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Abstract We show that if the number of directions not determined by a pointset W of
AG(3, q), q = ph , of size q2 is at least peq then every plane intersects W in 0 modulo pe+1

points and apply the result to ovoids of the generalised quadrangles T2(O) and T ∗
2 (H).
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1. Preliminaries

Let AG(n, q), respectively PG(n, q), denote the affine, respectively projective, n-dimensional
space over the finite field GF(q) with q elements, where q = ph for some prime p. Let f be
a function from GF(q)2 to GF(q) and let

W f := {〈a, b, f (a, b), 1〉 : a, b ∈ GF(q)},

be the set of points corresponding to the graph of the function f in AG(3, q). Let π be the
plane with equation X3 = 0, and put

D( f ) := {〈P, Q〉 ∩ π : P, Q ∈ W f , P �= Q}.

We call D( f ) the set of directions determined by f . Often we will only refer to the set of
affine points W f and talk about the number of directions determined by W f instead of by
f . Note that |W f | = q2 and that for any set W of q2 affine points in PG(3, q) one can define
a function fW provided that W does not determine every direction. The main result of this
paper is that if the number of directions not determined by W is more than q then every plane
of PG(3, q) intersects W in 0 modulo p points. After the proof of this result, we will prove
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two more theorems, by refining the hypotheses in one case and for p = 2 in the other case.
In the last section we consider some consequences for ovoids of the generalised quadrangles
T2(O) and T ∗

2 (H), where O is an oval and H is a hyperoval of PG(2, q). In the special case
where O is a conic, these consequences are similar to those obtained in [4].

In contrast to the main result of this article, Storme and Sziklai [8] prove that if the
number of directions determined by W is less than q(q + 3)/2 then every line is incident
with exactly one point of W or 0 mod p points. If p > 3 they prove that W is GF(s)-linear
for some subfield GF(s) of GF(q). Their proof uses the main result in [5] which classifies
those sets of q points in AG(2, q) that determine less than half the directions. This problem
dates back to Rédei [7, pp. 226], who together with Megyesi solved the prime case, and has
now been solved completely, for the most part in [5] and for characteristic two and three in
[2]. The restriction p > 3 in [8] can been weakened to p > 2 as a result of [2].

2. The number of directions

We start with a lemma concerning the number of zeros of a polynomial over a finite field, to
which we will refer often.

Lemma 2.1. Let S be a subset of GF(q)2 and σ ∈ GF(q)[X, Y ] be such that σ (aY + b, Y ) ≡
0, for all (a, b) ∈ S. If |S| > deg(σ ) then σ (X, Y ) ≡ 0.

Proof: If σ (aY + b, Y ) ≡ 0 then σ (X, Y ) ≡ 0 modulo X − aY − b, and hence

X − aY − b | σ (X, Y ).

It follows that

∏
(a,b)∈S

(X − aY − b) | σ (X, Y ).

Since the degree of the left hand side is |S| the result follows. �

Theorem 2.2. Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, |W| = q2. If the number of direc-
tions not determined by W is at least q then every plane of PG(3, q) meets W in 0 modulo
p points.

Proof: Let π denote the plane X3 = 0 in PG(3, q), W be contained in PG(3, q) \ π , and
D(W) denote the set of directions determined by W . Choose a subset U ⊂ π \ D(W) of
size q . Without loss of generality we may assume that U = {〈1, ui , vi , 0〉 : i ∈ {1, . . . , q}}.
Consider the Rédei polynomial

R(T, X, Y ) :=
∏

〈a,b,c,1〉∈W
(T + aX + bY + c) =

q2∑
j=0

σ j (X, Y )T q2− j .
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Note that deg(σ j ) ≤ j . Since every line intersecting π in a point of U contains at most one
point of W and |W| = q2, every such line must intersect W in exactly one point. Consider

R(T, −ui Y − vi , Y ) =
∏

〈a,b,c,1〉∈W
(T + a(−ui Y − vi ) + bY + c)

=
∏

〈a,b,c,1〉∈W
(T + (b − aui )Y + c − avi ).

The number of factors satisfying b − aui = r and c − avi = s is equal to the number of
points of W on the line defined by the planes X1 − ui X0 = r X3 and X2 − vi X0 = s X3.
Since this line is incident with the point 〈1, ui , vi , 0〉 ∈ U , the number of such factors is one.
Hence

R(T, −ui Y − vi , Y ) =
∏

(r,s)∈GF(q)2

(T + rY + s) =
∏

r∈GF(q)

(T q + rY q − T − rY )

= T q2 − ((Y q − Y )q−1 + 1)T q + (Y q − Y )q−1T,

for all i ∈ {1, . . . , q}. It follows that σ j (−ui Y − vi , Y ) ≡ 0 for all i ∈ {1, . . . , q}, 0 < j <

q2 − q. By the previous lemma, σ j (X, Y ) ≡ 0 for 0 < j < q since deg(σ j ) ≤ j . This implies
that

R(T, X, Y ) = T q2 +
q2∑

j=q

σ j (X, Y )T q2− j .

Differentiate the Rédei polynomial with respect to T

∂ R

∂T
(T, X, Y ) =

∑
〈a,b,c,1〉∈W

1

(T + a X + bY + c)
R(T, X, Y ).

Evaluate at X = x ∈ GF(q) and Y = y ∈ GF(q) and multiply through by T q − T . Then we
have a polynomial identity and the divisibility

R(T, x, y) | (T q − T )
∂ R

∂T
(T, x, y).

The left hand side has degree q2 and the right hand side has degree less than q2. Hence the
right hand side is zero, in particular

∂ R

∂T
(T, x, y) ≡ 0,

for all (x, y) ∈ GF(q)2. This implies that R(T, x, y) is a p-th power, for all (x, y) ∈ GF(q)2.
It follows that every factor T − t , where t = −ax − by − c for some 〈a, b, c, 1〉 ∈ W occurs
a multiple of p times in R(T, x, y). In other words, every plane with equation

x X0 + y X1 + X2 + t X3 = 0
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x, y, t ∈ GF(q), intersects W in 0 modulo p points. These are all planes of PG(3, q) except
those which have no X2-term in their defining equation. But if we define the Rédei polynomial
as ∏

〈a,b,c,1〉∈W
(T + a + bX + cY ),

respectively ∏
〈a,b,c,1〉∈W

(T + a X + b + cY ),

then exactly the same arguments as for R(T, X, Y ) can be applied and it follows that every
plane of PG(3, q) intersects W in 0 modulo p points, except those planes which have no
X0-term, respectively X1-term, in their defining equation. The only plane belonging to all of
the above exceptional planes is the plane X3 = 0, which intersects W in 0 points. �

The following example illustrates that the bound in Theorem 2.2 is sharp.

Example 2.3. Let π and π ′ be two planes of PG(3, q), q = ph , intersecting in the line L .
Suppose P is a point of π \ L , Q a point of π ′ \ L and R a point on L . Define W as the set
of points on π ′ \ L but not on the line 〈Q, R〉, together with the points on the line 〈P, Q〉
different from P . Then W has size q2, W determines q2 + 2 directions in π , the points on
the line 〈R, P〉 \ {R, P} are not determined by W , and not every plane intersects W in 0
modulo p points.

In fact we can show that as the number of directions determined by W becomes smaller, the
restriction on the intersection number with planes of PG(3, q) becomes stronger.

Theorem 2.4. Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, |W| = q2. If there are peq or more
directions not determined byW for some e ∈ {0, 1, 2, . . . , h − 1} then every plane of PG(3, q)
meets W in 0 modulo pe+1 points.

Proof: The case e = 0 was proven in Theorem 2.2 so assume that e ≥ 1 and as in the proof
of Theorem 2.2 let π denote the plane X3 = 0 in PG(3, q), W be contained in PG(3, q) \ π ,
and D(W) denote the set of directions determined by W . Without loss of generality we may
assume that 〈0, 0, 1, 0〉 ∈ D(W) and by hypothesis there is a set U ⊂ π \ D(W) of size peq .
PutU = {〈1, ui , vi , 0〉 : i ∈ {1, . . . , peq − k}} ∪ {〈0, 1, ti , 0〉 : i ∈ {1, . . . , k}}. Consider the
Rédei polynomial

R(T, X, Y, Z ) :=
∏

〈a,b,c,1〉∈W
(T + a X + bY + cZ ) =

q2∑
j=0

σ j (X, Y, Z )T q2− j .

Repeating the exact same arguments as in the proof of Theorem 2.2 but using the homoge-
neous polynomials σ j (X, Y, Z ) we have that

σ j (−ui Y − vi Z , Y, Z ) ≡ 0,
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for all i and 0 < j < q2 − q. Hence, by an analogous result to Lemma 2.1

peq−k∏
i=1

(X + ui Y + vi Z ) | σ j (X, Y, Z )

for 0 < j < q2 − q. Consider

R(T, 1, −ti Z , Z ) =
∏

〈a,b,c,1〉∈W
(T + (c − ti b)Z + a).

The number of factors satisfying c − ti b = r and a = s is equal to the number of points of W
on the line defined by the planes X2 − ti X1 = r X3 and X0 = s X3. Since this line is incident
with the point 〈0, 1, ti , 0〉 the number of such factors is one. Hence

R(T, 1, −ti Z , Z ) =
∏

(r,s)∈GF(q)2

(T + r Z + s)

= T q2 − ((Zq − Z )q−1 + 1)T q + (Zq − Z )q−1T,

for all i ∈ {1, . . . , k}. It follows that σ j (1, −ti Z , Z ) ≡ 0 for all i ∈ {1, . . . , k} and 0 < j <

q2 − q. As in Lemma 2.1

k∏
i=1

(Y + ti Z ) | σ j (X, Y, Z )

and so

k∏
i=1

(Y + ti Z )
peq−k∏

i=1

(X + ui Y + vi Z ) | σ j (X, Y, Z )

for 0 < j < q2 − q. Now if 0 < j < peq then the degree of σ j (X, Y, Z ) is less than peq
and so σ j (X, Y, Z ) ≡ 0. Therefore

R(T, X, Y, 1) = T q2 +
q2∑

j=peq

σ j (X, Y, 1)T q2− j .

and we can follow the proof of Theorem 2.2 and conclude that R(T, x, y, 1) is a p-th power,
for all (x, y) ∈ GF(q)2. Now fix an (x, y) ∈ GF(q)2 and take the p-th root of R(T, x, y, 1),
i.e.,

R1(T ) := R(T, x, y, 1)1/p = T q2/p + G(T ),

for some G ∈ GF(q)[T ], with deg(G) ≤ (q2 − peq)/p. Again, as in the proof of Theorem
2.2, we have that

R1(T ) | (T q − T )
∂ R1

∂T
(T ).
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The left hand side has degree q2/p and the right hand side has degree at most q2/p + q −
peq/p − 2 < q2/p. Hence the right hand side is zero, in particular

∂ R1

∂T
(T ) ≡ 0.

This implies that R1(T ) is a p-th power and R(T, x, y, 1) is a p2-th power for all (x, y) ∈
GF(q)2. We can continue this process by defining Rl (T ) as the pl -th root of R(T, x, y) for
any fixed (x, y) ∈ GF(q)2, consider the divisibility

Rl (T ) | (T q − T )
∂ Rl

∂T
(T ),

and obtain that Rl (T ) is a p-th power, as long as the degree of the right hand side is less than
q2/pl . This is the case as long as l < e + 1, which implies that R(T, x, y, 1) is a pe+1-th
power, for all (x, y) ∈ GF(q)2. It follows that every factor T − t , where t = −ax − by − c
for some 〈a, b, c, 1〉 ∈ W , occurs a multiple of pe+1 times in R(T, x, y, 1). In other words,
every plane with equation

x X0 + y X1 + X2 + t X3 = 0

x, y, t ∈ GF(q), intersects W in 0 modulo pe+1 points. These are all planes of PG(3, q)
except those which have no X2-term in their defining equation. However we can redefine
the Rédei polynomial as in Theorem 2.2, by permuting the coordinates, and conclude that
all planes intersect W in 0 modulo pe+1 points. �

The following theorem says we can deduce more in the case when q is even.

Theorem 2.5. Let W ⊂ AG(3, q) ⊂ PG(3, q), q = 2h, |W| = q2. Suppose that there are at
least 2eq directions not determined by W for some e ∈ {0, 1, . . . , h − 1}. Then two parallel
planes intersect W in the same number of points modulo 2e+2.

Proof: Put π := PG(3, q) \ AG(3, q) and suppose that π1 and π2 are two parallel planes
intersectingπ in the same line determined by the equations X3 = 0 and x X0 + y X1 + X2 = 0
for some x, y ∈ GF(q). We assume that the planes π1 and π2 do not contain the point
〈0, 0, 1, 0〉, but as before we can permute the coordinates and consider planes that do not
contain the point 〈1, 0, 0, 0〉 and the point 〈0, 1, 0, 0〉. Let

π1 : x X0 + y X1 + X2 + t1 X3 = 0

and

π2 : x X0 + y X1 + X2 + t2 X3 = 0.

Theorem 2.4 implies that planes intersect W in zero modulo 2e+1 points.
Suppose π1 intersects W in 2e+1 mod 2e+2 points. Then, as in the proof of Theorem

2.4, it follows that t1 is a root of R(T, x, y, 1), where R(T, X, Y, Z ) is the Rédei poly-
nomial corresponding to W , of multiplicity 2e+1 mod 2e+2, and we obtain R(T, x, y, 1) ∈
GF(q)[T 2e+1

] \ GF(q)[T 2e+2
]. We will show that also π2 intersectsW in 2e+1 mod 2e+2 points.
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We may write

R(T, x, y, 1)1/2e+1 = T q2/2e+1 + g(T ),

where g ∈ GF(q)[T ] is of degree at most q2/2e+1 − q/2 and g′(T ) is not identically zero. The
product of the distinct linear factors of R(T, x, y, 1)1/2e+1

divides T q + T and the repeated
factors divide its derivative, hence

T q2/2e+1 + g(T ) | (T q + T )g′(T ).

The degree of the quotient m(T ) is at most q/2 − 2 and differentiating the identity

(T q2/2e+1 + g(T ))m(T ) = (T q + T )g′(T ),

we get

T q2/2e+1
m ′(T ) + (g(T )m(T ))′ = g′(T ).

The degree of g(T )m(T ) is at most q2/2e+1 − 2 so we must have that m ′(T ) = 0. The last
equation then becomes m(T )g′(T ) = g′(T ) and hence m(T ) = 1. Therefore

R(T, x, y, 1) = (T q + T )2e+1
h(T )2e+2

,

where h(T )2 = g′(T ). It follows that every root of R(T, x, y, 1), in particular t2, is a root
with multiplicity 2e+1 mod 2e+2, which implies that π2 intersects W in 2e+1 mod 2e+2 points.
We have shown that the number of points in the intersection of a plane with W modulo 2e+2

only depends on the plane’s intersection with π . �

3. Ovoids of the generalised quadrangles T2(O) and T∗
2 (H)

Let O be an oval in PG(2, q) ⊂ PG(3, q), i.e., a set of q + 1 points no three collinear, where
q = ph . Consider the following incidence structure T2(O). We define three types of points:
(i) the points of PG(3, q) \ PG(2, q); (ii) The planes of PG(3, q) which meet PG(2, q) in a
tangent line to O; (iii) a point (∞). We define two type of lines: (a) the points of O; (b) the
lines of PG(3, q) \ PG(2, q) which meet PG(2, q) in a point of O. Incidence is symmetric
containment in PG(3, q) and the point (∞) is incident with every line of type (a). The
incidence structure T2(O) is a generalised quadrangle of order q , see [6,3.1.2]. An ovoid �

of a generalised quadrangle S is a set of points of S such that every line of S is incident with
exactly one point of �. If the generalised quadrangle S has order (s, t) then an ovoid of S
has st + 1 points, again see [6]. Theorem 2.2 and Theorem 2.5 have the following immediate
corollary.

Corollary 3.1. If � is an ovoid of T2(O) containing the point (∞), then every plane of
PG(3, q) meets � in zero modulo p points. Moreover if q is even, two planes meeting
PG(3, q) \ AG(3, q) in the same line intersect � either both in 0 modulo 4 points or both in
2 modulo 4 points.
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Proof: Note that an ovoid of T2(O) contains q2 + 1 points. The fact that no two points of
W := � \ {(∞)} are collinear means that the points of O are not contained in the set of
directions determined by W . Since |W| = q2 and |O| = q + 1, we can apply Theorem 2.2
and the first part of the corollary follows. The second part of the corollary follows directly
from Theorem 2.5. �

If q is even then the oval O has a nucleus N , i.e., a point which is incident with every
tangent line to O. Consider the following incidence structure T ∗

2 (H), where H = O ∪ {N }.
The points are the points of PG(3, q) \ PG(2, q), the lines are the lines of PG(3, q) \ PG(2, q)
which meet PG(2, q) in a point of H, and incidence is that inherited from PG(3, q). T ∗

2 (H)
is a generalised quadrangle of order (q − 1, q + 1), see [6, 3.1.3]. Again we can apply
Theorem 2.2 and Theorem 2.5 to obtain the following corollary for ovoids of T ∗

2 (H).

Corollary 3.2. If � is an ovoid of T ∗
2 (H), then every plane of PG(3, q) meets � in an even

number of points. Moreover two planes meeting PG(3, q) \ AG(3, q) in the same line intersect
� either both in 0 modulo 4 points or both in 2 modulo 4 points.

Proof: Note that an ovoid of T ∗
2 (H) has (q − 1)(q + 1) + 1 = q2 points. The fact that no

two points of W := � are collinear implies that the points of H are not contained in the set of
directions determined by W . Since |W| = q2 and |H| = q + 2, we can apply Theorem 2.2
and the first part of the corollary follows. The second part of the corollary follows directly
from Theorem 2.5. �

Motivated by the desire to know the possible intersection numbers that planes have with
an ovoid of T2(O), where (∞) is not a point of the ovoid we prove the following theorem
which would seem artificial were it not for the immediate corollary.

Theorem 3.3. Let W ⊂ AG(3, q) ⊂ PG(3, q), q = ph, be a set of q2 − q points that does
not determine a set of directions U ⊂ π \ D(W), where π := PG(3, q) \ AG(3, q), which
has the property that for each point P ∈ U the q affine lines incident with P but skew from
W are coplanar.

(i) If |U | ≥ q − 1 then two planes that meet π in the same line are either both incident with
a point of W or they are both incident with 0 modulo p points of W .

(ii) If U is of size q and has the property that the skew planes are incident with a common
point Q of π then every plane not incident with Q is incident with a point of W and
those incident with Q are incident with 0 modulo p points of W . Moreover if q is even
then every plane not incident with Q is incident with an odd number of points of W .

Proof: As before let π denote the plane X3 = 0 in PG(3, q), W be contained in PG(3, q) \
π , and D(W) denote the set of directions determined by W . Choose a subset U ⊂ π \
D(W) of size q − 1. Without loss of generality we may assume that U = {〈1, ui , vi , 0〉 : i ∈
{1, . . . , q − 1}}. Define the Rédei polynomial

R(T, X, Y ) :=
∏

〈a,b,c,1〉∈W
(T + aX + bY + c) =

q2−q∑
j=0

σ j (X, Y )T q2−q− j .
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Consider

R(T, −ui Y − vi , Y ) =
∏

〈a,b,c,1〉∈W
(T + (b − aui )Y + c − avi ).

The number of factors satisfying b − aui = r and c − avi = s is equal to the number of
points of W on the line defined by the planes X1 − ui X0 = r X3 and X2 − vi X0 = s X3.
Since this line is incident with the point 〈1, ui , vi , 0〉 ∈ U , the number of such factors is one
unless the line is contained in the plane πi skew to W at 〈1, ui , vi , 0〉. There is a point on
the line X3 = X0 = 0 that is not incident with any πi and without loss of generality we may
assume that this point is 〈0, 0, 1, 0〉. So for some αi , βi the skew plane πi at 〈1, ui , vi , 0〉 is
defined by the equation

−(vi + βi ui )X0 + βi X1 + X2 + αi X3 = 0.

This plane contains the line defined by the equations X1 − ui X0 = r X3 and X2 − vi X0 =
s X3 if and only if s = −(αi + βi r ). Hence

R(T, −ui Y − vi , Y ) =
∏

(r,s)∈GF(q)2

(T + rY + s)/
∏

r∈GF(q)

(T + rY − (αi + βi r )),

= [
T q2 − ((Y q − Y )q−1 + 1)T q + (Y q − Y )q−1T

]/[
T q − (Y − βi )

q−1T − αi
]
,

for all i ∈ {1, 2, . . . , q − 1}. The second highest degree term in T on the right hand side
is of degree q2 − 2q + 1 so σ j (−ui Y − vi , Y ) ≡ 0 for all j ∈ {1, 2, . . . , q − 2} and i ∈
{1, 2, . . . , q − 1}. By Lemma 2.1 the polynomials σ j (X, Y ) ≡ 0 for all j ∈ {1, 2, . . . , q − 2}.
So

R(T, X, Y ) = T q2−q +
q2−q∑
j=q−1

σ j (X, Y )T q2−q− j .

As in the previous theorems for all x, y ∈ GF(q) we have the divisibility

R(T, x, y) | (T q − T )
∂ R

∂T
(T, x, y).

The left hand side has degree q2 − q and the right hand side has degree less than or equal to
q2 − q. The coefficient of T q2−q on the right hand side is σq−1(x, y).

If σq−1(x, y) is zero then the right hand side has degree less than the left hand side and is
identically zero. In this case

∂ R

∂T
(T, x, y) ≡ 0,

and R(T, x, y) is a p-th power and it follows that every factor T − t , where t = −ax − by − c
for some 〈a, b, c, 1〉 ∈ W occurs a multiple of p times in R(T, x, y). In other words, every
plane with equation

x X0 + y X1 + X2 + t X3 = 0
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x, y, t ∈ GF(q), intersectsW in 0 modulo p points. These are the planes sharing the common
line of π defined by the equations X3 = 0 and x X0 + y X1 + X2 = 0.

If σq−1(x, y) is not zero then we have the equality

R(T, x, y) = σq−1(x, y)−1(T q − T )
∂ R

∂T
(T, x, y),

and it follows that every factor T − t , where t = −ax − by − c for some 〈a, b, c, 1〉 ∈ W
occurs at least once in R(T, x, y). In other words, every plane with equation

x X0 + y X1 + X2 + t X3 = 0

x, y, t ∈ GF(q), intersects W in at least a point. Again these planes share the common line
of π defined by the equations X3 = 0 and x X0 + y X1 + X2 = 0 and so we have proved the
first part of the theorem for all lines which have an X2 term in their defining equation. As
in the previous theorems, redefining the Rédei polynomial by permuting the coordinates and
going through the same arguments suffices for lines of π defined by equations of the form
x X0 + X1 + y X2 = 0 and X0 + x X1 + y X2 = 0.

By hypothesis in the final part of the theorem we have a subset of U ⊂ π \ D(W) of size q
with the property that the planes skew to W are incident with a common point Q of π . Then
every plane not incident with Q is incident with a point of W . Without loss of generality let
Q be the point 〈0, 1, 0, 0〉 and apply a collineation that fixes Q and maps the line X0 = 0
skew to U . Following the proof as in part (i), but with βi = 0 for all i ∈ {1, 2, . . . , q} we have

R(T, −ui Y − vi , Y ) = (
T q2 − ((Y q − Y )q−1 + 1

)
T q

+(Y q − Y )q−1T )
/

(T q − Y q−1T − αi ),

for all i ∈ {1, 2, . . . , q}. Hence σq−1(−ui Y − vi , Y ) ≡ Y q−1 and by Lemma 2.1
σq−1(X, Y ) − Y q−1 ≡ 0. Continuing along the arguments as before we now have that if
y �= 0 then the every plane with equation

x X0 + y X1 + X2 + t X3 = 0

x, t ∈ GF(q), intersects W in at least a point and if y = 0 then the planes defined by an
equation of the form

x X0 + X2 + t X3 = 0,

those incident with Q, intersect W in 0 modulo p points. Moreover, if q is even and y �= 0
then

R(T, x, y) = σq−1(x, y)−1(T q − T )
∂ R

∂T
(T, x, y).

Since ∂ R
∂T (T, x, y) is a square in T every factor T − t occurs an odd number of times and the

planes defined by an equation of the form

x X0 + y X1 + X2 + t X3 = 0

intersect W in an odd number of points. �
Springer
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Corollary 3.4. Let � be an ovoid of T2(O) that does not contain the point (∞). Every plane
of PG(3, q) that is not incident with a point of O is incident with 1 modulo p points of �.

Proof: If q is even then all the hypotheses of Theorem 3.3 are satisfied and we can apply
the last part of the theorem to obtain the corollary. If q is odd then O is a conic and T2(O)
is isomorphic to Q(4, q). The planes of PG(3, q) that are not incident with a point of
O correspond to elliptic quadrics in the Q(4, q) model. Corollary 3.1 implies that elliptic
quadrics are incident with no points of an ovoid of Q(4, q) or 1 modulo p points. However
Theorem 3.3 shows that the planes containing the line π ′ ∩ π , where π ′ is a plane skew to
the ovoid, are all skew to the ovoid, which is clearly nonsense. Hence an elliptic quadric is
incident with 1 modulo p points of an ovoid of Q(4, q). �

In the case when q is odd, the previous corollary was first proven in [3]. It was proven
again in [4] where it was also shown that ovoids of Q(4, p), p prime, are elliptic quadrics.

In the case where q is even and O is a conic, so T2(O) is isomorphic to Q(4, q), the
previous corollary was first proven by Bagchi and Sastry [1]. Moreover it was shown in [4]
that every elliptic quadric is either incident with 1 modulo 4 points of an ovoid of Q(4, q) or
every elliptic quadric is incident with 3 modulo 4 points of an ovoid of Q(4, q).
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