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Abstract An infinite summation formula of Hall-Littlewood polynomials due to Kawanaka

is generalized to a finite summation formula, which implies, in particular, twelve more

multiple q-identities of Rogers-Ramanujan type than those previously found by Stembridge

and the last two authors.
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1. Introduction

Recently, starting from two infinite summation formulae for Hall-Littlewood polynomials,

two of the present authors [7] have generalized a method due to Macdonald [9] to ob-

tain new finite summation formulae for these polynomials. This approach permits them to

extend Stembridge’s list of multiple q-series identities of Rogers-Ramanujan type [12]. Con-

versely these symmetric functions identities can be viewed as a generalization of Rogers-

Ramanujan identities. In view of the numerous formulae of Rogers-Ramanujan type [11]

one may speculate that there should be more such generalizations starting from other infi-

nite summation formulae for Hall-Littlewood polynomials. However, as pointed out in [7],

when one passes from an infinite summation to a finite summation, one may need to mod-

ify the coefficients normalizing Hall-Littlewood polynomials in order to obtain some useful

formulae.
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In this paper we take up on Kawanaka’s new infinite summation identities of Hall-

Littlewood polynomials [8] and show that one of his formulae has a finite summation

generalization.

We first need to recall some standard notations of q-series, which can be found in [5]. Set

(x)0 := (x ; q)0 = 1 and for n ≥ 1

(x)n := (x ; q)n =
n∏

k=0

(1 − xqk), (x)∞ := (x ; q)∞ =
∞∏

k=0

(1 − xqk).

For n ≥ 0 and r ≥ 1, set

(a1, . . . , ar ; q)n =
r∏

i=1

(ai )n (a1, . . . , ar ; q)∞ =
r∏

i=1

(ai )∞.

The q-binomial identity [1] then reads as follows:

∑
m≥0

(a)m

(q)m
xm = (ax)∞

(x)∞
, (1)

which reduces to the finite q-binomial identity by substitution a → q−n and x → qn x :

(x)n =
∑
m≥0

(−1)mq( m
2 ) (q)n

(q)m(q)n−m
xm (2)

and to the following identity of Euler when a = 0:

1

(x)∞
=

∑
m≥0

xm

(q)m
. (3)

Let n ≥ 1 be a fixed integer and Sn denote the group of permutations of the set

{1, 2, . . . , n}. Let X = {x1, . . . , xn} be a set of indeterminates and q a parameter. For each

partition λ = (λ1, . . . , λn) of length ≤ n, if mi := mi (λ) is the multiplicity of part i in λ, then

we also denote λ by (1m1 2m2 . . . ). Recall that the Hall-Littlewood polynomials Pλ(X, q) are

defined by [9, p. 208]:

Pλ(X, q) =
∏
i≥1

(1 − q)mi

(q)mi

∑
w∈Sn

w

(
xλ1

1 . . . xλn
n

∏
i< j

xi − qx j

xi − x j

)
.

Since ( [9, p. 207])

∑
w∈Sn

w

(∏
i< j

xi − qx j

xi − x j

)
= (q)n

(1 − q)n
,
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we see that the coefficient of xλ1

1 . . . xλn
n in Pλ is 1. Set

�(X ) :=
∏

i

1 + qxi

1 − xi

∏
j<k

1 − q2x j xk

1 − x j xk
.

Our starting point is the following result due to Kawanaka [8]:

∑
λ

(∏
i≥1

(−q)mi

)
Pλ(X, q2) = �(X ). (4)

Since Kawanaka’s proof uses the representation theory of groups we shall give another

proof using Pieri’s rule for Hall-Littlewood polynomials.

For each sequence ξ ∈ {±1}n , set X ξ := {xξ1

1 , . . . , xξn
n }. Our finite extension of

Kawanaka’s formula then reads as follows:

Theorem 1. For k ≥ 1 the following identity holds

∑
λ1≤k

(
k−1∏
i=1

(−q)mi

)
Pλ(X, q2) =

∑
ξ∈{±1}n

�(X ξ )
∏

i

xk(1−ξi )/2
i . (5)

Remark. In the case q = 0, the right-hand side of (5) can be written as a quotient of deter-

minants and the formula reduces to a known identity of Schur functions [6, p. 85].

For any partition λ it will be convenient to adopt the following notation:

(x)λ := (x ; q)λ = (x)λ1−λ2
(x)λ2−λ3

· · ·

Note that this is not the standard notation for (x)λ and corresponds to bλ′ (q) in [9, p. 210].

We also introduce the following generalization of q-binomial coefficients[
n

λ

]
=

[
n

λ

]
q

:= (q)n

(q)n−λ1
(q)λ

,

with the convention that
[n
λ

] = 0 if λ1 > n. If λ = (λ1) we recover the classical q-binomial

coefficient. Finally, for any partition λ we denote by l(λ) the length of λ, i.e., the number

of its positive parts, and define n(λ) := ∑
i

(
λi

2

)
and n2(λ) = ∑

i λ2
i . When xi = zq2i−2 for

i ≥ 1 and then z is replaced by zq , formula (5) specializes to the following identity.

Corollary 1. For k ≥ 1 holds

∑
l(λ)≤k

(
k−1∏
i=1

(−q)λi −λi+1

)
z|λ|qn2(λ)

[n

λ

]
q2

=
n∑

r=0

(−1)r zkr q (k+1)r2
[n

r

]
q2

(−z)2n+1

(z2q2r ; q2)n+1

(1 − zq2r ). (6)
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Now, as in [7, 12], we can prove the following key q-identity which allows to produce

identities of Rogers-Ramanujan type:

Theorem 2. For k ≥ 1,

∑
l(λ)≤k

z|λ|q2n(λ) (a, b; q−1)λ1

(−q)λk (q)λ

= (−z/q)∞
(abz)∞

∑
r≥0

(−1)r zkr qr+(2k+2)(r
2)

(a, b; q−1)r

(q2; q2)r

(azqr , bzqr )∞
(z2q2r−2; q2)∞

(1 − zq2r−1). (7)

This paper is organized as follows. In Section 2 we give a new proof of Kawanaka’s

formula using Pieri’s rule for Hall-Littlewood polynomials since Kawanaka’s original proof

uses the representation theory of groups. In Section 3, we derive from Theorem 2 twelve

multiple analogs of Rogers-Ramanujan type identities. In Section 4 we give the proofs of

Theorem 1 and Corollary 1, and some consequences, and defer the elementary proof, i.e.,

without using the Hall-Littlewood polynomials, of Theorem 2, Corollary 1 and other multiple

q-series identities to Section 5. To prove Theorems 1 and 2 we apply the generating function

technique which was developed in [7, 9, 12].

2. Another proof of Kawanaka’s identity

Recall [9, p. 230, Ex. 1] the following summation of Hall-Littlewood polynomials:

∑
μ

Pμ(X, q) =
∏

i

1

1 − xi

∏
i< j

1 − qxi x j

1 − xi x j
.

By replacing q by q2, we get

∑
μ

Pμ(X, q2) =
∏

i

1

1 − xi

∏
i< j

1 − q2xi x j

1 − xi x j
. (8)

Note that ∑
r≥0

ek(X )qk =
∏

i

(1 + qxi ), (9)

where er (X ) stands for the r -th elementary symmetric function. Identities (8) and (9) imply

∑
μ

∑
r

qr Pμ(X, q2)er (X ) =
∏

i

1 + qxi

1 − xi

∏
i< j

1 − q2xi x j

1 − xi x j
.

From [9, p. 209, (2.8)], we have

P(1r )(X, q) = er (X ),
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and this shows that∑
μ

∑
r

qr Pμ(X, q2)P(1r )(X, q2) =
∏

i

1 + qxi

1 − xi

∏
i< j

1 − q2xi x j

1 − xi x j
.

Let f λ
μν(q) be the coefficients defined by

Pμ(X, q)Pν(X, q) =
∑

λ

f λ
μν(q)Pλ(X, q),

then, by [9, p. 215 (3.2)] we have

f λ
μ(1m )(q) =

∏
i≥1

[
λ′

i − λ′
i+1

λ′
i − μ′

i

]
(and therefore f λ

μ(1m )(q) = 0 unless λ \ μ is a vertical m-strip, or m-vs, which means λ ⊂ μ,

|λ \ μ| = m and there is at most one cell in each row of the Ferrers diagram of λ \ μ). Thus

we have ∑
λ

∑
μ

λ\μ vs

q |λ−μ| ∏
i≥1

[
λ′

i − λ′
i+1

λ′
i − μ′

i

]
q2

Pλ(X, q2)

=
∏

i

1 + qxi

1 − xi

∏
i< j

1 − q2xi x j

1 − xi x j
.

Applying the identity (see [1], and [13] for a bijective proof):

n∑
k=0

qk
[n

k

]
q2

=
n∏

k=1

(1 + qk), (10)

we conclude that

∑
μ

λ\μ vs

q |λ−μ| ∏
i≥1

[
λ′

i − λ′
i+1

λ′
i − μ′

i

]
q2

=
∏
i≥1

λ′
i −λ′

i+1∏
k=1

(1 + qk),

which is precisely what we desired to prove.

Remark. For a node v = (i, j) in the diagram of λ, the arm-length a(v) and the leg-length l(v)

of λ at v are defined by a(v) = λi − j and l(v) = λ′
j − i respectively. Kawanaka [8, (5.2)]

proved another identity for Hall-Littlewood polynomials:

∑
λ

qo(λ)/2

⎛⎝ ∏
v∈λ, a(v)=0

l(v) even

(1 − ql(v)+1)

⎞⎠ Pλ(X, q) =
∏
i≤ j

1 − qxi x j

1 − xi x j
, (11)

where the sum on the left is taken over all partitions λ such that mi (λ) is even for odd i and

o(λ) =
∑
i odd

mi (λ).

It would be possible to prove this identity in the same manner as above.
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There is a related identity about Hall-Littlewood polynomials in Macdonald’s book

[9, p. 219]:

∑
λ

qn(λ)

(
l(λ)∏
j=1

(1 + q1− j y)

)
Pλ(X, q) =

∏
i≥1

1 + xi y

1 − xi
. (12)

3. Multiple identities of Rogers-Ramanujan type

We shall derive several identities of Rogers-Ramanujan type from Theorem 2. First we note

that if z = q2 identity (7) reduces to

∑
l(λ)≤k

q |λ|+n2(λ) (a, b; q−1)λ1

(−q)λk (q)λ
= 1

(q, abq2)∞

×
∑
r≥0

(−1)r q (2k+1)r+(2k+2)(r
2)(a, b; q−1)r (aqr+2, bqr+2)∞(1 − q2r+1), (13)

and if z = q it becomes

∑
l(λ)≤k

qn2(λ) (a, b; q−1)λ1

(−q)λk (q)λ
= 1

(q, abq)∞

×
(

(aq, bq)∞ + 2
∑
r≥1

(−1)r q (k+1)r2

(a, b; q−1)r (aqr+1, bqr+1)∞

)
. (14)

We need the following two forms of Jacobi triple product identity [1, p. 21]:

J (x, q) := (q, x, q/x)∞ =
∞∑

r=0

(−1)r xr q( r
2 )(1 − q2r+1/x2r+1) (15)

= 1 +
∞∑

r=1

(−1)r xr q( r
2 )(1 + qr/x2r ). (16)

Theorem 3. For k ≥ 1, the following identities hold

∑
l(λ)≤k

q |λ|+n2(λ)

(−q)λk (q)λ
= (q2k+2, q2k+1, q; q2k+2)∞

(q)∞
, (17)

∑
l(λ)≤k

q |λ|+n2(λ)−(λ2
1+λ1)/2(−q)λ1

(−q)λk (q)λ
= (−q)∞

(q)∞
(q2k+1, q2k, q; q2k+1)∞, (18)

∑
l(λ)≤k

q2|λ|+2n2(λ)−λ2
1 (−q; q2)λ1

(−q2; q2)λk (q2; q2)λ
= (−q; q2)∞

(q2; q2)∞
(q4k+2, q4k+1, q; q4k+2)∞, (19)

∑
l(λ)≤k

q2|λ|+2n2(λ)−2λ2
1−λ1 (−q)2λ1

(−q2; q2)λk (q2; q2)λ
= (−q)∞

(q)∞
(q4k, q4k−1, q; q4k)∞, (20)
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∑
l(λ)≤k

qn2(λ)

(−q)λk (q)λ
= (q2k+2, qk+1, qk+1; q2k+2)∞

(q)∞
, (21)

∑
l(λ)≤k

qn2(λ)−(λ2
1+λ1)/2(−q)λ1

(−q)λk (q)λ
= (−1)∞

(q)∞
(q2k+1, qk, qk+1; q2k+1)∞, (22)

∑
l(λ)≤k

q2n2(λ)−λ2
1 (−q; q2)λ1

(−q2; q2)λk (q2; q2)λ
= (−q; q2)∞

(q2; q2)∞
(q4k+2, q2k+1, q2k+1; q4k+2)∞. (23)

Proof: For identities (17)–(20), first set (a, b) = (0, 0), (−q−1, 0), (−q−1/2, 0) and

(−q−1/2, −q−1) in (13), respectively, and then apply (15).

For identities (21)–(23), first set (a, b) = (0, 0), (−q−1/2, 0) and (−q−1, 0) in (14), re-

spectively, and then apply (16).

Note that, for (19), (20) and (23), we need to replace q by q2 at last. �

Theorem 4. For k ≥ 1, the following identities hold

∑
l(λ)≤k

q |λ|+n2(λ)−(λ2
1+3λ1)/2(−q)λ1

(1 − qλ1 )

(−q)λk (q)λ
= (−q)∞

(q)∞
(q2k+1, q2k−1, q2; q2k+1)∞, (24)

∑
l(λ)≤k

q2|λ|+2n2(λ)−λ2
1−2λ1 (−q; q2)λ1

(−q2; q2)λk (q2; q2)λ
= (−q; q2)∞

(q2; q2)∞
(q4k+2, q4k−1, q3; q4k+2)∞, (25)

∑
l(λ)≤k

q |λ|+n2(λ)−λ1

(−q)λk (q)λ
= (q2k+2, q2k, q2; q2k+2)∞

(q)∞
, (26)

∑
l(λ)≤k

q |λ|+n2(λ)−2λ1 (1 − q2λ1 )

(−q)λk (q)λ
= (q2k+2, q2k−1, q3; q2k+2)∞

(q)∞
, (27)

∑
l(λ)≤k

qn2(λ)−λ1

(−q)λk (q)λ
= (−1)∞

(q2; q2)∞
(q2k+2, qk, qk+2; q2k+2)∞. (28)

Proof: For i ∈ {0, 1, 2}, denote by [bi ] the operation of extracting the coefficient of bi in the

corresponding identity. For (24)–(27), apply the following operations to (13) respectively:

a = −q−1 and (1 − 1/q)[b], a = 0 and [b0] + (1 − 1/q)[b], a = −q−1/2 and [b0] + (1 −
1/q)[b], a = 0 and [b] + (1 − 1/q)[b2], and then apply (15). Note that, for (25), we need to

replace q by q2 at last.

For (28) apply the operations a = 0 and (1 − 1/q)[b] to (14) and then apply (16). �

Remark. As speculated by the anonymous referee, all of the Rogers-Ramanujan type identities

given in Theorems 3 and 4 are known.

For example, specializing equation (3.4) of Bressoud [4] (see also [3]) with k → k + 1

and r = 1, r = 2 and r = k + 1, respectively, we recover identities (17), (26)) and (21); while

specializing equation (3.9) of Bressoud [4] with k → k + 1 and r = 1, r = 2 and r = k + 1,

respectively, we recover (19), (25) and (23).
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Since we derived all these identities in Theorems 3 and 4 from the two master identities

(13) and (14), instead of identifying each identity individually, it suffices to identify the latter

two with known results in the literature. In 1984, by means of Bailey chains, Andrews proved

a remarkable generalization of Bailey’s lemma [2, Thm. 1], which contains many multiple

Rogers-Ramanujan type identities as special cases. In particular, identities (13) and (14)

are limit cases of Andrews’ theorem. More precisely, to derive (13), set a = q , bk = 1/a,

ck = 1/b in Andrews’ formula and let N , b1, c1, . . . , bk−1, ck−1 → ∞, finally apply the

Bailey pair E(3) of Slater’s paper [10]. To derive (14) we do the same thing except that we

set a = 1 and apply the Bailey pair B(3) of Slater’s paper [10].

When k = 1, identities (17), (18), (20), (27) and (23) reduce directly to special cases of

the q-binomial identity (1). For example, when k = 1 identity (20) reduces to

∞∑
n=0

qn(−q; q2)n

(q2; q2)n

(−q2; q2)∞
(q; q2)∞

,

which is the q-binomial identity (1) after substitutions q → q2, a → −q and x → q. The

other identities reduce to the following Rogers-Ramanujan type identities:

∞∑
n=0

qn2+2n(−q; q2)n

(q4; q4)n
= (−q; q2)∞

(q2; q2)∞
(q, q5, q6; q6)∞, (29)

∞∑
n=0

qn2

(q2; q2)n
= (q2, q2, q4; q4)∞

(q)∞
, (30)

∞∑
n=0

qn2

(−q; q2)n

(q4; q4)n
= (−q; q2)∞

(q2; q2)∞
(q3, q3, q6; q6)∞. (31)

Note that (30) is again a special case of the q-binomial identity (1) and (31) is (25) of

Slater’s list [11].

4. Proof of Theorem 1 and consequences

4.1. Proof of Theorem 1

For any statement A it will be convenient to introduce the Boolean function χ (A), which is

1 if A is true and 0 if A is false. Consider the generating function

S(u) =
∑
λ0,λ

(
λ0−1∏
i=1

(−q)mi

)
Pλ(X, q2) uλ0

where the sum is over all partitions λ = (λ1, . . . , λn) and the integers λ0 ≥ λ1. Suppose

λ = (μr1

1 μ
r2

2 . . . μ
rk
k ), where μ1 > μ2 > · · · > μk ≥ 0 and (r1, . . . , rk) is a composition of n.

Let Sλ
n be the set of permutations of Sn which fix λ. Each w ∈ Sn/Sλ

n corresponds to a

surjective mapping f : X −→ {1, 2, . . . , k} such that | f −1(i)| = ri . For any subset Y of X ,

let p(Y ) denote the product of the elements of Y (in particular, p(∅) = 1). We can rewrite
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Hall-Littlewood functions as follows:

Pλ(X, q2) =
∑

f

p( f −1(1))μ1 · · · p( f −1(k))μk
∏

f (xi )< f (x j )

xi − q2x j

xi − x j
,

summed over all surjective mappings f : X −→ {1, 2, . . . , k} such that | f −1(i)| = ri .

Furthermore, each such f determines a filtration of X :

F : ∅ = F0 � F1 � · · · � Fk = X, (32)

according to the rule xi ∈ Fl ⇐⇒ f (xi ) ≤ l for 1 ≤ l ≤ k. Conversely, such a filtration

F = (F0, F1, . . . , Fk) determines a surjection f : X −→ {1, 2, . . . , k} uniquely. Thus we

can write:

Pλ(X, q2) =
∑
F

πF
∏

1≤i≤k

p(Fi \ Fi−1)μi , (33)

summed over all the filtrations F such that |Fi | = r1 + r2 + · · · + ri for 1 ≤ i ≤ k, and

πF =
∏

f (xi )< f (x j )

xi − q2x j

xi − x j
,

where f is the function defined by F .

Now let νi = μi − μi+1 if 1 ≤ i ≤ k − 1 and νk = μk , thus νi > 0 if i < k and νk ≥ 0.

Furthermore, let μ0 = λ0 and ν0 = μ0 − μ1 in the definition of S(u), so that ν0 ≥ 0 and

μ0 = ν0 + ν1 + · · · + νk . Define cF = ∏k
i=1(−q)|Fi \Fi−1| for any filtration F . Thus, since

the lengths of columns of λ are |Fj | = r1 + · · · + r j with multiplicities ν j and r j = mμ j (λ)

for 1 ≤ j ≤ k, we have

λ0−1∏
i=1

(−q)mi = cF × (
χ (νk = 0)(−q)|Fk\Fk−1| + χ (νk = 0)

)−1

× (
χ (ν0 = 0)(−q)|F1| + χ (ν0 = 0)

)−1
.

Let F(X ) be the set of filtrations of X . Summarizing we obtain

S(u) =
∑

F∈F(X )

cF πF
∑
ν1>0

(u p(F1))ν1 · · ·
∑

νk−1>0

(u p(Fk−1))νk−1

×
∑
ν0≥0

uν0

χ (ν0 = 0) (−q)|F1| + χ (ν0 = 0)

×
∑
νk≥0

uνk p(Fk)νk

χ (νk = 0) (−q)|Fk\Fk−1| + χ (νk = 0)
. (34)

For any filtration F of X set

AF (X, u) = cF
∏

j

[
p(Fj )u

1 − p(Fj )u
+ χ (Fj = X )

(−q)|Fj \Fj−1|
+ χ (Fj = ∅)

(−q)|F1|

]
.
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It follows from (34) that

S(u) =
∑

F∈F(X )

πFAF (X, u).

Hence S(u) is a rational function of u with simple poles at 1/p(Y ), where Y is a subset of X .

We are now proceeding to compute the corresponding residue c(Y ) at each pole u = 1/p(Y ).

Let us start with c(∅). Writing λ0 = λ1 + k with k ≥ 0, we see that

S(u) =
∑

λ

fλ(q)Pλ(X, q2)uλ1

∑
k≥0

uk

χ (k = 0)(−q)mλ1
+ χ (k = 0)

=
∑

λ

fλ(q)Pλ(X, q2)uλ1

(
u

1 − u
+ 1

(−q)mλ1

)
.

It follows from (4) that

c(∅) = [S(u)(1 − u)]u=1 = �(X ).

For the computations of other residues, we need some more notation. For any Y ⊆ X , let

Y ′ = X \ Y and −Y = {x−1
i : xi ∈ Y }. Then

c(Y ) =
[∑

F
πFAF (X, u)(1 − p(Y )u)

]
u=p(−Y )

. (35)

If Y /∈ F , the corresponding summand is equal to 0. Thus we need only to consider the

following filtrations F :

∅ = F0 � · · · � Ft = Y � · · · � Fk = X 1 ≤ t ≤ k.

We may then split F into two filtrations F1 and F2:

F1 : ∅ � −(Y \ Ft−1) � · · · � −(Y \ F1) � −Y,

F2 : ∅ � Ft+1 \ Y � · · · � Fk−1 \ Y � Y ′.

Then, writing v = p(Y )u and cF = cF1
× cF2

, we have

πF (X ) = πF1
(−Y )πF2

(Y ′)
∏

xi ∈Y,x j ∈Y ′

1 − q2x−1
i x j

1 − x−1
i x j

,

and AF (X, u)(1 − p(Y )u) is equal to

AF1
(−Y, v)AF2

(Y ′, v)(1 − v)

(
v

1 − v
+ χ (Y = X )

(−q)|Y\Ft−1|

)

×
(

v

1 − v
+ 1

(−q)|Y\Ft−1|

)−1 (
v

1 − v
+ 1

(−q)|Ft+1\Y |

)−1

.
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Thus when u = p(−Y ), i.e., v = 1,

[πF (X )AF (X, u)(1 − p(Y )u)]u=p(−Y ) = [
πF1

(−Y )AF1
(−Y, v)(1 − v)πF2

(Y ′)AF2
(Y ′, v)

× (1 − v)
]
v=1

∏
xi ∈Y,x j ∈Y ′

1 − q2x−1
i x j

1 − x−1
i x j

.

Using (35) and the result of c(∅), which can be written[∑
F

πFAF (X, u)(1 − u)

]
u=1

= �(X ),

we get

c(Y ) = �(−Y )�(Y ′)
∏

xi ∈Y,x j ∈Y ′

1 − q2x−1
i x j

1 − x−1
i x j

.

Each subset Y of X can be encoded by a sequence ξ ∈ {±1}n according to the rule: ξi = 1

if xi /∈ Y and ξi = −1 if xi ∈ Y . Hence

c(Y ) = �(X ξ ).

Note also that

p(Y ) =
∏

i

x (1−ξi )/2
i , p(−Y ) =

∏
i

x (ξi −1)/2
i .

Now, extracting the coefficients of uk in the equation:

S(u) =
∑
Y⊆X

c(Y )

1 − p(Y )u
,

yields

∑
λ1≤k

(
k−1∏
i=1

(−q)mi

)
Pλ(X, q2) =

∑
Y⊆X

c(Y )p(Y )k .

Finally, substituting the value of c(Y ) in the above formula we obtain (5).

4.2. Proof of Corollary 1

Recall [9, p. 213] that if xi = zq2i−2 (1 ≤ i ≤ n) then:

Pλ′ (X, q2) = z|λ|q2n(λ)
[n

λ

]
q2

. (36)
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Replacing each partition λ by its conjugate λ′ on the left-hand side of (5) yields the

left-hand side of (6). Set

�(X ) =
∏

i

1

1 − x2
i

∏
j<k

1 − q2x j xk

1 − x j xk
.

Then, for any ξ ∈ {±1}n such that the number of ξi = −1 is r , 0 ≤ r ≤ n, we can write

�(X ξ ) as follows:

�(X ξ ) = �(X ξ )
∏

i

1 + qxξi
i

1 − xξi
i

(1 − x2ξi
i ), (37)

which is readily seen to equal 0 unless ξ ∈ {−1}r × {1}n−r . Now, in the latter case, we have∏
i

xk(1−ξi )/2
i = zkr q2k( r

2 ),

n∏
i=1

1 + qxξi
i

1 − xξi
i

(1 − x2ξi
i ) = (z2; q4)n

z2r q4( r
2 )−r

(−z/q; q2)r

(z; q2)r

(−zq2r+1; q2)n−r

(zq2r ; q2)n−r
, (38)

and [12, p. 476]:

�(X ξ ) = (−1)r z2r q6( r
2 )

[n

r

] 1 − z2q4r−2

(zqr−1)n+1

. (39)

Substituting these into the right-hand side of (5) we obtain the right-hand side of (6) after

simple manipulations.

When n → +∞, since
[n
λ

] → 1
(q)λ

, equation (6) reduces to:

∑
l(λ)≤k

z|λ|q2n(λ)

(−q)λk (q)λ
= (−z/q)∞

∑
r≥0

(−1)r zkr qr+(2k+2)(r
2)

(q2; q2)r (z2q2r−2)∞
(1 − zq2r−1). (40)

Furthermore, as in Section 2, setting z = q2 and z = q in (40) yields (17) and (21),

respectively.

5. Elementary approach and proof of Theorem 2

5.1. Preliminaries

We will need the following result, which corresponds to the case k → ∞ in (6), and can be

proved in an elementary way:

Lemma 1. For n ≥ 0

∑
λ

z|λ|q2n(λ)(−q)λ

[n

λ

]
q2

= (−z)2n

(z2; q2)n
. (41)
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Proof: Recall the following identity, which is proved in [7]:

q(m
2)+n(μ)

[
n

m

][
n

μ

]
=

∑
λ

qn(λ)

[
n

λ

] ∏
i≥1

[
λi − λi+1

λi − μi

]
, (42)

where the sum is over all partitions λ such that λ/μ is a horizontal m-strip, i.e., μ ⊆ λ,

|λ/μ| = m and there is at most one cell in each column of the Ferrers diagram of λ/μ.

We also need

∑
λ

z|λ|qn(λ)

[
n

λ

]
= (−z)n

(z2)n
, (43)

which can be found in [7, 12].

Using (43) with q replaced by q2 and (2), the right-hand side of (41) can be written

(−z; q2)n

(z2; q2)n
(−zq; q2)n =

∑
μ, m

z|μ|q2n(μ)

[
n

μ

]
q2

zmq2( m
2 )+m

[
n

m

]
q2

=
∑
λ, m

z|λ|q2n(λ)

[
n

λ

]
q2

∏
i≥1

∑
ri ≥0

qri

[
λi − λi+1

ri

]
q2

,

where the last equality follows from (42), setting ri = λi − μi for i ≥ 1. Now we conclude

by using (10). �

Recall the following extension of the n → ∞ case of (41), which is Stembridge’s lemma

3.3 (b) in [12], and identity (60) in [7]:

∑
λ

z|λ|q2n(λ) (a, b; q−1)λ1

(q)λ
= (az, bz)∞

(z, abz)∞
. (44)

Now, using (41), we are able to prove directly identity (6) in Corollary 1, and then using

(44), to deduce an elementary proof of (7) in Theorem 2.

5.2. Elementary proof of Corollary 1

Consider the generating function of the left-hand side of (6):

ϕ(u) =
∑
k≥0

uk
∑

l(λ)≤k

(−q)λ

(−q)λk

z|λ|q2n(λ)
[n

λ

]
q2

(45)

=
∑

λ

ul(λ)z|λ|q2n(λ)(−q)λ

[n

λ

]
q2

∑
k≥0

uk

(−q)λk+l(λ)

=
∑

λ

ul(λ)z|λ|q2n(λ)(−q)λ

[n

λ

]
q2

(
u

1 − u
+ 1

(−q)λl(λ)

)
, (46)
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where the last equality follows from the fact that λk+l(λ) = 0 unless k = 0. Now, each partition

λ with parts bounded by n can be encoded by a pair of sequences ν = (ν0, ν1, . . . , νl ) and

m = (m0, . . . , ml ) such that λ = (νm0

0 , . . . , ν
ml
l ), where n = ν0 > ν1 > · · · > νl > 0 and νi

has multiplicity mi ≥ 1 for 1 ≤ i ≤ l and ν0 = n has multiplicity m0 ≥ 0. Using the notation:

〈α〉 = α

1 − α
, ui = zi qi(i−1) for i ≥ 0,

we can then rewrite (46) as follows:

ϕ(u) =
∑

ν

(−q)ν

[n

ν

]
q2

(
〈u〉 + 1

(−q)νl

)

×
∑

m

(
(unu)m0 + χ (m0 = 0)

(−q)n−ν1

) l∏
i=1

(uνi u)mi

=
∑

ν

(q2; q2)n

(q)ν
Bν, (47)

where the sum is over all strict partitions ν = (ν0, ν1, . . . , νl ) and

Bν =
(

〈u〉 + 1

(−q)νl

) (
〈ur u〉 + 1

(−q)n−ν1

) l∏
i=1

〈uνi u〉.

So ϕ(u) is a rational fraction with simple poles at u−1
r for 0 ≤ r ≤ n. Let br (z, n) be the

corresponding residue of ϕ(u) at u−1
r for 0 ≤ r ≤ n. Then, it follows from (47) that

br (z, n) =
∑

ν

(q2; q2)n

(q)ν
[Bν(1 − ur u)]u=u−1

r
. (48)

We shall first consider the cases where r = 0 or n. Using (46) and (41) we have

b0(z, n) = [ϕ(u)(1 − u)]u=1 = (−z)2n

(z2; q2)n
. (49)

Now, by (47) and (48) we have

b0(z, n) =
∑

ν

(q2; q2)n

(q)ν

(
〈un〉 + 1

(−q)n−ν1

) l∏
i=1

〈uνi 〉, (50)

and

bn(z, n) =
∑

ν

(q2; q2)n

(q)ν

(
〈1/un〉 + 1

(−q)νl

) l∏
i=1

〈uνi /un〉, (51)
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which, by setting μi = n − νl+1−i for 1 ≤ i ≤ l and μ0 = n, can be written as

bn(z, n) =
∑

μ

(q2; q2)n

(q)μ

(
〈1/un〉 + 1

(−q)n−μ1

) l∏
i=1

〈un−μi /un〉. (52)

Comparing (52) with (50) we see that bn(z, n) is equal to b0(z, n) with z replaced by

z−1q−2n+2. It follows from (49) that

bn(z, n) = b0(z−1q−2n+2, n) = (−1)nqn2 (−z/q)2n

(z2q2n−2; q2)n
. (53)

Consider now the case where 0 < r < n. Clearly, for each partition ν, the corresponding

summand in (48) is not zero only if ν j = r for some j , 0 ≤ j ≤ n. Furthermore, each such par-

tition ν can be split into two strict partitions ρ = (ρ0, ρ1, . . . , ρ j−1) and σ = (σ0, . . . , σl− j )

such that ρi = νi − r for 0 ≤ i ≤ j − 1 and σs = ν j+s for 0 ≤ s ≤ l − j . So we can write

(48) as follows:

br (z, n) =
[n

r

]
q2

∑
ρ

(q2; q2)n−r

(q)ρ
Fρ(r ) ×

∑
σ

(q2; q2)r

(q)σ
Gσ (r )

where for ρ = (ρ0, ρ1, . . . , ρl ) with ρ0 = n − r ,

Fρ(r ) =
(

〈un/ur 〉 + 1

(−q)n−r−ρ1

) l(ρ)∏
i=1

〈uρi +r/ur 〉,

and for σ = (σ0, . . . , σl ) with σ0 = n,

Gσ (r ) =
(

〈1/ur 〉 + 1

(−q)σl

) l(σ )∏
i=1

〈uσi /ur 〉.

Comparing with (50) and (52) and using (49) and (53) we obtain

br (z, n) =
[n

r

]
q2

b0(zq2r , n − r ) br (z, r )

= (−1)r qr+2( n
r ) (−z/q)2n+1

(z2q2r−2, q2)n+1

(1 − zq4r−1).

Finally, extracting the coefficients of uk in the equation

ϕ(u) =
n∑

p=0

br (z, n)

1 − ur u
,

and using the values for br (z, n) we obtain (6).
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5.3. Proof of Theorem 2

Consider the generating function of the left-hand side of (7):

ϕab(u) :=
∑
k≥0

uk
∑

l(λ)≤k

z|λ|q2n(λ) (a, b; q−1)λ1

(q)λ(−q)λk

=
∑

λ

∑
k≥0

uk+l(λ)z|λ|q2n(λ) (a, b; q−1)λ1

(q)λ(−q)λl(λ)+k

,

where the sum is over all the partitions λ, and as before λl(λ)+k = 0 unless k = 0. Thus

ϕab(u) =
∑

λ

ul(λ)z|λ|q2n(λ) (a, b; q−1)λ1

(q)λ

(
u

1 − u
+ 1

(−q)λl(λ)

)
. (54)

As in the elementary proof of Corollary 1, we can replace any partition λ by a pair (ν, m),

where ν is a strict partition consisting of distinct parts ν1, . . . , νl of λ, so that ν1 > · · · >

νl > 0, and m = (m1, . . . , ml ) is the sequence of multiplicities of νi for 1 ≤ i ≤ l. Therefore

ϕab(u) =
∑
ν, m

(a, b; q−1)ν1

(q)ν

(
u

1 − u
+ 1

(−q)νl

) l∏
i=1

(uνi u)mi

=
∑

ν

(a, b; q−1)ν1

(q)ν

(
〈u〉 + 1

(−q)νl

) l∏
i=1

〈uνi u〉, (55)

where the sum is over all the strict partitions ν. Each of the terms in this sum, as a rational

function of u, has a finite set of simple poles, which may occur at the points u−1
r for r ≥ 0.

Therefore, each term is a linear combination of partial fractions. Moreover, the sum of their

expansions converges coefficientwise. So ϕab has an expansion

ϕab(u) =
∑
r≥0

cr

1 − uzr qr (r−1)
,

where cr denotes the formal sum of partial fraction coefficients contributed by the terms

of (55). It remains to compute these residues cr (r ≥ 0). By using (44) and (55), we get

immediately

c0 = [ϕab(u)(1 − u)]u=1 = (az, bz)∞
(z, abz)∞

.

In view of (55), this yields the identity

∑
ν

(a, b; q−1)ν1

(q)ν

l∏
i=1

〈uνi 〉 = (az, bz)∞
(z, abz)∞

. (56)

Clearly, a summand in (55) has a non zero contribution to cr (r > 0) only if the cor-

responding partition ν has a part equal to r . For any partition ν such that ∃ j | ν j = r , set

Springer



J Algebr Comb (2006) 23: 395–412 411

ρi := νi − r for 1 ≤ i < j and σi := νi+ j for 0 ≤ i ≤ l − j , we then get two partitions ρ

and σ , with σi bounded by r . Multiplying (55) by (1 − ur u) and setting u = 1/ur we obtain

cr =
∑

ρ

(a, b; q−1)ρ1+r

(q)ρ

j−1∏
i=1

〈ur+ρi /ur 〉

×
∑

σ

1

(q)σ

(
〈1/ur 〉 + 1

(−q)σl− j

) l− j∏
i=1

〈uσi /ur 〉.

In view of (51) the inner sum over σ is equal to br (z, r )/(q2, q2)r , and applying (53) we

get

cr = (−1)r qr+2( r
2 ) (−z/q)2r

(z2q2r−2, q2)r

(a, b; q−1)r

(q2; q2)r

×
∑

ρ

(aq−r , bq−r ; q−1)ρ1

(q)ρ

j−1∏
i=1

〈ur+ρi /ur 〉.

Now, the sum over ρ can be computed using (56) with a, b and z replaced by aq−r , bq−r

and zq2r respectively. After simplification, we obtain

cr = (−1)r qr+2( r
2 ) (−z/q)∞

(z2q2r−2, q2)∞

(a, b; q−1)r

(q2; q2)r

(azqr , bzqr )∞
(abz)∞

,

which completes the proof.
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