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Abstract Using covering numbers we prove that a standard real integral table algebra (A, B)

with |B| ≥ 6 has a P-polynomial structure with respect to every b �= 1 in B if and only

if 2|B| − 1 is prime and (A, B) is exactly isomorphic to the Bose-Mesner algebra of the

association scheme of the ordinary (2|B| − 1)-gon. Then we present an example showing

that this result is not true if |B| ≤ 5.

Keywords Table algebras · Covering numbers · Association schemes · Bose-Mesner

algebras · P-polynomial structures

1. Introduction

C-algebras of P-polynomial type were first studied by Bannai and Ito [4]. A C-algebra (A, B)

is of P-polynomial type if and only if there is a b �= 1 in B such that the intersection matrix

of b with respect to B or a reordering of B is tridiagonal of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 β1 γ2

α1 β2 γ3

. . .
. . .

. . .

αk−2 βk−1 γk

αk−1 βk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0. (1)

C-algebras of P-polynomial type are important because an association scheme has a

P-polynomial structure if and only if its Bose-Mesner algebra is a C-algebra of P-polynomial

type. It is well-known that a symmetric association scheme which is not derived from a

polygon can only have at most two P-polynomial structures, while the association scheme
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of an ordinary n-gon with n prime has (n − 1)/2 P-polynomial structures (see [4, Theorem

4.2, p. 241]). That is, if (A, B) is the Bose-Mesner algebra of the association scheme of

an ordinary n-gon with n prime, then for any b �= 1 in B, the intersection matrix of b with

respect to B or some reordering of B is tridiagonal of the form (1). Now suppose (A, B) is

a C-algebra with nonnegative integral structure constants such that for any b �= 1 in B, the

intersection matrix of b with respect to B or some reordering of B is tridiagonal of the form

(1). Is (A, B) exactly isomorphic to the Bose-Mesner algebra of the association scheme of

some ordinary n-gon with n prime?

Table algebras are C-algebras with nonnegative structure constants. Arad and Blau [1]

introduced the concept of the covering number cn(B) of a table algebra (A, B), and proved

that cn(B) exists if and only if (A, B) is simple and nonabelian, and that cn(B) ≤ (|B|2 −
(r − 1)2)/2 if cn(B) exists, where r is the number of real bi �= 1 in B. In particular, if (A, B) is

a real table algebra and cn(B) exists, then cn(B) ≤ 2|B| − 2. Arad and Blau [2] constructed

an infinite family of real table algebras (A, B) such that cn(B) exists and cn(B) = 2|B| − 2.

The first intersection matrices of these table algebras are tridiagonal of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 0 γ2

α1 0 γ3

. . .
. . .

. . .

αk−2 0 γk

αk−1 λk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0, λk > 0. (2)

However, for a real table algebra (A, B) whose first intersection matrix is of the form (2),

cn(B) may not exist (see Example 1.2 below).

In this paper we will answer the question proposed at the end of the first paragraph by

the use of covering numbers (see Theorem 3.4). We will first generalize the concept of the

covering number of a table algebra (A, B). For any b ∈ B, we define the covering number

cn(b) of b (Definition 2.1), and provide a necessary and sufficient condition under which cn(b)

exists (Proposition 2.2), as well as an upper bound of cn(b) when cn(b) exists (Proposition

2.3). Our results generalize the results of Arad and Blau [1, Theorem B]. Then, using the

covering number of an element b ∈ B, we present a characterization for a table algebra (A,

B) such that the first intersection matrix is of the form (2). We will prove that, by a suitable

renumbering of bi ∈ B if necessary, the first intersection matrix of (A, B) is of the form (2) if

and only if there is a b ∈ B such that cn(b) exists and cn(b) = 2|B| − 2 (Theorem 2.5). For

a real table algebra (A, B), we will present necessary and sufficient conditions under which

for any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2 (Proposition 3.2 and Theorem 3.3).

Finally, using these results we prove that a standard real integral table algebra (A, B) with

|B| ≥ 6 is exactly isomorphic to the Bose-Mesner algebra of the association scheme of some

ordinary n-gon with n prime if and only if for any b �= 1 in B, the intersection matrix of b
with respect to B or some reordering of B is tridiagonal of the form (1) (Theorem 3.4).

The rest of this introductory section gives notation, definitions, and examples. Throughout

this paper, C denotes the complex numbers, R+ the positive real numbers, and N the positive

integers.

Definition 1.1. Let B = {b0, b1, . . . , bk} be a basis of a finite dimensional, associative, and

commutative algebra A over C such that b0 = 1, the identity element of A. (A, B) is called

a table algebra and B a table basis of A if the following hold.
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(i) For all i, j, m, bi b j = ∑k
m=0 βi jmbm with βi jm ∈ R+ ∪ {0};

(ii) There is an algebra automorphism (denoted by −) of A whose order divides 2, such that

bi ∈ B implies that b̄i ∈ B (then ī is defined by bī = b̄i );

(iii) For all i, j, βi j0 �= 0 ⇔ j = ī ; and βi ī0 > 0.

Let (A, B) be a table algebra with B = {b0, b1, . . . , bk}. Then there is a unique alge-

bra homomorphism f : A → C such that f (bi ) = f (b̄i ) > 0 for all bi ∈ B. The number

f (bi ) is called the degree of bi . If f (bi ) = βi ī0 for all bi ∈ B, then (A, B) is called a

standard table algebra. For any table algebra (A, B), there is a rescaling B′ of B such

that (A, B′) is a standard table algebra. A C-algebra with nonnegative structure constants

in the sense of [4, p. 88] is a standard table algebra. A table algebra (A, B) is called

an integral table algebra if all the structure constants βi jm and all the degrees f (bi ) are

integers.

Let (A, B) be a table algebra and bi ∈ B. If b̄i = bi , then bi is called real. If every bi ∈ B
is real, then B is called real and (A, B) is called a real table algebra.

Let (A, B) be a table algebra with B = {b0 = 1, b1, . . . , bk}. Let’s regard B as a linearly

ordered set. Let σ be a permutation of {0, 1, 2, . . . , k} with σ (0) = 0. Then the ordered set

σ (B) := {b0, bσ (1), . . . , bσ (k)} is called a reordering of B. For any bi ∈ B, there is a unique

(k + 1) × (k + 1) matrix

Bi =

⎛⎜⎜⎜⎝
βi00 βi01 · · · βi0k

βi10 βi11 · · · βi1k
...

...
. . .

...

βik0 βik1 · · · βikk

⎞⎟⎟⎟⎠
with nonnegative real entries such that

bi bσ ( j) = βi j0b0 + βi j1bσ (1) + · · · + βi jkbσ (k), j = 0, 1, 2, . . . , k.

The matrix Bi is called the intersection matrix of bi with respect to the ordered basis

σ (B), and denoted by Mat(bi )σ (B). Throughout this paper, we always regard the basis B and

its reordering σ (B) as ordered sets whenever intersection matrices are involved. Usually

Mat(b1)B is called the first intersection matrix of (A, B).

Definition 1.2. Let (A, B) be a real table algebra and bi ∈ B. If there is a reordering B′ of B
such that Mat(bi )B′ is tridiagonal of the form (1), then we say that (A, B) has a P-polynomial

structure with respect to bi . In this case (A, B) is also called a table algebra of P-polynomial

type.

Let (A, B) be a table algebra and B = {b0, b1, . . . , bk}. For any α ∈ C, let α∗ be the

complex conjugate of α. For any x, y ∈ A, x = ∑k
i=0 αi bi and y = ∑k

i=0 γi bi for unique

αi , γi ∈ C, define

(x, y) =
k∑

i=0

βi ī0αiγ
∗
i and x∗ =

k∑
i=0

α∗
i bi .

Springer



380 J Algebr Comb (2006) 23: 377–393

Then ( , ) is a positive definite Hermitian form of A and has B as an orthogonal basis.

Furthermore, for any x, y, z ∈ A, (xy, z) = (x, ȳ∗z). In particular, for any bi , b j , bm ∈ B,

(bi b j , bm) = (bi , b̄ j bm).

Let (A, B) be a table algebra and x ∈ A. If x = α0b0 + α1b1 + · · · + αkbk , where αi ∈ C,

0 ≤ i ≤ k, then define Supp(x) = {bi ∈ B | αi �= 0}. An element bi ∈ B is called linear if

Supp(bn
i ) = {1} for some n ∈ N. (A, B) is called abelian if bi is linear for all bi ∈ B.

Let C be a subset of B. If C �= ∅ and Supp(bi b j ) ⊆ C for all bi , b j ∈ C, then C is called a

table subset of B. The table algebra (A, B) is called simple if the only table subsets of B are B
and {1}. For any b ∈ B, let Bb = ∪∞

i=1Supp(bi ). Then Bb is a table subset of B. An element b ∈
B is called faithful if Bb = B. Clearly (A, B) is simple if and only if all bi �= 1 in B are faithful.

The covering number cn(B) of a table algebra (A, B) is the least positive integer m such

that Supp(bm
i ) = B for all bi �= 1 in B, if such m exists, c.f. [1]. By [1, Theorem B], cn(B)

exists if and only if (A, B) is simple and nonabelian, and cn(B) ≤ (|B|2 − (r − 1)2)/2 if

cn(B) exists, where r is the number of real bi �= 1 in B. In particular, if (A, B) is a real

table algebra and cn(B) exists, then cn(B) ≤ 2|B| − 2. The next example presents an infinite

family of real table algebras (A, B) such that cn(B) admits this upper bound.

Example 1.1. ([1] and [2]) Let C[λ] denote the ring of polynomials over C in the indetermi-

nate λ. Let p0(λ), p1(λ), . . . , pk(λ) ∈ C[λ] be such that p0(λ) = 1, p1(λ) = λ, and pi (λ) is

a polynomial of degree i (2 ≤ i ≤ k) defined by the recurrence:

pi (λ) = p1(λ)pi−1(λ) − pi−2(λ), i = 2, 3, . . . , k.

Let q(λ) = p1(λ)pk(λ) − pk−1(λ) − pk(λ), (q(λ)) the ideal of C[λ] generated by q(λ),

A = C[λ]/(q(λ)), the quotient ring of C[λ] with respect to (q(λ)), and bi = p̄i (λ) ∈ A,

i = 0, 1, . . . , k. Then (A, B) is a real table algebra with B = {b0, b1, . . . , bk}, cn(B) exists,

and cn(B) = 2|B| − 2. Furthermore,

Mat(b1)B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

1 0 1

1 0 1
. . .

. . .
. . .

1 0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

That is, the first intersection matrix of (A, B) is of the form (2).

The next example provides a real table algebra whose first intersection matrix is of the

form (2) while the covering number cn(B) does not exist.

Example 1.2. Let

f0(λ) = 1, f1(λ) = λ, f2(λ) = 1

2
λ2 − 4, f3(λ) = 1

4
λ3 − 3λ, f4(λ) = 1

8
λ4 − 2λ2 + 4.

Let f (λ) = 1
8
λ5 − 1

4
λ4 − 5

2
λ3 + 4λ2 + 10λ − 8, and ( f (λ)) be the ideal of C[λ] generated

by f (λ). Let A = C[λ]/( f (λ)), the quotient ring of C[λ] with respect to ( f (λ)), and bi =
f̄i (λ) ∈ A, i = 0, 1, 2, 3, 4. Let B = {b0, b1, b2, b3, b4}. Then B is a basis of A, and b0 is the
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identity of A. Furthermore, we have that

b2
1 = 8b0 + 2b2, b1b2 = 2b1 + 2b3, b1b3 = 2b2 + 2b4, b1b4 = 2b3 + 2b4,

b2
2 = 8b0 + 2b4, b2b3 = 2b1 + 2b4, b2b4 = 2b2 + 2b3,

b2
3 = 8b0 + 2b3, b3b4 = 2b1 + 2b2, b2

4 = 8b0 + 2b1.

So (A, B) is a real table algebra, and

Mat(b1)B =

⎛⎜⎜⎜⎜⎝
0 1

8 0 2

2 0 2

2 0 2

2 2

⎞⎟⎟⎟⎟⎠ .

Since {b0, b3} is a table subset, (A, B) is not simple. Hence cn(B) does not exist by [1,

Theorem B].

2. The Covering Number cn(b) of b ∈ B

In this section we will first generalize the concept of the covering number of a table algebra

(A, B). For any b ∈ B, we define the covering number cn(b) of b, and present a necessary

and sufficient condition for the existence of cn(b), as well as an upper bound of cn(b) when

cn(b) exists. These results generalize the results of Arad and Blau [1, Theorem B]. Then we

will show that for a real b ∈ B, cn(b) exists and reaches the upper bound if and only if the

intersection matrix of b with respect to some reordering of B is tridiagonal of the form (2).

Definition 2.1. Let (A, B) be a table algebra and b ∈ B. If there exists n ∈ N such that

Supp(bn) = Bb, then the covering number of b is defined to be

cn(b) := min{n ∈ N | Supp(bn) = Bb}.

Let (A, B) be a table algebra and b ∈ B. If Supp(bn) = Bb for some n ∈ N, then for all

integers m ≥ n, Supp(bm) = Bb by [1, Lemma 4.1(i)]. Furthermore, cn(B) exists if and only

if for any b �= 1 in B, b is faithful and cn(b) exists. Thus, if cn(B) exists then

cn(B) = max{cn(b) | b ∈ B \ {1}}.

For any b ∈ B and any n ∈ N, define

Bbn =
∞⋃

i=1

Supp(bni ).

Clearly Bbn is a table subset of B. Recall that b is linear if Supp(bn) = {1} for some n ∈ N.

Thus b is linear if and only if Bbn = {1} for some n ∈ N. The next proposition presents a

necessary and sufficient condition for the existence of cn(b).

Proposition 2.2. Let (A, B) be a table algebra and b ∈ B. Then cn(b) exists if and only if
for any n ∈ N, Bbn = Bb.
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Proof: If cn(b) exists, then Supp(bm) = Bb for some m ∈ N. So for any n ∈ N, Supp(bnm) =
Bb by [1, Lemma 4.1(i)]. Therefore, Bbn = Bb.

On the other hand, suppose for any n ∈ N, Bbn = Bb. Since Bb is a table subset, 1 ∈ Bb.

Thus, 1 ∈ Supp(bm) for some m ∈ N. Therefore, we have the following ascending chain

Supp(bm) ⊆ Supp(b2m) ⊆ Supp(b3m) ⊆ · · ·

But Bbm = Bb. So there exists l ∈ N such that Supp(blm) = Bb. That is, cn(b) exists. �

From Proposition 2.2, we see that cn(B) exists if and only if any b �= 1 in B is faithful and

cn(b) exists if and only if (A, B) is simple and nonabelian.

The next proposition provides an upper bound for cn(b) when cn(b) exists.

Proposition 2.3. Let (A, B) be a table algebra and b ∈ B. Let r be the number of real bi �= 1

in Bb. If cn(b) exists, then the following hold.

(i) cn(b̄) exists, and cn(b̄) = cn(b).
(ii) If b is real, then cn(b)≤ |Bb| + r − 1. In particular, cn(b) ≤ 2|Bb| − 2.

(iii) If b is not real, then cn(b) ≤ (|Bb|2 − (r − 1)2)/2.

Proof: (i) Since Bb is closed under − and Bb = Bb̄, (i) holds.

(ii) Consider the ascending chain

{b0} ⊂ Supp(b2) ⊆ Supp(b4) ⊆ Supp(b6) ⊆ · · · .

Suppose there are 2s nonreal elements in Bb. Since Supp(bm) is closed under − for any m ∈
N, we must have Supp(b2(s+r )) = Supp(b2(s+r )+2) = · · · . But cn(b) exists, so Supp(b2(s+r )) =
Bb. Hence, cn(b) ≤ 2(s + r ) = |Bb| + r − 1.

(iii) Assume that cn(b) = n. Then Supp((bb̄)n) = Supp(bnb̄n) = Bb. Consider the ascend-

ing chain

{b0} ⊂ Supp(bb̄) ⊆ Supp((bb̄)2) ⊆ Supp((bb̄)3) ⊆ · · · .

As in the proof of (ii), we have that Supp((bb̄)s+r ) = Bb. By [1, Lemma 4.3], there is m ≤
2s + 2 such that b0 ∈ Supp(bm). Hence Supp(bb̄) ⊆ Supp(bm). Therefore, Supp(bm(s+r )) =
Bb. So cn(b) ≤ m(s + r ) ≤ (2s + 2)(s + r ) = (|Bb|2 − (r − 1)2)/2. �

As a direct consequence of Propositions 2.2 and 2.3, we have the following

Corollary 2.4. ([1, Theorem B]) Let (A, B) be a table algebra with |B| > 1. Then cn(B)

exists if and only if (A, B) is simple and nonabelian. If cn(B) exists, then cn(B) ≤ (|B|2 −
(r − 1)2)/2, where r is the number of real bi �= 1 in B.

The next theorem describes the intersection matrix of a real b ∈ B such that cn(b) exists

and reaches the upper bound. A similar result can be found in [7], but our proof here is

different. We will need this theorem in next section.

Theorem 2.5. Let (A, B) be a table algebra with |B| = k + 1, and b ∈ B be real. Then the
following are equivalent.
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(i) cn(b) exists and cn(b) = 2|B| − 2.
(ii) (A, B) is a real table algebra, and there is a reordering B′ of B such that

Mat(b)B′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 0 γ2

α1 0 γ3

. . .
. . .

. . .
αk−2 0 γk

αk−1 λk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0, λk > 0.

Proof: (ii) ⇒ (i) We may assume that B′ = B = {b0, b1, . . . , bk} and b = b1. Then it is

easy to show that cn(b) exists and cn(b) = 2|B| − 2.

(i) ⇒ (ii) Since cn(b) ≤ 2|Bb| − 2 by Proposition 2.3, we see that |Bb| = |B|. So b is

faithful, and hence Supp(b2k) = B. From cn(b) = 2k we get an ascending chain

{1} = Supp(b0) ⊂ Supp(b2) ⊂ Supp(b4) ⊂ · · · ⊂ Supp(b2k) = B (3)

such that Supp(b2i ) �= Supp(b2i+2) for all i = 0, 1, 2, . . . , k − 1. Hence

|Supp(b2i+2)| = |Supp(b2i )| + 1, 0 ≤ i ≤ k − 1. (4)

Thus, all elements in any Supp(b2i ) are real, 0 ≤ i ≤ k. So (A, B) is a real table algebra.

By (3) and (4), we may assume that

Supp(b2i ) = {b0, b1, . . . , bi }, 0 ≤ i ≤ k. (5)

Then Supp(b2) = {b0, b1}, and

Supp(b2i+2) = Supp(b2i ) ∪ Supp(b1bi ), 0 ≤ i ≤ k − 1.

Thus,

{bi+1} ⊆ Supp(b1bi ) ⊆ {b0, b1, . . . , bi+1}, 1 ≤ i ≤ k − 1. (6)

For any i ∈ {1, 2, . . . , k − 1}, if bl ∈ Supp(b1bi ), 0 ≤ l ≤ i , then (b1bi , bl ) �= 0. Since B
is real, we get (b1bl , bi ) �= 0. So i ≤ l + 1 by (6). Hence l ≥ i − 1, and Supp(b1bi ) ⊆
{bi−1, bi , bi+1}. But (b1bi−1, bi ) �= 0 by (6), so (b1bi , bi−1) �= 0, and hence bi−1 ∈
Supp(b1bi ). Therefore, we get that

{bi−1, bi+1} ⊆ Supp(b1bi ) ⊆ {bi−1, bi , bi+1}, 1 ≤ i ≤ k − 1. (7)

Similarly,

{bk−1} ⊆ Supp(b1bk) ⊆ {bk−1, bk}. (8)

On the other hand, we have an ascending chain

{b} = Supp(b) ⊂ Supp(b3) ⊂ Supp(b5) ⊂ · · · ⊂ Supp(b2k+1) = B
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such that Supp(b2i+1) �= Supp(b2i−1) for all i = 1, 2, . . . , k. Hence

|Supp(b2i+1)| = |Supp(b2i−1)| + 1, 1 ≤ i ≤ k.

In particular, |Supp(b3)| = 2. Now we claim that

b = bk . (9)

If (9) is not true, then b = bl for some 0 < l < k. Hence by (7), {bl−1, bl+1} ⊆ Supp(b1bl ) ⊆
Supp(b3). But b ∈ Supp(b3). So |Supp(b3)| ≥ 3, a contradiction. Therefore, (9) holds.

Hence,

Supp(b2
k ) = {b0, b1} and Supp(b3

k ) = {bk, bk−1}.

More generally, we can prove that

Supp(b2i+1
k ) = {bk, bk−1, . . . , bk−i }, 0 ≤ i ≤ k. (10)

Now we show that

Supp(bkbi ) = {bk−i , bk−i+1} and Supp(bkbk−i ) = {bi , bi+1}, 1 ≤ i < k (11)

by induction on i . First of all, Supp(bkb1) = {bk−1, bk} by (5), (8), and (9). Hence

b1 ∈ Supp(bkbk−1). By (10), Supp(b4
k ) = Supp(b2

k ) ∪ Supp(bkbk−1). Hence Supp(bkbk−1) =
{b1, b2} by (5). Thus, (11) holds for i = 1. Now assume that 1 ≤ l < k − 1 and (11) holds

for all i = 1, 2, . . . , l. Then we show that (11) holds for i = l + 1. Since Supp(bkbk−l ) =
{bl , bl+1} by induction, we see that bk−l ∈ Supp(bkbl+1). But Supp(b2l+1

k ) = ∪l
j=0Supp(bkb j )

and Supp(b2l+3
k ) = ∪l+1

j=0Supp(bkb j ) by (5). So

{bk−l−1, bk−l} ⊆ Supp(bkbl+1) ⊆ {bk, bk−1, . . . , bk−l , bk−l−1}.

For any 1 ≤ j ≤ l, bl+1 /∈ Supp(bkbk−l+ j ) by induction, so bk−l+ j /∈ Supp(bkbl+1).

Therefore, Supp(bkbl+1) = {bk−l−1, bk−l}. Similary, we can prove that Supp(bkbk−l−1) =
{bl+1, bl+2}. Hence (11) holds for i = l + 1. Thus, (11) holds for all 1 ≤ i < k. Therefore,

the intersection matrix of bk with respect to the reordering

B′ =
{ {b0, bk, b1, bk−1, b2, bk−2, . . . , bs−1, bk−s+1, bs, bk−s}, if k = 2s + 1;

{b0, bk, b1, bk−1, b2, bk−2, . . . , bs−1, bk−s+1, bs}, if k = 2s

is a tridiagonal matrix of the form (2). So (ii) holds. �

The next proposition provides a very simple sufficient condition under which cn(B) exists

for a real table algebra whose first intersection matrix is a tridiagonal matrix of the form (2).

We will need this result in next section.
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Proposition 2.6. Let (A, B) be a real table algebra such that B = {b0, b1, . . . , bk}, and

Mat(b1)B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 0 γ2

α1 0 γ3

. . .
. . .

. . .
αk−2 0 γk

αk−1 λk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0, λk > 0.

If 2|B| − 1 is a prime number, then cn(B) exists and cn(B) = 2|B| − 2.

Proof: Let

bk+1 = bk, bk+2 = bk−1, bk+3 = bk−2, . . . , b2k = b1, b2k+1 = b0.

Thus, for any s, t ∈ {0, 1, 2, . . . , 2k + 1},

br = bs if and only if r = s or r + s = 2k + 1. (12)

Since the first intersection matrix is of the form (2), by (12) we get that

Supp(b1bi ) = {bi−1, bi+1}, 1 ≤ i ≤ 2k. (13)

Now we claim that for any 1 ≤ r ≤ i ≤ k,

{bi−r , bi+r } ⊆ Supp(br bi ) ⊆ {bi−r , bi−r+2, bi−r+4, . . . , bi+r }. (14)

We will prove (14) by induction on r . If r = 1, (14) holds by (13). Now assume that 1 ≤
l < k and (14) holds for all 1 ≤ r ≤ l. Since b1bl = αl−1bl−1 + γl+1bl+1, for any i such that

l + 1 ≤ i ≤ k, we have that

b1blbi = αl−1bl−1bi + γl+1bl+1bi . (15)

Note that b1blbi = b1(blbi ), and {bi−l , bi+l} ⊆ Supp(blbi ) by induction. So {bi−l−1,

bi+l+1} ⊂ Supp(b1blbi ) by (13). Since

Supp(bl−1bi ) ⊆ {bi−l+1, bi−l+3, bi−l+5, . . . , bi+l−1}

by induction, we see that bi−l−1, bi+l+1 /∈ Supp(bl−1bi ) by (12). Therefore,

{bi−l−1, bi+l+1} ⊆ Supp(bl+1bi ).

Furthermore, since Supp(blbi ) ⊆ {bi−l , bi−l+2, bi−l+4, . . . , bi+l} by induction, by (13) we

get that Supp(b1blbi ) ⊆ {bi−l−1, bi−l+1, bi−l+3, . . . , bi+l+1}. Thus, (15) implies that

Supp(bl+1bi ) ⊆ {bi−l−1, bi−l+1, bi−l+3, . . . , bi+l+1}.

So (14) holds for r = l + 1. Therefore, (14) holds for all 1 ≤ r ≤ i ≤ k.
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For any 1 ≤ r ≤ k, we will show that br is faithful and nonabelian. First, (14) implies that

b0, b2r ∈ Supp(b2
r ). But b0 �= b2r by (12). So br is not abelian. To prove that br is faithful, we

use induction on r . Clearly b1 is faithful by (13). Now assume that r > 1 and b1, b2, . . . , br−1

are faithful. Then we prove that br is faithful. Assume that k ≡ l (mod r ), 0 ≤ l < r . Then

bk−l ∈ Bbr by (14). But bk+l+1 = bk−l by (12). So

bk+l+1 ∈ Bbr . (16)

Note that r > 1 and 2k + 1 = 2|B| − 1 is a prime number. So r � (2k + 1). But r | (k − l).
Hence r � (k + l + 1). Thus, we may assume that k + l + 1 ≡ s (mod r ), 0 < s < r . Then

bs ∈ Bbr by (14) and (16). But bs is faithful by induction assumption. So Bbr = B, and hence

br is also faithful. Therefore, we have proved that b1, b2, . . . , bk are all faithful.

Thus, (A, B) is simple and nonabelian. Hence cn(B) exists by [1, Theorem B], and

cn(B) = 2|B| − 2 by Theorem 2.5. �

Remark. Let (A, B) be the table algebra in Example 1.2. Then (A, B) is a real table algebra

and Mat(b1)B is of the form as in Proposition 2.6. But (A, B) is not simple, so cn(B) does

not exist. Note that 2|B| − 1 = 9 is not a prime number. However, if (A, B) is the table

algebra in Example 1.1, then |B| = k + 1, cn(B) exists, and cn(B) = 2|B| − 2 for any positive

integer k.

3. Multiple P-polynomial structures

In this section we will first present necessary and sufficient conditions under which for any

b �= 1 in a real table basis B, cn(b) exists and cn(b) = 2|B| − 2. Then, using these results

we prove that a standard real integral table algebra (A, B) with |B| ≥ 6 is exactly isomorphic

to the Bose-Mesner algebra of the association scheme of some ordinary n-gon with n prime

if and only if (A, B) has a P-polynomial structure with respect to every b �= 1 in B, i.e. the

intersection matrix of b with respect to B or some reordering of B is tridiagonal of the form

(1).

The next lemma is very useful.

Lemma 3.1. Let (A, B) be a table algebra and b �= 1 in B be real. Then cn(b) exists and
cn(b) = 2|B| − 2 if and only if b is faithful and |Supp(bbi )| = 2 for any bi �= 1 in B.

Proof: If cn(b) exists and cn(b) = 2|B| − 2, then by Theorem 2.5, b is faithful and

|Supp(bbi )|= 2 for any bi �= 1 in B. On the other hand, suppose b is faithful and |Supp(bbi )| =
2 for any bi �= 1 in B. We may assume that b = b1. If b1 ∈ Supp(b2

1), then B = {b0, b1}.
Hence, cn(b) exists and cn(b) = 2 = 2|B| − 2. If b1 /∈ Supp(b2

1), then we may assume

that Supp(b2
1) = {b0, b2}, b2 �= b1. Since b1 is real, b2 is also real. So (b2

1, b2) �= 0 implies

that (b1b2, b1) �= 0. If b2 ∈ Supp(b1b2), then Supp(b1b2) = {b1, b2}. Hence B = {b0, b1, b2}.
So cn(b) exists and cn(b) = 4 = 2|B| − 2. If b2 /∈ Supp(b1b2), then we may assume that

Supp(b1b2) = {b1, b3}. Since both b1 and b2 are real, b3 is also real. More generally, we may

assume that there are

b0, b1, b2, . . . , bl ∈ B, each bi is real,
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such that

Supp(b1bi ) = {bi−1, bi+1}, 1 ≤ i < l.

For any 1 ≤ i < l − 1, (b1bi , bl ) = 0. So (b1bl , bi ) = 0, and hence bi /∈ Supp(b1bl ), 1 ≤
i < l − 1. However, bl−1 ∈ Supp(b1bl ). If bl ∈ Supp(b1bl ), since b1 is faithful, we have B =
{b0, b1, . . . , bl}, and the intersection matrix of b1 with respect to b0, b1, . . . , bl is tridiagonal

of the form (2). So cn(b) exists and cn(b) = 2|B| − 2 by Theorem 2.5. If bl /∈ Supp(b1bl ), then

we may assume that Supp(b1bl ) = {bl−1, bl+1}, bl+1 �= bi , 0 ≤ i ≤ l, and bl+1 is real. But B
is a finite set and b1 is faithful, we will finally get that B = {b0, b1, . . . , bk} and Supp(b1bi ) =
{bi−1, bi+1}, 1 ≤ i ≤ k, where bk+1 = bk . So the intersection matrix of b1 with respect to

b0, b1, . . . , bk is tridiagonal of the form (2). Hence, cn(b) exists and cn(b) = 2|B| − 2 by

Theorem 2.5. �

For a real table algebra (A, B), the next proposition tells us when, for any b �= 1 in B,

cn(b) exists and cn(b) = 2|B| − 2 in terms of the first intersection matrix.

Proposition 3.2. Let (A, B) be a real table algebra such that B = {b0, b1, . . . , bk} with
k ≥ 2. Then the following are equivalent.

(i) For any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2.
(ii) 2|B| − 1 is a prime number and, by a suitable renumbering of bi ∈ B if necessary, the

first intersection matrix is a tridiagonal matrix of the form (2):⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 0 γ2

α1 0 γ3

. . .
. . .

. . .
αk−2 0 γk

αk−1 λk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0, λk > 0,

such that

α0

2
= α1γ2 = α2γ3 = · · · = αk−1γk = λ2

k, if k > 2, (17)

or

α1γ2 + λ2
2 = α0, if k = 2. (18)

Proof: Let

bk+1 = bk, bk+2 = bk−1, bk+3 = bk−2, . . . , b2k = b1, b2k+1 = b0,

γk+1 = λk, γk+2 = αk−1, γk+3 = αk−2, . . . , γ2k = α1, γ2k+1 = α0,

and

αk = λk, αk+1 = γk, αk+2 = γk−1, αk+3 = γk−2, . . . , α2k−1 = γ2.
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(i) ⇒ (ii) By Theorem 2.5, we may assume that the first intersection matrix is of the form

(2). Then we have

b1bi = αi−1bi−1 + γi+1bi+1, 1 ≤ i ≤ 2k. (19)

Thus, by b2
1bi = b1(b1bi ), we get that

b2bi = αi−2αi−1

γ2

bi−2 + αi−1γi + αiγi+1 − α0

γ2

bi + γi+1γi+2

γ2

bi+2, 2 ≤ i ≤ k. (20)

But for any 2 ≤ i ≤ k, |Supp(b2bi )| = 2 by Lemma 3.1. So

αi−1γi + αiγi+1 − α0 = 0, 2 ≤ i ≤ k. (21)

In particular, (18) holds if k = 2. Now assume that k > 2. Then, from (b1b2)bi = b1(b2bi ),

(19), (20), and (21) we get that

b3bi = αi−3αi−2αi−1

γ2γ3

bi−3 + αi−2αi−1γi−1 − α1αi−1γ2

γ2γ3

bi−1

+ αi+1γi+1γi+2 − α1γi+1γ2

γ2γ3

bi+1 + γi+1γi+2γi+3

γ2γ3

bi+3, 3 ≤ i ≤ k.

But for any 3 ≤ i ≤ k, |Supp(b3bi )| = 2 by Lemma 3.1. So

αi−2αi−1γi−1 − α1αi−1γ2 = 0, and αi+1γi+1γi+2 − α1γi+1γ2 = 0, 3 ≤ i ≤ k.

Therefore, (17) holds.

For any 1 ≤ r ≤ i ≤ k, |Supp(br bi )| = 2 by Lemma 3.1. So Supp(br bi ) = {bi−r , bi+r } by

(14). If 2k + 1 = 2|B| − 1 is not prime, then there are r, s ∈ N, 1 < r, s < k, such that 2k +
1 = rs. Hence, {b0, br , b2r , . . . , b[(s−1)/2]r } is a table subset of B, a contradiction. Therefore,

2|B| − 1 is a prime number, and (ii) holds.

(ii) ⇒ (i) Note that (A, B) is simple by Proposition 2.6. So By Lemma 3.1, it is enough

to prove that

|Supp(br bi )| = 2, 1 ≤ r ≤ i ≤ k. (22)

Since the first intersection matrix is tridiagonal of the form (2), (22) is true if r = 1. By

induction on r , we can prove that

br bi = αi−rαi−r+1 · · · αi−1

γ2γ3 · · · γr
bi−r + γi+1γi+2 · · · γi+r

γ2γ3 · · · γr
bi+r , 2 ≤ r ≤ i ≤ k.

So (22) is true for all 2 ≤ r ≤ k. Hence (i) holds. �

The next example provides an infinite family of real table algebras (A, B) such that for

any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2.

Example 3.1. Let k ∈ N such that k > 1 and 2k + 1 is prime. Let C[λ] denote the ring of

polynomials over C in the indeterminate λ. Let p0(λ), p1(λ), . . . , pk(λ) ∈ C[λ] be such that
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p0(λ) = 1, p1(λ) = λ, p2(λ) = 1
2
λ2 − 4, and pi (λ) is a polynomial of degree i (3 ≤ i ≤ k)

defined by the recurrence:

pi (λ) = 1

2
[ p1(λ)pi−1(λ) − 2pi−2(λ) ], i = 3, 4, . . . , k.

Let q(λ) = p1(λ)pk(λ) − 2pk−1(λ) − 2pk(λ), (q(λ)) the ideal of C[λ] generated by q(λ),

and A = C[λ]/(q(λ)), the quotient ring of C[λ] with respect to (q(λ)). Let bi = p̄i (λ) ∈ A,

i = 0, 1, . . . , k, and B = {b0, b1, b2, . . . , bk}. Then b0 = 1, the identity element of A, b2
1 =

8b0 + 2b2, and

b1bi =
{

2bi−1 + 2bi+1, if 2 ≤ i ≤ k − 1,

2bk−1 + 2bk, if i = k.

Furthermore, for any 2 ≤ r ≤ i ≤ k, we have

br bi =
{

2bi−r + 2bi+r , if i + r ≤ k,

2bi−r + 2b2k+1−i−r , if i + r > k.

Thus, (A, B) is a real table algebra, and its first intersection matrix is a tridiagonal matrix

of the form (2) as follows: ⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

8 0 2

2 0 2
. . .

. . .
. . .

2 0 2

2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

By Proposition 3.2, for any bi �= 1 in B, cn(bi ) exists and cn(bi ) = 2|B| − 2.

The next theorem establishes a connection between multiple P-polynomial structures and

covering numbers.

Theorem 3.3. Let (A, B) be a real table algebra such that |B| ≥ 6. Then the following are
equivalent.

(i) (A, B) has a P-polynomial structure with respect to every b �= 1 in B, i.e. there is a
reordering B′ of B such that Mat(b)B′ is tridiagonal of the form (1).

(ii) For any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2.

Proof: (i) ⇒ (i i) We may assume that B = {b0 = 1, b1, b2, . . . , bk} and

Mat(b1)B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 β1 γ2

α1 β2 γ3

. . .
. . .

. . .

αk−2 βk−1 γk

αk−1 βk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0.
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Then

b2bi = 1

γ2

[αi−2αi−1bi−2 + (βi−1 + βi − β1)αi−1bi−1 + (αi−1γi + αiγi+1 − α0

+ β2
i − β1βi )bi + (βi + βi+1 − β1)γi+1bi+1 + γi+1γi+2bi+2 ], 2 ≤ i ≤ k − 2.

So for any 2 ≤ i ≤ k − 2, bi−2, bi+2 ∈ Supp(b2bi ). Since there is a reordering

B′ of B such that Mat(b2)B′ is tridiagonal of the form (1), we must have B′ =
{b0, b2, b4, b6, . . . , b5, b3, b1}. Hence bi−1, bi+1 /∈ Supp(b2bi ), 2 ≤ i ≤ k − 2. Therefore,

βi−1 + βi − β1 = 0 and βi + βi+1 − β1 = 0, 2 ≤ i ≤ k − 2.

Thus,

β1 = β3 = β5 = . . . =
{

βk−2, if k is odd,

βk−1, if k is even,
(23)

and

0 = β2 = β4 = . . . =
{

βk−1, if k is odd,

βk−2, if k is even.
(24)

Hence,

b2bi = 1

γ2

[αi−2αi−1bi−2 + (αi−1γi + αiγi+1 − α0)bi + γi+1γi+2bi+2 ], 2 ≤ i ≤ k − 2.

Furthermore,

b2bk−1 = 1

γ2

[αk−3αk−2bk−3 + (αk−2γk−1 + αk−1γk − α0)bk−1 + (βk−1 + βk − β1)γkbk ],

and

b2bk = 1

γ2

[αk−2αk−1bk−2 + (βk−1 + βk − β1)αk−1bk−1 + (αk−1γk − α0 + β2
k − β1βk)bk ].

(25)

So bk ∈ Supp(b2bk−1) forces that

βk �=
{

0, if k is even,

β1, if k is odd.
(26)

Now we show that β1 = 0. Note that

(b1b2)b3 = (α1b1 + γ3b3)b3 = α1(α2b2 + β3b3 + γ4b4) + γ3b2
3. (27)
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First suppose that k = 5. Then

b1(b2b3) = 1

γ2

[ α1α2(α0b0 + β1b1 + γ2b2) + (α2γ3 + α3γ4 − α0)(α2b2 + β3b3 + γ4b4)

+ γ4γ5(α4b4 + β5b5) ]. (28)

If β1 �= 0, then b1 ∈ Supp(b2
3) by (27) and (28). But there is a reordering B′′ of B such that

Mat(b3)B′′ is tridiagonal of the form (1). Hence b5 /∈ Supp(b2
3). So β5 = 0 by (27) and (28).

Thus, the coefficient of b4 in b2b5 is −β1α4/γ2 < 0 by (25), a contradiction. Therefore, we

must have β1 = 0 if k = 5.

If k > 5, then

b1(b2b3) = 1

γ2

[ α1α2(α0b0 + β1b1 + γ2b2) + (α2γ3 + α3γ4 − α0)(α2b2 + β3b3 + γ4b4)

+ γ4γ5(α4b4 + β5b5 + γ6b6) ]. (29)

So b0, b6 ∈ Supp(b2
3) by (27) and (29). But there is a reordering B′′ of B such that Mat(b3)B′′

is tridiagonal of the form (1). So b1 /∈ Supp(b2
3). Hence β1 = 0 by (27) and (29).

Therefore, we always have β1 = 0. So from (23), (24), and (26) we see that

β1 = β2 = . . . = βk−1 = 0 but βk �= 0. (30)

Applying (30) to Mat(b2)B′ , we get that

αi−1γi + αiγi+1 − α0 = 0, 2 ≤ i ≤ k − 1, and αk−1γk + β2
k − α0 = 0.

Since b5 ∈ Supp(b2
3) (if k = 5) or b6 ∈ Supp(b2

3) (if k > 5), we must have b4 /∈ Supp(b2
3).

So (27), (28), and (29) imply that α1γ2 = α4γ5. Therefore,

α0

2
= α1γ2 = α2γ3 = · · · = αk−1γk = β2

k .

Hence (ii) holds by Proposition 3.2.

(i i) ⇒ (i) This follows directly from Theorem 2.5. �

Remark. It is clear that Theorem 3.3 is not true for |B| = 3. The following example shows

that the theorem neither is true for |B| = 4. If |B| = 5, then 2|B| − 1 = 9 is not prime, and

hence Theorem 3.3(ii) does not hold by Theorem 3.2.

Example 3.2. Let

f0(λ) = 1, f1(λ) = λ, f2(λ) = λ2 − 3, f3(λ) = λ3 − 4λ.

Let f (λ) = λ4 − λ3 − 6λ2 + 4λ + 6, and ( f (λ)) be the ideal of C[λ] generated by f (λ).

Let A = C[λ]/( f (λ)), the quotient ring of C[λ] with respect to ( f (λ)), and bi = f̄i (λ) ∈ A,

i = 0, 1, 2, 3. Let B = {b0, b1, b2, b3}. Then B is a basis of A, and b0 is the identity of A.
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Furthermore, we have that

b2
1 = 3b0 + b2, b1b2 = b1 + b3, b1b3 = 2b2 + b3,

b2
2 = 3b0 + b3, b2b3 = 2b1 + 2b2, b2

3 = 6b0 + 2b1 + b3.

So (A, B) is a real table algebra. Let B′ = {b0, b2, b3, b1} and B′′ = {b0, b3, b1, b2}. Then

Mat(b1)B =

⎛⎜⎜⎝
0 1

3 0 1

1 0 1

2 1

⎞⎟⎟⎠ , Mat(b2)B′ =

⎛⎜⎜⎝
0 1

3 0 1

2 0 2

1 1

⎞⎟⎟⎠ , Mat(b3)B′′ =

⎛⎜⎜⎝
0 1

6 1 2

1 0 2

2 2

⎞⎟⎟⎠ .

That is, Theorem 3.3(i) holds for (A, B). But cn(b3) = 3 �= 2|B| − 2 = 6. So Theorem 3.3(ii)

does not hold for (A, B).

Let X = (X, {Ri }0≤i≤d ) be the association scheme of an ordinary n-gon. Let Ai be the ad-

jacency matrix with respect to Ri , and A the Bose-Mesner algebra of X . Then (A, {Ai }0≤i≤d )

is a standard real integral table algebra such that its first intersection matrix is tridiagonal as

follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

2 0 1

1 0 1
. . .

. . .
. . .

1 0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Two table algebras (A, B) and (U , V) are called exactly isomorphic if there is an algebra

isomorphism � : A → U such that V = {�(b) | b ∈ B} and for any b ∈ B, b and �(b) have

the same degree.

The next theorem is our main result. It answers the question proposed at the begining of

the paper.

Theorem 3.4. Let (A, B) be a standard real integral table algebra such that |B| ≥ 6. Then
the following are equivalent.

(i) (A, B) has a P-polynomial structure with respect to every b �= 1 in B, i.e. there is a
reordering B′ of B such that Mat(b)B′ is tridiagonal of the form (1).

(ii) For any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2.
(iii) 2|B| − 1 is a prime number, and (A, B) is exactly isomorphic to the Bose-Mesner algebra

of the association scheme of the ordinary (2|B| − 1)-gon.

Proof: (i) ⇒ (ii) by Theorem 3.3. (iii) ⇒ (i) is well-known. Now we show that (ii) ⇒ (iii).

By Proposition 3.2, 2|B| − 1 is a prime number, and we may assume that the first intersection
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matrix of (A, B) is a tridiagonal matrix of the form (2):⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

α0 0 γ2

α1 0 γ3

. . .
. . .

. . .

αk−2 0 γk

αk−1 λk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, where αi > 0, γ j > 0, λk > 0,

such that α0/2 = α1γ2 = α2γ3 = · · · = αk−1γk = λ2
k . By [4, Proposition 5.8, p.96], α0 =

1 + α1. Thus α1(2γ2 − 1) = 1. But all αi and γ j are integers. So α0 = 2, and α1 = α2 = . . . =
αk−1 = γ2 = γ3 = . . . = γk = λk = 1. Therefore, (A, B) and the Bose-Mesner algebra of the

association scheme of the ordinary (2|B| − 1)-gon have the same first intersection matrix.

Hence they are exactly isomorphic, and (iii) holds. �

From the proof of Theorem 3.4, we have the following

Corollary 3.5. Let (A, B) be a standard real integral table algebra such that |B| = 4. Then
the following are equivalent.

(i) For any b �= 1 in B, cn(b) exists and cn(b) = 2|B| − 2.
(ii) (A, B) is exactly isomorphic to the Bose-Mesner algebra of the association scheme of

the ordinary 7-gon.
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