ Mn such that γ (ρA) = −ρA is C(n−2)/2 if n is multiple of 4, and
0 otherwise.

In other words, the multiplicity of the matrix (−1)(n−2)/2 in the representation matrix for

γ is C(n−2)/2.

Proof: If n is odd, the trees in Mn cannot be symmetric, and the result follows from Lemma

4.4. If n is even, say n = 2m, there are Cm−1 symmetric trees (the left subtree is determined

by the right one). Let β, βl and βr be as in the paragraph before the statement of the theorem

above. Then βl and βr are inverse permutations and so they have the same sign. Thus (−1)β =
(−1)(m−1)2 = (−1)m−1. We have concluded γ (ρA) = (−1)(m−1)ρA for every A ∈ Mn . �

The following result will enable us to determine the multiplicities of the 2 × 2 matrices

in M(γ ).

Theorem 4.6. Let xn (resp. yn) be the number of A ∈ Mn so that γ (ρA) = +ρD (resp.
γ (ρA) = −ρD) for some D ∈ Mn. Then

xn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

k=2

(xk−1xn−k+1 + yk−1 yn−k+1), if n = 2m + 1,

m∑
p=1

(x2p−1xn−2p+1 + y2p−1 yn−2p+1) + 2
m−1∑
p=1

(x2p yn−2p), if n = 2m,

and

yn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

n∑
k=2

xk−1 yn−k+1, if n = 2m + 1,

2
m∑

p=1

(2x2p−1 yn−2p+1) +
m−1∑
p=1

(x2pxn−2p + y2p yn−2p), if n = 2m.

Note that the multiplicity of the matrix
(

0 1
1 0

)
in the representation matrix of γ is(

xn − C(n−2)/2

)
/2 if n congruent to 2 mod 4, and xn/2 otherwise. A similar expresion for

the multiplicity of
(

0 −1−1 0

)
can be found.

Proof: Using the formula (−1)β = (−1)(k−2)(n−k)(−1)βl (−1)βr and taking into account the

parity of n, we consider several cases. Assume n = 2m is even. Then γ (ρA) = +ρD if k = 2p
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is even and βl , βr have the same sign, or if k = 2p + 1 is odd and βl , βr have different sign.

In these cases

xn =
m∑

p=1

(x2p−1xn−2p+1 + y2p−1 yn−2p+1) +
m−1∑
p=1

(x2p yn−2p + y2pxn−2p)

and

yn = 2
m∑

p=1

(x2p−1 yn−2p+1) +
m−1∑
p=1

(x2pxn−2p + y2p yn−2p).

The other expressions are similar. �

4.2. Characteristic sequences

In order to find the representation matrix of the rotation τ we have to introduce the tool of

the characteristic sequences.

Every tree A ∈ Mn with edges {b1, . . . bn−1} has a characteristic chain SA = [b1, b1 ∨
b2, . . . , b1 ∨ · · · ∨ bn−2]. By Lemma 3.9, for i = 1, . . . n − 2, the block Ui of b1 ∨ · · · ∨ bi

which contains the vertex 1 is the unique block with more than one element. Let U0 =
{1}. It is clear that Ui−1 ⊂ Ui . Therefore we can order the vertices of A, such that Ui =
{1, a1, . . . ai−1, ai }. This ordering of the vertices is called a pre-order. It can be obtained

recursively by first taking the root, then the vertices of the left subtree, and finally the vertices

of the right subtree.

Definition 4.7. The sequence 1, a1, . . . an−1, an is called the characteristic sequence of the
tree A.

Example 4.8. The characteristic sequence of the tree A shown in Figure 4 is 1, 2, 4, 3, 5, 6.

Definition 4.9. The stack-sorting S of a sequence of diferent numbers is defined recursively
as follows: S(∅) = ∅ and S(A1x A2) = S(A1)S(A2)x if x is the largest element of the sequence
A1x A2. A permutation σ ∈ Sn (considered as a sequence) is called stack-sortable if S(σ ) =
1, 2, . . . , n.

There is a well-known correspondence between binary trees and stack-sortable permuta-

tions that can be found in [7]. As a consequence, we have the following result.

Theorem 4.10. A sequence 1, a1, . . . an−1 is the characteristic sequence of some A ∈ Mn if
and only if it is stack-sortable and {a1, . . . an−1} = {2, . . . , n}.

Note that the number 1 at the beginning of the sequence forces the left subtree to be empty

and guarantees that the tree is a right tree.

The following lemma, which can be found in [7], will be useful later.

Lemma 4.11. If a1, . . . am is a stack-sortable permutation, then there is no triple of indices
i < j < k so that ak < ai < a j .
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4.3. Action of the rotation

We are going to use the result from [12] mentioned at the beginning of this section. Let

A ∈ Mn with edges b1, . . . , bn , ordered by depth. Let b′
i = τ (bi ). Note that b′

1, . . . , b′
n are

the edges of a binary tree A′ with ordered vertices. The root is τ (1) = n, the right subtree is

empty, and the left subtree is obtained by subtracting 1 from the vertices of the right subtree

of A. This is because τ switches the root with every other vertex and leaves the ordering of

the other vertices unchanged. An example is shown in Figure 5.

If tG �= 0 and the edges of G (ordered by depth) are d1, . . . , dn−1 then SG appears in

τ (ρA) =
∑

G∈Mn

tGρG = τ

(∑
π∈Sn

(−1)πσπ (A)

)
=

∑
π∈Sn

(−1)πτ (σπ (A)) .

Thus there exists a permutation π ∈ Sn with tG = (−1)π and

SG = [d1, d1 ∨ d2, . . . , d1 ∨ · · · ∨ dn−1]

= τ (σπ (A)) = τ ([bπ (1), bπ (1) ∨ bπ (2), . . . , bπ (1) ∨ bπ (2) ∨ · · · ∨ bπ (n−1)])

= [b′
π (1), b′

π (1) ∨ b′
π (2), . . . , b′

π (1) ∨ · · · ∨ b′
π (n−1)].

By Lemma 3.9, d1 ∨ · · · ∨ d j = b′
π (1) ∨ · · · ∨ b′

π ( j) has only one block with more than one el-

ement, and so b′
π (1), . . . , b′

π ( j) form a connected component of the tree A′. Let W j be the block

with more than one element in d1 ∨ · · · ∨ d j = b′
π (1) ∨ · · · ∨ b′

π ( j) and let 1, g1, . . . , gn−1 the

characteristic sequence of G. Then W j = {1, g1, . . . , g j }. From this we conclude the fol-

lowing.

Lemma 4.12. Let G ∈ Mn with characteristic sequence 1, g1, . . . , gn−1. Then ρG appears
in τ (ρA) with non-zero coefficient if and only if for every j the vertices 1, g1, . . . , g j form a
connected component of A′ = τ (A).

Example 4.13. Let A be the left tree in Figure 5. The edges of A are b1 = (1, 5), b2 =
(5, 3), b3 = (3, 2), b4 = (3, 4), b5 = (5, 6), and the edges of A′ are b′

1 = (6, 4), b′
2 =

(4, 2), b′
3 = (2, 1), b′

4 = (2, 3), b′
5 = (4, 5).

The characteristic sequences for possible G with tG �= 0 are: 1, 2, 3, 4, 5, 6; 1, 2, 4, 3, 5,

6; 1, 2, 3, 4, 6, 5; 1, 2, 4, 3, 6, 5; and the trees (that we call G1, G2, G3 and G4, respectively)

for these sequences are as shown in Figure 6.

Other sequences, like 1, 2, 4, 6, 5, 3, are also obtained from A′ but they are not characteristic

sequences since they are not stack-sortable. Therefore τ (ρA) = ±ρG1
± ρG2

± ρG3
± ρG4

.

Fig. 5 A tree and its rotation
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Fig. 6 The possible trees G

The signs can be calculated from the signs of the corresponding permutations of the edges

as in the Example 4.3. Thus, in this example, τ (ρA) = ρG1
− ρG2

− ρG3
+ ρG4

.

The Lemma 4.15 give us a shortcut for calculations as the ones in the previous example.

Definition 4.14. Let y1 = 1 and, for i ≥ 0, let yi+1 be the father of yi in A′. The sequence
y1, . . . , ys = n is called the main branch of A′. Let Yi be the set containing the vertex yi and
every vertex in the right subtree of yi−1.

Since 1 has no left son in A′, Y2 ∪ · · · ∪ Ys = {2, . . . , n}.

Lemma 4.15. Let (gi ) = 1, g1, . . . , gn−1 be as in Lemma 4.12. Then the first terms of the
sequence g1, . . . , gn−1 are the elements of Y2 in some order, followed by the elements of Y3

in some order, and so on.

Proof: The vertex with the number 1 = y1 has as father the vertex y2, its left subtree is

empty, and the vertices in its right subtree are the other elements of Y2. Therefore the vertices

adjacent to 1 belong to Y2, so g1 ∈ Y2. But after choosing a vertex, we must take every vertex

less than it that has not been chosen before (according to Lemma 4.11), and those vertices

are in Y1 ∪ Y2. Similarly we show that the vertices in every Yi appear consecutively because

the vertices with label less than yi are in Y1 ∪ · · · ∪ Yi . �

Example 4.16. For the tree A in Example 4.13, y1 = 1, y2 = 2, y3 = 4, y4 = 6 and Y1 =
{1}, Y2 = {2}, Y3 = {4, 3}, Y4 = {6, 5}, and the possible characteristic sequences are 1, 2, 3,

4, 5, 6; 1, 2, 3, 4, 6, 5;1, 2, 4, 3, 5, 6; and 1, 2, 4, 3, 6, 5.

In general, it is not true that every ordering of Yi will work: by Theorem 4.10, the sequence

must be stack-sortable.
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Although this gives us an algorithm to find the representation matrix for τ , it would be

interesting to find a more general way to do it.
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