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Abstract The Kirillov–Reshetikhin modules W r,s are finite-dimensional representations of

quantum affine algebras U ′
q (g), labeled by a Dynkin node r of the affine Kac–Moody algebra

g and a positive integer s. In this paper we study the combinatorial structure of the crystal

basis B2,s corresponding to W 2,s for the algebra of type D(1)
n .
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1. Introduction

Quantum algebras were introduced independently by Drinfeld [4] and Jimbo [8] in their

study of two dimensional solvable lattice models in statistical mechanics. Since then quan-

tum algebras have surfaced in many areas of mathematics and mathematical physics,

such as the theory of knots and links, representation theory, and topological quantum

field theory. Of special interest, in particular for lattice models and representation theory,

are finite-dimensional representations of quantum affine algebras. The irreducible finite-

dimensional U ′
q (g)-modules for an affine Kac–Moody algebra g were classified by Chari

and Pressley [2, 3] in terms of Drinfeld polynomials. The Kirillov–Reshetikhin modules

W r,s , labeled by a Dynkin node r and a positive integer s, form a special class of these
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finite-dimensional modules. They naturally correspond to the weight s�r , where �r is the

r -th fundamental weight of the underlying finite algebra g.

Kashiwara [12, 13] showed that in the limit q → 0 the highest-weight representations

of the quantum algebra Uq (g) have very special bases, called crystal bases. This construc-

tion makes it possible to study modules over quantum algebras in terms of crystals graphs,

which are purely combinatorial objects. However, in general it is not yet known which finite-

dimensional representations of affine quantum algebras have crystal bases and what their

combinatorial structure is. Recently, Hatayama et al. [5, 6] conjectured that crystal bases Br,s

for the Kirillov–Reshetikhin modules W r,s exist. For type A(1)
n , the crystals Br,s are known

to exist [10], and the explicit combinatorial crystal structure is also well-understood [28].

Assuming that the crystals Br,s exist, their structure for non-simply laced algebras can be

described in terms of virtual crystals introduced in [26, 27]. The virtual crystal construction

is based on the following well-known algebra embeddings of non-simply laced into simply

laced types:

C (1)
n , A(2)

2n , A(2)†
2n , D(2)

n+1 ↪→ A(1)
2n−1

A(2)
2n−1, B(1)

n ↪→ D(1)
n+1

E (2)
6 , F (1)

4 ↪→ E (1)
6

D(3)
4 , G(1)

2 ↪→ D(1)
4 .

The main open problems in the theory of finite-dimensional affine crystals are therefore

the proof of the existence of Br,s and the combinatorial structure of these crystals for types

D(1)
n (n ≥ 4) and E (1)

n (n = 6, 7, 8). In this paper, we concentrate on type D(1)
n . For irre-

ducible representations corresponding to multiples of the first fundamental weight (indexed

by a one-row Young diagram) or any single fundamental weight (indexed by a one-column

Young diagram) the crystals have been proven to exist and the structure is known [10, 18].

In [5, 6], a conjecture is presented on the decomposition of Br,s as a crystal for the underly-

ing finite algebra of type Dn . Specifically, as a type Dn classical crystal the crystals Br,s of

type D(1)
n for r ≤ n − 2 decompose as

Br,s ∼=
⊕

�

B(�),

where the direct sum is taken over all weights � for the finite algebra corresponding to

partitions obtained from an r × s rectangle by removing any number of 2 × 1 vertical domi-

noes. Here B(�) is the Uq (Dn)-crystal associated with the highest weight representation of

highest weight � (see [17]). In the sequel, we consider the case r = 2, for which the above

direct sum specializes to

B2,s ∼=
s⊕

k=0

B(k�2), (1)

where once again the summands in the right hand side of the equation are crystals for the

finite algebra. Our approach to study the combinatorics of B2,s is as follows. First, we in-

troduce tableaux of shape (s, s) to define a Uq (Dn)-crystal whose vertices are in bijection

with the classical tableaux from the direct sum decomposition (1). Using the automorphism

of the D(1)
n Dynkin diagram which interchanges nodes 0 and 1, we define the unique action

of f̃0 and ẽ0 which makes this crystal into a perfect crystal B̃2,s of level s with an energy

function. (See sections 2.3 and 2.4 for definitions of these terms.)
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Assuming the existence of the crystal Br,s , the main result of our paper states that our

combinatorially constructed crystal B̃2,s is the unique perfect crystal of level s with the

classical decomposition (1) with a given energy function. More precisely:

Theorem 1.1. If B2,s exists with the properties as in Conjecture 3.4, then B̃2,s ∼= B2,s .

This is the first step in confirming Conjecture 2.1 of [5], which states that as modules over

the embedded classical quantum group, W 2,s decomposes as
⊕s

k=0 V (k�2), where V (�) is

the classical module with highest weight �, W 2,s has a crystal basis, and this crystal is a

perfect crystal of level s.

The paper is structured as follows. In section 2 the definition of quantum algebras, crys-

tal bases and perfect crystals is reviewed. Section 3 is devoted to crystals and the plactic

monoid of type Dn . The properties of B2,s of type D(1)
n as conjectured in [5] are given in

Conjecture 3.4. In section 4 the set underlying B̃2,s is constructed in terms of tableaux of

shape (s, s) obeying certain conditions. It is shown that this set is in bijection with the union

of sets appearing on the right hand side of (1). The branching component graph is introduced

in section 5, which is used in section 6 to define ẽ0 and f̃0 on B̃2,s . This makes B̃2,s into an

affine crystal. It is shown in section 7 that B̃2,s is perfect and that B̃2,s is the unique perfect

crystal having the classical decomposition (1) with the appropriate energy function. This

proves in particular Theorem 1.1. Finally, we end in section 8 with some open problems.

2. Review of quantum groups and crystal bases

2.1. Quantum groups

For n ∈ Z and a formal parameter q , we use the notation

[n]q = qn − q−n

q − q−1
, [n]q ! =

n∏
k=1

[k]q , and

[
m

n

]
q

= [m]q !

[n]q ![m − n]q !
.

These are all elements of Q(q), called the q-integers, q-factorials, and q-binomial coef-

ficients, respectively.

Let g be an arbitrary Kac-Moody Lie algebra with Cartan datum (A, �, �∨, P, P∨) and

a Dynkin diagram indexed by I . Here A = (ai j )i, j∈I is the Cartan matrix, P and P∨ are

the weight lattice and dual weight lattice, respectively, � = {αi | i ∈ I } is the set of simple

roots and �∨ = {hi | i ∈ I } is the set of simple coroots. Furthermore, let {si | i ∈ I } be the

entries of the diagonal symmetrizing matrix of A and define qi = qsi and Ki = qsi hi . Then

the quantum enveloping algebra Uq (g) is the associative Q(q)-algebra generated by ei and

fi for i ∈ I , and qh for h ∈ P∨, with the following relations (see e.g. [7, Def. 3.1.1]):

(1) q0 = 1, qhqh′ = qh+h′
for all h, h′ ∈ P∨,

(2) qhei q−h = qαi (h)ei for all h ∈ P∨,

(3) qh fi q−h = qαi (h) fi for all h ∈ P∨,

(4) ei f j − f j ei = δi j
Ki −K −1

i

qi −q−1
i

for i, j ∈ I ,

(5)
∑1−ai j

k=0 (−1)k
[

1−ai j

k

]
qi

e
1−ai j −k
i e j ek

i = 0 for all i 
= j ,

(6)
∑1−ai j

k=0 (−1)k
[

1−ai j

k

]
qi

f
1−ai j −k
i f j f k

i = 0 for all i 
= j .
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2.2. Crystal bases

The quantum algebra Uq (g) can be viewed as a q-deformation of the universal enveloping

algebra U (g) of g. Lusztig [23] showed that the integrable highest weight representations

of U (g) can be deformed to Uq (g) representations in such a way that the dimension of the

weight spaces are invariant under the deformation, provided q 
= 0 and qk 
= 1 for all k ∈ Z
(see also [7]). Let M be a Uq (g)-module and R the subset of all elements in Q(q) which are

regular at q = 0. Kashiwara [12, 13] introduced Kashiwara operators ẽi and f̃i as certain

linear combinations of powers of ei and fi . A crystal lattice L is a free R-submodule of M
that generates M over Q(q), has the same weight decomposition and has the property that

ẽiL ⊂ L and f̃iL ⊂ L for all i ∈ I . The passage from L to the quotient L/qL is referred to

as taking the crystal limit. A crystal basis is a Q-basis of L/qL with certain properties.

Axiomatically, we may define a Uq (g)-crystal as a nonempty set B equipped with maps

wt : B → P and ẽi , f̃i : B → B ∪ {∅} for all i ∈ I , satisfying

f̃i (b) = b′ ⇔ ẽi (b
′) = b if b, b′ ∈ B (2)

wt( f̃i (b)) = wt(b) − αi if f̃i (b) ∈ B (3)

〈hi , wt(b)〉 = ϕi (b) − εi (b). (4)

Here for b ∈ B

εi (b) = max{n ≥ 0 | ẽn
i (b) 
= ∅}

ϕi (b) = max{n ≥ 0 | f̃ n
i (b) 
= ∅}.

(It is assumed that ϕi (b), εi (b) < ∞ for all i ∈ I and b ∈ B.) A Uq (g)-crystal B can be

viewed as a directed edge-colored graph (the crystal graph) whose vertices are the elements

of B, with a directed edge from b to b′ labeled i ∈ I , if and only if f̃i (b) = b′.
Let B1 and B2 be Uq (g)-crystals. The Cartesian product B2 × B1 can also be endowed

with the structure of a Uq (g)-crystal. The resulting crystal is denoted by B2 ⊗ B1 and its

elements (b2, b1) are written b2 ⊗ b1. (The reader is warned that our convention is opposite

to that of Kashiwara [14]). For i ∈ I and b = b2 ⊗ b1 ∈ B2 ⊗ B1, we have wt(b) = wt(b1) +
wt(b2),

f̃i (b2 ⊗ b1) =
{

f̃i (b2) ⊗ b1 if εi (b2) ≥ ϕi (b1)

b2 ⊗ f̃i (b1) if εi (b2) < ϕi (b1)
(5)

and

ẽi (b2 ⊗ b1) =
{

ẽi (b2) ⊗ b1 if εi (b2) > ϕi (b1)

b2 ⊗ ẽi (b1) if εi (b2) ≤ ϕi (b1).
(6)

Combinatorially, this action of f̃i and ẽi on tensor products can be described by the

signature rule. The i-signature of b is the word consisting of the symbols + and − given by

− · · · −︸ ︷︷ ︸
ϕi (b2) times

+ · · · +︸ ︷︷ ︸
εi (b2) times

− · · · −︸ ︷︷ ︸
ϕi (b1) times

+ · · · +︸ ︷︷ ︸
εi (b1) times

.
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The reduced i-signature of b is the subword of the i-signature of b, given by the repeated

removal of adjacent symbols +− (in that order); it has the form

− · · · −︸ ︷︷ ︸
ϕ times

+ · · · +︸ ︷︷ ︸
ε times

.

If ϕ = 0 then f̃i (b) = ∅; otherwise f̃i acts on the tensor factor corresponding to the

rightmost symbol − in the reduced i-signature of b. Similarly, if ε = 0 then ẽi (b) = ∅; oth-

erwise ẽi acts on the leftmost symbol + in the reduced i-signature of b. From this it is clear

that

ϕi (b2 ⊗ b1) = ϕi (b2) + max(0, ϕi (b1) − εi (b2)),

εi (b2 ⊗ b1) = εi (b1) + max(0, −ϕi (b1) + εi (b2)).

2.3. Perfect crystals

Of particular interest is a class of crystals called perfect crystals, which are crystals for

affine algebras satisfying a set of very special properties. These properties ensure that perfect

crystals can be used to construct the path realization of highest weight modules [11]. To

define them, we need a few preliminary definitions.

Recall that P denotes the weight lattice of a Kac-Moody algebra g; for the remainder of

this section, g is of affine type. The center of g is one-dimensional and is generated by the

canonical central element c = ∑
i∈I a∨

i hi , where the a∨
i are the numbers on the nodes of the

Dynkin diagram of the algebra dual to g given in Table Aff of [9, section 4.8]. Moreover,

the imaginary roots of g are nonzero integral multiples of the null root δ = ∑
i∈I aiαi , where

the ai are the numbers on the nodes of the Dynkin diagram of g given in Table Aff of [9].

Define Pcl = P/Zδ, P+
cl = {λ ∈ Pcl|〈hi , λ〉 ≥ 0 for all i ∈ I }, and U ′

q (g) to be the quantum

enveloping algebra with the Cartan datum (A, �, �∨, Pcl, P∨
cl ).

Define the set of level � weights to be (P+
cl )� = {λ ∈ P+

cl |〈c, λ〉 = �}. For a crystal basis

element b ∈ B, define

ε(b) =
∑
i∈I

εi (b)�i and ϕ(b) =
∑
i∈I

ϕi (b)�i ,

where �i is the i-th fundamental weight of g. Finally, for a crystal basis B, we define Bmin

to be the set of crystal basis elements b such that 〈c, ε(b)〉 is minimal over b ∈ B.

Definition 2.1. A crystal B is a perfect crystal of level � if:

(1) B ⊗ B is connected;

(2) there exists λ ∈ Pcl such that wt(B) ⊂ λ + ∑
i 
=0 Z≤0αi and #(Bλ) = 1;

(3) there is a finite-dimensional irreducible U ′
q (g)-module V with a crystal base whose crys-

tal graph is isomorphic to B;

(4) for any b ∈ B, we have 〈c, ε(b)〉 ≥ �;

(5) the maps ε and ϕ from Bmin to (P+
cl )� are bijective.

We use the notation lev (B) to indicate the level of the perfect crystal B.
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2.4. Energy function

The existence of an affine crystal structure usually provides an energy function. Let B1 and

B2 be finite U ′
q (g)-crystals. Then following [11, Section 4] we have:

(1) There is a unique isomorphism of U ′
q (g)-crystals R = RB2,B1

: B2 ⊗ B1 → B1 ⊗ B2.

(2) There is a function H = HB2,B1
: B2 ⊗ B1 → Z, unique up to global additive constant,

such that H is constant on classical components and, for all b2 ∈ B2 and b1 ∈ B1, if

R(b2 ⊗ b1) = b′
1 ⊗ b′

2, then

H (ẽ0(b2 ⊗ b1)) = H (b2 ⊗ b1) +

⎧⎪⎨⎪⎩
−1 if ε0(b2) > ϕ0(b1) and ε0(b′

1) > ϕ0(b′
2)

1 if ε0(b2) ≤ ϕ0(b1) and ε0(b′
1) ≤ ϕ0(b′

2)

0 otherwise.

(7)

We shall call the maps R and H the local isomorphism and local energy function on

B2 ⊗ B1, respectively. The pair (R, H ) is called the combinatorial R-matrix.

Let u(B1) and u(B2) be extremal vectors of B1 and B2, respectively (see [15] for a defi-

nition of extremal vectors). Then

R(u(B2) ⊗ u(B1)) = u(B1) ⊗ u(B2).

It is convenient to normalize the local energy function H by requiring that

H (u(B2) ⊗ u(B1)) = 0.

With this convention it follows by definition that

HB1,B2
◦ RB2,B1

= HB2,B1

as operators on B2 ⊗ B1.

We wish to define an energy function DB : B → Z for tensor products of perfect crystals

of the form Br,s [5, Section 3.3]. Let B = Br,s be perfect. Then there exists a unique element

b� ∈ B such that ϕ(b�) = lev (B)�0. Define DB : B → Z by

DB(b) = HB,B(b ⊗ b�) − HB,B(u(B) ⊗ b�). (8)

The intrinsic energy DB for the L-fold tensor product B = BL ⊗ · · · ⊗ B1 where B j =
Br j ,s j is given by

DB =
∑

1≤i< j≤L

Hi Ri+1 Ri+2 · · · R j−1 +
L∑

j=1

DB j R1 R2 · · · R j−1,

where Hi and Ri are the local energy function and R-matrix on the i-th and i + 1-th tensor

factor, respectively.

3. Crystals and plactic monoid of type D

From now on we restrict our attention to the finite Lie algebra of type Dn and the affine

Kac-Moody algebra of type D(1)
n . Denote by I = {0, 1, . . . , n} the index set of the Dynkin

diagram for D(1)
n and by J = {1, 2, . . . , n} the Dynkin diagram for type Dn .

Springer



J Algebr Comb (2006) 23: 317–354 323

3.1. Dynkin data

For type Dn , the simple roots are

αi = εi − εi+1 for 1 ≤ i < n

αn = εn−1 + εn
(9)

and the fundamental weights are

�i = ε1 + · · · + εi for 1 ≤ i ≤ n − 2

�n−1 = (ε1 + · · · + εn−1 − εn)/2

�n = (ε1 + · · · + εn−1 + εn)/2

where εi ∈ Zn is the i-th unit standard vector. The central element for D(1)
n is given by

c = h0 + h1 + 2h2 + · · · + 2hn−2 + hn−1 + hn .

3.2. Classical crystals

Kashiwara and Nakashima [17] described the crystal structure of all classical highest weight

crystals B(�) of highest weight � explicitly. For the special case B(k�2) as occuring in (1)

each crystal element can be represented by a tableau of shape λ = (k, k) on the partially

ordered alphabet

1 < 2 < · · · < n − 1 <
n

n̄
< n − 1 < · · · 2̄ < 1̄

such that the following conditions hold [7, page 202]:

Criterion 3.1.

1. If ab is in the filling, then a ≤ b;
2. If a

b is in the filling, then b � a;
3. No configuration of the form a a

ā or a
ā ā appears;

4. No configuration of the form n−1
n . . .

n
n−1

or n−1
n̄ . . .

n̄
n−1

appears;

5. No configuration of the form 1
1̄

appears.

Note that for k ≥ 2, condition 5 follows from conditions 1 and 3.

Also, observe that the conditions given in [7] apply only to adjacent columns, not to non-

adjacent columns as in condition 4 above. However, Criterion 3.1 is unchanged by replacing

condition 4 with the following:

(4a) No configuration of the form n−1
n

n
n−1

or n−1
n̄

n̄
n−1

appears.

To see this equivalence, observe that by conditions 1 and 2 the only columns that can

appear between n−1
n and n

n−1
are n−1

n , n−1
n−1

, and n
n−1

, and they must appear in that order

from left to right. If a column of the form n−1
n−1

appears, we have a configuration of the form
n−1 n−1

n−1
, which is forbidden by condition 3. On the other hand, if no column of the form n−1

n−1

appears, the columns n−1
n and n

n−1
are adjacent, which is disallowed by condition 4a.
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The crystal B(�1) is described pictorially by the crystal graph:

1
�1

2 · · · �n − 2
n − 1

���
n − 1

���n

n
���

n

n
���n − 1

n − 1
�n − 2 · · · 2

�1
1

For a tableau T = a1

b1
· · · ak

bk
∈ B(k�2), the action of the Kashiwara operators f̃i and ẽi is

defined as follows. Consider the column word wT = b1a1 · · · bkak and view this word as an

element in B(�1)⊗2k . Then f̃i and ẽi act by the tensor product rule as defined in section 2.2.

Example 3.2. Let n = 4. Then the tableau

T = 1 2 4 3̄ 3̄

3 4̄ 4̄ 2̄ 1̄

has column word wT = 314̄24̄42̄3̄1̄3̄. The 2-signature of T is + − + − −, derived from the

subword 322̄3̄3̄, and the reduced 2-signature is a single −. Therefore,

f̃2(T ) = 1 2 4 3̄ 2̄

3 4̄ 4̄ 2̄ 1̄
,

since the rightmost—in the reduced 2-signature of T comes from the northeastmost 3̄. The

4-signature of T is − + + − ++, derived from the subword 34̄4̄43̄3̄, and the reduced 4-

signature is − + ++, from the subword 34̄3̄3̄. This tells us that

f̃4(T ) = 1 2 4 3̄ 3̄

4̄ 4̄ 4̄ 2̄ 1̄
and ẽ4(T ) = 1 2 4 3̄ 3̄

3 3 4̄ 2̄ 1̄
.

3.3. Dual crystals

Let ω0 be the longest element in the Weyl group of Dn . The action of ω0 on the weight

lattice P of Dn is given by

ω0(�i ) = −�τ (i)

ω0(αi ) = −ατ (i)

where τ : J → J is the identity if n is even and interchanges n − 1 and n and fixes all other

Dynkin nodes if n is odd.
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There is a unique involution ∗ : B → B, called the dual map, satisfying

wt(b∗) = ω0wt(b)

ẽi (b)∗ = f̃τ (i)(b
∗)

f̃i (b)∗ = ẽτ (i)(b
∗).

The involution ∗ sends the highest weight vector u ∈ B(�) to the lowest weight vector

(the unique vector in B(�) of weight ω0(�)). We have

(B1 ⊗ B2)∗ ∼= B2 ⊗ B1

with (b1 ⊗ b2)∗ �→ b∗
2 ⊗ b∗

1.

Explicitly, on B(�1) the involution ∗ is given by

i ←→ i

except for i = n with n odd in which case n ↔ n and n ↔ n. For T ∈ B(�) the dual T ∗ is

obtained by applying the ∗ map defined for B(�1) to each of the letters of wrev
T (the reverse

column word of T ), and then rectifying the resulting word.

Example 3.3. If

T = 1 1 2

3
∈ B(2�1 + �2)

we have

T ∗ = 3 1 1

2
.

3.4. Plactic monoid of type D

The plactic monoid for type D is the free monoid generated by {1, . . . , n, n̄, . . . , 1̄}, modulo

certain relations introduced by Lecouvey [22]. Note that we write our words in the reverse

order compared to [22]. A column word C = xL xL−1 · · · x1 is a word such that xi+1 
≤ xi for

i = 1, . . . , L − 1. Note that the letters n and n̄ are the only letters that may appear more than

once in C . Let z ≤ n be a letter in C . Then N (z) denotes the number of letters x in C such

that x ≤ z or x ≥ z̄. A column C is called admissible if L ≤ n and for any pair (z, z̄) of let-

ters in C with z ≤ n we have N (z) ≤ z. The Lecouvey D equivalence relations are given by:

(1) If x 
= z̄, then

xzy ≡ zxy for x ≤ y < z and yzx ≡ yxz for x < y ≤ z.

(2) If 1 < x < n and x ≤ y ≤ x̄ , then

(x − 1)(x − 1)y ≡ x̄ xy and yx̄x ≡ y(x − 1)(x − 1).
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(3) If x ≤ n − 1, then {
nx̄n̄ ≡ nn̄x̄
n̄x̄n ≡ n̄nx̄

and

{
xnn̄ ≡ nxn̄
xn̄n ≡ n̄xn

.

(4) {
n̄n̄n ≡ n̄(n − 1)(n − 1)

nnn̄ ≡ n(n − 1)(n − 1)
and

{
(n − 1)(n − 1)n̄ ≡ nn̄n̄
(n − 1)(n − 1)n ≡ n̄nn

.

(5) Consider w a non-admissible column word each strict factor of which is admissible. Let

z be the lowest unbarred letter such that the pair (z, z̄) occurs in w and N (z) > z. Then

w ≡ w̃ is the column word obtained by erasing the pair (z, z̄) in w if z < n, by erasing

a pair (n, n̄) of consecutive letters otherwise.

This monoid gives us a bumping algorithm similar to the Schensted bumping algorithm.

It is noted in [22] that a general type D sliding algorithm, if one exists, would be very

complicated. However, for tableaux with no more than two rows, these relations provide us

with the following relations on subtableaux:

(1) If x 
= z̄, then

y
x z

≡ x y
z

≡ x y
z

for x ≤ y < z,

and
x

y z
≡ x

y z
≡ x z

y
for x < y ≤ z.

(2) If 1 < x < n and x ≤ y ≤ x̄ , then

y

x − 1 x − 1
≡ x − 1 y

x − 1
≡ x y

x̄

and
x

y x
≡ x − 1

y x − 1
≡ x − 1 x − 1

y
.

(3) If x ≤ n − 1, then ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n̄

n x
≡ n̄

n x̄
≡ n̄ x̄

n

n
n̄ x

≡ n
n̄ x̄

≡ n x̄
n̄

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n̄

x n
≡ x n̄

n
≡ x n̄

n

n
x n

≡ x n
n̄

≡ x n
n̄

.
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(4) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n
n̄ n̄

≡ n − 1

n̄ n − 1
≡ n − 1 n − 1

n̄

n̄
n n

≡ n − 1

n n − 1
≡ n − 1 n − 1

n

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n̄

n − 1 n − 1
≡ n − 1 n̄

n − 1
≡ n̄ n̄

n

n

n − 1 n − 1
≡ n − 1 n

n − 1
≡ n n

n̄

.

If a word is composed entirely of barred letters or entirely of unbarred letters, only relation

(1) (the Knuth relation) applies, and the type A jeu de taquin may be used.

3.5. Properties of B2,s

As mentioned in the introduction, it was conjectured in [5, 6] that there are crystal bases Br,s

associated with Kirillov–Reshetikhin modules W r,s . In addition to the existence, Hatayama

et al. [5] conjectured certain properties of Br,s which we state here in the specific case of

B2,s of type D(1)
n .

Conjecture 3.4 ([5]). If the crystal B2,s of type D(1)
n exists, it has the following properties:

(1) As a classical crystal B2,s decomposes as B2,s ∼= ⊕s
k=0 B(k�2).

(2) B2,s is perfect of level s.

(3) B2,s is equipped with an energy function DB2,s such that DB2,s (b) = k − s if b is in the

component of B(k�2) (in accordance with (8)).

4. Classical decomposition of B̃2,s

In this section we begin our construction of the crystal B̃2,s mentioned in Theorem 1.1.

We do this by defining a Uq (Dn)-crystal with vertices labeled by the set T (s) of tableaux

of shape (s, s) which satisfy conditions 1, 2, and 4 of Criterion 3.1. We will construct a

bijection between T (s) and the vertices of
⊕s

i=0 B(i�2), so that T (s) may be viewed as a

Uq (Dn)-crystal with the classical decomposition (1). In section 6 we will define f̃0 and ẽ0

on T (s) to give it the structure of a perfect U ′
q (D(1)

n )-crystal. This crystal will be B̃2,s .

The reader may note in later sections that the main result of the paper does not depend on

this explicit labeling of the vertices of B̃2,s . We have included it here because a description

of the crystal in terms of tableaux will be needed to obtain a bijection with rigged config-

urations. It is through such a bijection that we anticipate being able to prove the X = M
conjecture for type D, as has already been done for special cases in [25, 29, 30].

Proposition 4.1. Let T ∈ T (s) \ B(s�2) with T 
= 1
1̄
· · · 1

1̄
, and define ¯̄i = i for 1 ≤ i ≤ n.

Then there is a unique a ∈ {1, . . . , n, n̄} and m ∈ Z>0 such that T contains one of the
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following configurations (called an a-configuration):

a

b1

a

ā
· · · a

ā︸ ︷︷ ︸
m

c1

d1

, where b1 
= ā, and c1 
= a or d1 
= ā;

b2

c2

a

ā
· · · a

ā︸ ︷︷ ︸
m

d2

ā
, where d2 
= a, and b2 
= a or c2 
= ā;

b3

c3

a

ā
· · · a

ā︸ ︷︷ ︸
m+1

d3

e3

, where b3 
= a and e3 
= ā.

Proof: If s = 1, the set T (s) \ B(s�2) contains only 1
1̄
, so that the statement of the propo-

sition is empty. Hence assume that s ≥ 2. The existence of an a-configuration for some

a ∈ {1, . . . , n, n̄} follows from the fact that T violates condition 3 of Criterion 3.1. The

conditions on bi , ci , di for i = 1, 2, 3 and e3 can be viewed as stating that m is chosen to

maximize the size of the a-configuration. Condition 1 of Criterion 3.1 and the conditions on

the parameters bi , ci , di , e3 imply that there can be no other a-configurations in T . �

The map D2,s : T (s) → ⊕s
k=0 B(k�2), called the height-two drop map, is defined as fol-

lows for T ∈ T (s). If T = 1
1̄
· · · 1

1̄
, then D2,s(T ) = ∅ ∈ B(0). If T ∈ B(s�2), D2,s(T ) = T .

Otherwise by Proposition 4.1, T contains a unique a-configuration, and D2,s(T ) is obtained

from T by removing
a

ā
· · · a

ā︸ ︷︷ ︸
m

.

Theorem 4.2. Let T ∈ T (s). Then D2,s(T ) satisfies Criterion 3.1, and is therefore a tableau
in

⊕s
k=0 B(k�2).

Proof: Condition 1 is satisfied since the relation ≤ on our alphabet is transitive.

Conditions 2 and 5 are automatically satisfied, since the columns that remain are not

changed. Condition 3 is satisfied since by Proposition 4.1, there can be no more than one

a-configuration in T . Condition 4 is satisfied since D2,s does not remove any columns of the

form n−1
n , n−1

n̄ , n
n−1

, or n̄
n−1

. �

In Proposition 4.5, we will show that D2,s is a bijection by constructing its inverse.

Example 4.3. We have

T = 1 2 3 3

4 2 2 1
, D2,4(T ) = 1 3 3

4 2 1
.

The inverse of D2,s is the height-two fill map F2,s :
⊕s

k=0 B(k�2) → T (s). Let t =
a1

b1
· · · ak

bk
∈ B(k�2). If k = s, F2,s(t) = t . If k < s, then F2,s(t) is obtained by finding a sub-

tableau ai

bi

ai+1

bi+1
in t such that

Criterion 4.4.

bi ≤ āi ≤ bi+1 or ai ≤ b̄i+1 ≤ ai+1.
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(Recall that ¯̄i = i for i ∈ {1, . . . , n}.) Note that the first pair of inequalities imply that ai

is unbarred, and the second pair of inequalities imply that bi+1 is barred. We may therefore

insert between columns i and i + 1 of t either the configuration
ai

āi
· · · ai

āi︸ ︷︷ ︸
s−k

or
b̄i+1

bi+1

· · · b̄i+1

bi+1︸ ︷︷ ︸
s−k

,

depending on which part of Criterion 4.4 is satisfied. We say that i is the filling location

of t . If no such subtableau exists, then F2,s will either append
ak

āk
· · · ak

āk︸ ︷︷ ︸
s−k

to the end of t , or

prepend
b̄1

b1

· · · b̄1

b1︸ ︷︷ ︸
s−k

to t . In these cases the filling locations are k and 0, respectively.

Proposition 4.5. The map F2,s is well-defined on
⊕s

i=0 B(i�2).

The proof of this proposition follows from the next three lemmas.

Lemma 4.6. Suppose that t ∈ ⊕s−1
k=0 B(k�2) has no subtableaux ai

bi

ai+1

bi+1
satisfying

Criterion 4.4. Then exactly one of either appending ak

āk
· · · ak

āk
or prepending b̄1

b1
· · · b̄1

b1
to t

will produce a tableau in T (s) \ B(s�2).

Proof: Suppose t = a1

b1
· · · ak

bk
∈ B(k�2) is as above for k < s. We will show that if prepend-

ing b̄1

b1
· · · b̄1

b1
to t does not produce a tableau in T (s) \ B(s�2), then appending ak

āk
· · · ak

āk
to

t will produce a tableau in T (s) \ B(s�2). There are two reasons we might not be able to

prepend b̄1

b1
· · · b̄1

b1
; b1 may be unbarred, or we may have a1 < b̄1.

First, suppose b1 is unbarred. If bk is also unbarred, then bk is certainly less than āk , so we

may append ak

āk
· · · ak

āk
to t . Hence, suppose that bk is barred. We will show that ak is unbarred

and āk > bk .

We know that t has a subtableau of the form ai

bi

ai+1

bi+1
such that bi is unbarred and bi+1 is

barred. It follows that ai is unbarred, and therefore āi > bi . Since ai

bi

ai+1

bi+1
does not satisfy

Criterion 4.4, this means that āi > bi+1, which is equivalent to b̄i+1 > ai . Once again ob-

serving that ai

bi

ai+1

bi+1
does not satisfy Criterion 4.4, this implies that b̄i+1 > ai+1; i.e., ai+1 is

unbarred, and āi+1 > bi+1.

We proceed with an inductive argument on i < j < k. Suppose that a j

b j

a j+1

b j+1
is a subtableau

of t such that b j and b j+1 are barred, a j is unbarred, and ā j > b j . By reasoning identical to

the above, we conclude that

ā j > b j+1 ⇒ b̄ j+1 > a j ⇒ b̄ j+1 > a j+1 ⇒ ā j+1 > b j+1, (10)

which once again means that a j+1 is unbarred.

This inductively shows that ak is unbarred and āk > bk , so we may append ak

āk
· · · ak

āk
to

t to get a tableau in T (s) \ B(s�2). By a symmetrical argument, we conclude that if ak is

barred, then we may prepend b̄1

b1
· · · b̄1

b1
to t .

Now, suppose that b1 is barred and b̄1 > a1. This means that a1 is unbarred and ā1 > b1,

so the induction carried out in equation 10 applies. It follows that ak is unbarred and āk > bk ,

so once again we may append ak

āk
· · · ak

āk
to t . Also, by a symmetrical argument, when ak is
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unbarred and bk > āk , we may prepend b̄1

b1
· · · b̄1

b1
to t . Thus, when no subtableau of t satisfy

Criterion 4.4, either appending ak

āk
· · · ak

āk
or prepending b̄1

b1
· · · b̄1

b1
to t will produce a tableau

in T (s) \ B(s�2). �

Lemma 4.7. Any tableau t = a1

b1
· · · ak

bk
∈ ⊕s−1

k=0 B(k�2) has no more than two filling loca-
tions. If it has two, they are consecutive integers, and this choice has no effect on F2,s(t).

Proof: Let 0 ≤ i∗ ≤ k be minimal such that i∗ is a filling location of t . First assume that

0 < i∗ < k. This implies the existence of a subtableau ai∗
bi∗

ai∗+1

bi∗+1
which satisfies Criterion 4.4.

Suppose that the first condition bi∗ ≤ āi∗ ≤ bi∗+1 of Criterion 4.4 is satisfied, and consider

whether i∗ + 1 can be a filling location. If bi∗+1 ≤ āi∗+1 ≤ bi∗+2, we have

bi∗+1 ≤ āi∗+1 ≤ āi∗ ≤ bi∗+1,

which implies that āi∗ = āi∗+1 = bi∗+1, so that t violates part 3 of Criterion 3.1. Similarly, if

ai∗+1 ≤ b̄i∗+2 ≤ ai∗+2, then we have

āi∗+1 ≤ āi∗ ≤ bi∗+1 ≤ bi∗+2 ≤ āi∗+1,

which also implies that āi∗ = āi∗+1 = bi∗+1, once again violating part 3 of Criterion 3.1. We

conclude that if i∗ is a filling location for which Criterion 4.4 is satisfied by bi∗ ≤ āi∗ ≤ bi∗+1,

then i∗ + 1 is not a filling location. Furthermore, this argument shows that ai∗+1 > ai∗ or

bi∗+1 > āi∗ . By the partial ordering on our alphabet, it follows that t has no other filling

locations.

Now, suppose for the filling location i∗, Criterion 4.4 is satisfied by ai∗ ≤ b̄i∗+1 ≤ ai∗+1.

The condition ai∗+1 ≤ b̄i∗+2 ≤ ai∗+2 for i∗ + 1 to be a filling location implies that

b̄i∗+2 ≤ b̄i∗+1 ≤ ai∗+1 ≤ b̄i∗+2,

which as above leads to a violation of part 3 of Criterion 3.1. However, i∗ + 1 may be a

filling location if Criterion 4.4 is satisfied by bi∗+1 ≤ āi∗+1 ≤ bi∗+2. Note that this inequal-

ity implies that ai∗+1 ≤ b̄i∗+1, which tells us that ai∗+1 = b̄i∗+1. Thus, choosing to insert
b̄i∗+1

bi∗+1
· · · b̄i∗+1

bi∗+1
between columns i∗ and i∗ + 1 or to insert ai∗+1

āi∗+1
· · · ai∗+1

āi∗+1
between columns

i∗ + 1 and i∗ + 2 does not change F2,s(t). Since i∗ + 1 is a filling location with Criterion 4.4

satisfied by bi∗ ≤ āi∗ ≤ bi∗+1, the preceding paragraph implies that there are no other filling

locations in t .
Finally, suppose that i∗ = 0 is a filling location for t ; i.e., b1 is barred, a1 is unbarred, and

b̄1 ≤ a1. If 1 is a filling location, Criterion 4.4 is satisfied by b1 ≤ ā1 ≤ b2; otherwise, part 3

of Criterion 3.1 is violated. Put together, this means that ā1 = b1, so prepending b̄1

b1
· · · b̄1

b1

to t and inserting a1

ā1
· · · a1

ā1
between columns 1 and 2 results in the same tableau. As in the

above cases, part 3 of Criterion 3.1 and the partial order on the alphabet prohibit any other

filling locations. �

Example 4.8. Let s = 4. Then

t = 1 2 3

4 2 1
, F2,4(t) = 1 2 2 3

4 2 2 1
.
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While we could choose either column two or column three as the filling location, either

choice results in the same tableau.

Lemma 4.9. If a filling location of t = a1

b1
· · · ak

bk
∈ ⊕s−1

i=0 B(i�2) satisfies Criterion 4.4 with
both inequalities, then F2,s(t) is independent of this choice.

Proof: Suppose that i∗ 
= 0, k is a filling location for t where both parts of Criterion 4.4 are

satisfied. This means that the subtableau ai∗
bi∗

ai∗+1

bi∗+1
satisfies both āi∗ ≤ bi∗+1 and ai∗ ≤ b̄i∗+1.

The latter of these implies that bi∗+1 ≤ āi∗ , so we have āi∗ = bi∗+1 and b̄i∗+1 = ai∗ . Thus,

filling with either ai∗
āi∗

· · · ai∗
āi∗

or b̄i∗+1

bi∗+1
· · · b̄i∗+1

bi∗+1
between columns i∗ and i∗ + 1 results in the

same tableau F2,s(t). �

Example 4.10. To illustrate, for

t = 2 3 3

4 2 1
we have F2,s(t) = 2 2 3 3

4 2 2 1
.

By identifying T (s) with
⊕s

i=0 B(i�2) via the maps D2,s and F2,s , we have defined

a Uq (Dn)-crystal with the decomposition (1), with vertices labeled by the 2 × s tableaux

of T (s). The action of the Kashiwara operators ẽi , f̃i for i ∈ {1, . . . , n} on this crystal is

defined in terms of the above bijection, given explicitly by

ẽi (T ) = F2,s(ẽi (D2,s(T )))

f̃i (T ) = F2,s( f̃i (D2,s(T ))),
(11)

for T ∈ T (s), where the ẽi and f̃i on the right are the standard Kashiwara operators on

Uq (Dn)-crystals [17]. In section 6 we will discuss the action of ẽ0 and f̃0 on T (s), which

will make T (s) into an affine crystal called B̃2,s .

Using the filling and dropping map we obtain a natural inclusion of T (s ′) into T (s) for

s ′ < s.

Definition 4.11. For s ′ < s, the map ϒ s
s ′ : T (s ′) ↪→ T (s) is defined by ϒ s

s ′ = F2,s ◦ D2,s ′ .

5. The branching component graph

The Dynkin diagram of D(1)
n has an automorphism interchanging the nodes 0 and 1, which

induces a map σ : B2,s → B2,s on the crystals such that ẽ0 = σ ẽ1σ and f̃0 = σ f̃1σ . With

this in mind, suppose we have defined f̃0 on T (s) to produce B̃2,s , and consider the following

operations on B̃2,s : Let K ⊂ I , and denote by BK the graph which results from removing

all k-colored edges from B̃2,s for k ∈ K . Then as directed graphs, we expect B{0} to be

isomorphic to B{1}; otherwise, B̃2,s and B2,s will not be isomorphic. We can gain some

information about σ by considering B{0,1}. The combinatorial structure of B{0,1} is encoded

in the branching component graph to be defined in this section.

The definition of σ relies on several sets of data, which will be defined in sections 5

and 6. For all k ≥ 0 there is a filtration of B(k�2) by subgraphs isomorphic to B(��2) for
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� ≤ k; this relates any classical component of B̃2,s to the other classical components. Once

this filtration is understood, we will see that the following data uniquely determine a vertex

b of B̃2,s :

(1) its classical component k in the direct sum
⊕s

k=0 B(k�2);

(2) its position � in the filtration B(k�2) ⊃ · · · ⊃ B(��2) ⊃ · · · ⊃ B(0);

(3) the number of 1-arrows in a path to b from the highest weight vector of B(k�2);

(4) the Dn−1-highest weight λ of its connected component in B{0,1};
(5) its position b = f̃ vλ = f̃ m1

i1
f̃ m2

i2
· · · vλ in the Dn−1-crystal B(λ).

The involution σ has a very simple description in terms of these data. In fact, σ changes

only items (1) and (3), leaving the other data fixed.

5.1. Definitions and preliminary discussion

The connected components of B{0,1} are Uq (Dn−1)-crystals, indexed by partitions as de-

scribed in this section. The decomposition of B̃2,s into B{0,1} produces a branching compo-

nent graph for B̃2,s , which we denote BC(B̃2,s). The vertices of this graph correspond to

the connected Uq (Dn−1)-crystals; a vertex vλ is labeled (non-uniquely) by the partition λ

indicating the classical highest weight of the corresponding Uq (Dn−1)-crystal. The edges of

BC(B̃2,s) are defined by placing an edge from vλ to vμ if there is a tableau b ∈ B(vλ) such

that f̃1(b) ∈ B(vμ), where B(vλ) denotes the set of tableaux contained in the Uq (Dn−1)-

crystal indexed by vλ.

Note that it suffices to describe the decomposition of the component of B̃2,s with Uq (Dn)

highest weight k�2 into Uq (Dn−1)-crystals for any k ≥ 0, since

BC
(

s⊕
k=0

B(k�2)

)
=

s⊕
k=0

BC(B(k�2)).

Denote the branching component subgraph with classical highest weight k�2 by BC(k�2).

Since BC(k�2) is determined by the action of ẽi and f̃i on B(k�2) for i = 1, . . . , n, which

is in turn defined by composing the classical Kashiwara operators with D2,s and F2,s (see

equation (11)), it in fact suffices to determine the structure of BC(s�2) ⊂ BC(B̃2,s).

The branching component graph BC(s�2) is characterized by the following proposition.

We denote by vs the “highest weight” branching component vertex (that is to say the vertex

v such that the highest weight vector us of B(s�2) is in B(v)) of BC(s�2).

Proposition 5.1. The graph distance from vs defines a rank function on BC(s�2). This
graph has 2s + 1 ranks, and is symmetric as a non-directed graph over rank s. For j ≤ s,
the j th rank contains one of each partition λ = (λ1, λ2) ⊂ (s, j) such that |λ| = s − j + 2m
for some m ∈ Z≥0. For all ranks 0 ≤ j ≤ 2s − 1, a vertex vλ with rank j has an arrow to a
vertex vμ with rank j + 1 if and only if λ and μ are joined by an edge in Young’s lattice.

We begin by examining the first few ranks of BC(s�2) in detail, then show that this

proposition is true in general in sections 5.2 and 5.3.

The highest weight branching component vertex vs is indexed by the one-part partition

(s). To see that this is true, simply observe that the highest weight tableau of B(s�2) is
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1

2
· · · 1

2︸ ︷︷ ︸
s

, and acting by f̃2, . . . , f̃n in the most general possible way will affect only the

bottom row. When we map these bottom row subtableaux componentwise by a �→ a − 1

and ā �→ a − 1 to tableaux of shape (s), and apply the same map to the colors of the arrows,

this is clearly isomorphic to the Uq (Dn−1)-crystal with highest weight s�1.

Now, consider what can result from acting on a tableau T = a1

b1
· · · as

bs
in B(vs) by f̃1.

Since a1 = · · · = as = 1, this will turn as into a 2. There are two cases to consider: if bs = 2̄,

this results in a tableau with a configuration 2
2̄

at the right end (note that f̃i , ẽi for i =
2, . . . , n do not act on this subtableau); otherwise, it is a tableau with a1 = · · · = as−1 = 1

where some element of Uq (Dn−1) can act on the rightmost column. In either case, we can

act with ẽ2, . . . , ẽn to find a Uq (Dn−1) highest weight vector T ′ = a′
1

b′
1
· · · a′

s
b′

s
, where we have

b′
1 = · · · = b′

s−1 = 2; in the first case, we have b′
s = 2̄, in the other, we have b′

s = 3. Remove

those parts of these tableaux on which ẽi and f̃i for i = 2, . . . , n do not act; in both cases,

we remove a′
1, . . . , a′

s−1, and in the first case we also remove the 2
2̄

at the end. We then

have a skew tableau, which when rectified by Lecouvey D equivalence (or, since there are

no barred letters remaining, jeu de taquin), is either the tableau 2 · · · 2 of shape (s − 1), or

the tableau of shape (s, 1) with 2’s in the first row and a 3 in the second. We conclude that

there are two vertices of rank 1 in BC(s�2), corresponding to the partitions (s − 1) and

(s, 1).

Before we generalize this construction, we have a few technical remarks.

The number of 1-arrows in a minimal path in the crystal graph between the highest weight

tableau and a tableau T is the “α1-height” of T . Thus, the function

rs(v) = d(v, vs) = min
P(v,vs )

{number of edges in P(v, vs)}

where P(v, vs) is the set of all paths from v to vs in BC(s�2), is a rank function on BC(s�2).

Definition 5.2. A null-configuration of size k is

1

2̄
· · · 1

2̄

2

1̄
· · · 2

1̄︸ ︷︷ ︸
k

if k is even,

1

2̄
· · · 1

2̄

2

2̄

2

1̄
· · · 2

1̄︸ ︷︷ ︸
k

if k is odd,

where the number of 1’s equals the number of 1̄’s and the number of 2’s equals the number

of 2̄’s.

Null-configurations are named thus because ẽi and f̃i for i = 2, . . . , n send T to 0, where

T is the 2 × s tableau which is a null-configuration of size s. Therefore, T is the basis

vector for the trivial representation of Uq (Dn−1) in BC(s�2). Put another way, inserting a

null-configuration into a tableau T has no effect on εi (T ) or ϕi (T ) for i = 2, . . . , n. This

generalizes the phenomenon we observed in the case of 2
2̄
.
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5.2. Content of rank j

We now characterize the partitions occuring in any rank 0 ≤ j ≤ s of the branching compo-

nent graph. (Ranks greater than s will be defined by the ∗-duality of the crystal as defined

in section 3.3.) We defer the discussion of the edges of the branching component graph to

section 5.3.

Let T ∈ B(s�2). We wish to determine the vertex vλ of BC(s�2) for which T ∈ B(vλ),

and also to determine rs(vλ). As demonstrated for ranks 0 and 1 above, determine the parts

of T on which ẽi and f̃i for i = 2, . . . , n do not act: this will be a null-configuration of size

r2 (possibly of size 0), r1 many 1’s in the first row before the null-configuration, and r3 many

1̄’s in the second row after the null-configuration. We can extract from these data the pair

(t1, t2) = (r1 + r2, r2 + r3), (12)

where t1, t2 ≤ s. By observing the number of times 1 appears in a sequence i1, . . . , i p such

that the highest weight vector of B(s�2) is us = ẽi1
. . . ẽi p T , it is easily seen that rs(vλ) =

s − t1 + t2.

Consider the set J of tableaux such that s − t1 + t2 = j ≤ s. We wish to determine the

partitions λ such that T ∈ J are in a Uq (Dn−1)-crystal with highest weight specified by λ.

First, note that |λ| = 2s − t1 − t2, since this is precisely the number of boxes where ẽi and

f̃i for i = 2, . . . , n act non-trivially. It follows that |λ| = s + j − 2t2, so |λ| ≡ s + j (mod

2), and since t2 ranges from 0 to j , we have s − j ≤ |λ| ≤ s + j . Based on the definition

of ẽi and f̃i given in section 3.2, it is clear that other than the t1 + t2 boxes with 1’s, 1̄’s,

and the null-configuration, a Uq (Dn−1)-highest weight tableau must have only 2’s and 3’s.

We may remove the irrelevant t1 + t2 boxes from T resulting in a skew tableau T #. All

the letters in T # are unbarred, so the Lecouvey relations applied to wT # yield the column

word of the rectification of T # (we call this rectified tableau the completely reduced form

of T ), whose shape has no more than two parts. Let I ⊂ J be the set of Uq (Dn−1)-highest

weight tableaux with specified values for t1 and t2. Then I includes tableaux where the

number of 2’s ranges from s − t2 up to min(2s − t1 − t2, s), and the number of 3’s ranges

simultaneously from s − t1 down to max(0, s − t1 − t2). The algorithm described above can

therefore produce a tableau of any shape λ with two parts such that |λ| = 2s − t1 − t2, λ1 ≤
s, and λ2 ≤ s − t1 = j − t2. By properties of the plactic monoid, no two Uq (Dn−1)-highest

weight tableaux in J correspond to the same partition.

To summarize: In rank j ≤ s of BC(s�2), the vertices correspond exactly to partitions

λ = (λ1, λ2) ⊂ (s, j) such that |λ| = s − j + 2m for some m ∈ Z≥0.

By the ∗-symmetry of B(s�2) as described in section 3.3, it is clear that the Uq (Dn−1)-

crystals of rank j are the same as the Uq (Dn−1)-crystals of rank 2s − j . This completely

characterizes the vertices of BC(s�2) by rank, and leads us to the following remark.

Remark 5.3. If we consider the embedding Uq (Dn−1) ↪→ Uq (Dn) as implicitly described

above, and think of the action of e1, f1 ∈ Uq (Dn) as specifying a rank function on the em-

bedded Uq (Dn−1)-modules in a given Uq (Dn)-module with highest weight s�2, this pro-

vides a combinatorial proof that the ranks are multiplicity-free.

5.3. Edges of BC(s�2)

We must now confirm that the pairs of vertices which have an arrow between them are

precisely those vλ and vμ such that rs(vλ) = j and rs(vμ) = j + 1 for some 0 ≤ j ≤ 2s − 1,
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and for which λ and μ are adjacent in Young’s lattice, that is, μ is obtained from λ by either

adding or removing a box. To do this, we will construct tableaux in B(vλ) such that the

shape of the completely reduced form of their image under f̃1 is the result of adding a box

to λ. The question of removing boxes from λ then is simply a matter of appealing to the

∗-symmetry of the crystal graph as described in section 3.3.

Our analysis breaks into two cases, where our tableau T ∈ B(vλ) may be of one of the

following two forms:

(1)

T = 1

b1

· · · · · · 1

br1︸ ︷︷ ︸
r1

1

2̄
· · · 1

2̄

(
2

2̄

)
2

1̄
· · · 2

1̄︸ ︷︷ ︸
r2

as−r3+1

1̄
· · · as

1̄︸ ︷︷ ︸
r3

,

(2)

T = 1

b1

· · · 1

br1︸ ︷︷ ︸
r1

ar1+1

br1+1

· · · as−r3

bs−r3︸ ︷︷ ︸
u=s−r1−r3

as−r3+1

1̄
· · · as

1̄︸ ︷︷ ︸
r3

,

where in case (1), the block of length r2 is a maximal null-configuration, and in case (2),

ar1+1 
= 1 and bs−r3

= 1̄ (we set r2 = 0 here). We now determine for which partitions μ we

can have f̃1(T ) ∈ B(vμ). Recall from the previous subsection that for T ∈ B(vλ), we defined

T # to be the skew tableau which results from removing all 1’s, 1̄’s, and null-configurations

from T . Observe that

wT # =
{

b1 · · · br1
as−r3+1 · · · as for case (1)

b1 · · · br1
br1+1ar1+1 · · · bs−r3

as−r3
as−r3+1 · · · as for case (2).

In either case, if br1
= 2̄, the size of the null-configuration in f̃1(T ) is r2 + 1, since in

case (1) f̃1 acts on the middle of the null-configuration, and in case (2) f̃1 acts on ar1
= 1. It

follows that w f̃1(T )# is simply wT # with the 2̄ contributed by br1
removed. If br1


= 2̄, we see

that w f̃1(T )# is wT # with a 2 inserted from as−r3
in case (1), and from ar1

in case (2). Since

we are currently concerned with adding boxes to λ, let us assume that br1

= 2̄, and analyze

how inserting a 2 as above affects the shape of the rectifications of these words.

Our augmented words are

w f̃1(T )# =
{

b1 · · · br1
2 as−r3+1 · · · as for case (1)

b1 · · · br1
2 br1+1ar1+1 · · · bs−r3

as−r3
as−r3+1 · · · as for case (2).

(13)

Recall that we have assumed that br1

= 2̄, which in turn implies that all letters b1, . . . , br1

are strictly less than 2̄. Using relation (1) of Lecouvey type D equivalence, we may therefore

move the 2 from position ar1
to the second position in the word. This new word begins b12b2,

with b2 > 2. Since we may view all the plactic operations on this word as sliding moves,

the subword b2 · · · as can be rectified to give a tableau with no more than two rows. Thus,

all we have done is added one box to our shape.
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We now show that this process can add a box to the top row of λ unless λ1 = s, and it

can add a box to the bottom row unless λ2 = λ1. In the Uq (Dn−1)-crystal B(vλ), we know

that there is a Uq (Dn−1) highest weight tableau Tλ of the form

Tλ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2
· · · 1

2︸ ︷︷ ︸
r1−λ2

1

3
· · · 1

3︸ ︷︷ ︸
λ2

1

2̄
· · · 1

2̄

(
2

2̄

)
2

1̄
· · · 2

1̄︸ ︷︷ ︸
r2

2

1̄
· · · 2

1̄︸ ︷︷ ︸
r3

for case (1)

1

2
· · · 1

2︸ ︷︷ ︸
r1−(λ2−u)

1

3
· · · 1

3︸ ︷︷ ︸
λ2−u

2

3
· · · 2

3︸ ︷︷ ︸
u

2

1̄
· · · 2

1̄︸ ︷︷ ︸
r3

for case (2).

Note that in case (1) we have λ2 ≤ r3 and in case (2) we have λ2 − u ≤ r3; otherwise, acting

by ẽ2 can turn another 3 into a 2.

These tableaux yield the words

wT #
λ

=

⎧⎪⎪⎨⎪⎪⎩
2 · · · 2︸ ︷︷ ︸
r1−λ2

3 · · · 3︸ ︷︷ ︸
λ2

2 · · · 2︸ ︷︷ ︸
r3

for case (1)

2 · · · 2︸ ︷︷ ︸
r1−(λ2−u)

3 · · · 3︸ ︷︷ ︸
λ2−u

32 · · · 32︸ ︷︷ ︸
2u

2 · · · 2︸ ︷︷ ︸
r3

for case (2).

The completely reduced form of these tableaux is a two-row tableau with r1 + r3 − λ2 2’s

in the top row and λ2 3’s in the bottom row, or 2u + r1 + r3 − λ2 2’s in the top row and λ2

3’s in the bottom row, respectively. It is easy to see that by adding a 2 to wT # as in (13), we

simply add a box containing a 2 to the top row of the completely reduced form of Tλ. Note

that this procedure fails precisely when Tλ can have no 2’s added to it, in which case there

are s 2’s in Tλ, and thus λ1 = s.

Now suppose that λ1 − λ2 > 0, so that adding a box to the second row will produce a

legal diagram. Consider T̃λ = f̃ λ1−λ2

2 (Tλ) (note that λ1 is the number of 2’s in Tλ). This

tableau is in B(vλ), so its completely reduced form has shape λ, and we see that

wT̃ #
λ

=

⎧⎪⎪⎨⎪⎪⎩
3 · · · 3︸ ︷︷ ︸
|λ|−r3

2 · · · 2︸ ︷︷ ︸
λ2

3 · · · 3︸ ︷︷ ︸
r3−λ2

for case (1)

3 · · · 3︸ ︷︷ ︸
|λ|−r3−2u

32 · · · 32︸ ︷︷ ︸
2u

2 · · · 2︸ ︷︷ ︸
λ2−u

3 · · · 3︸ ︷︷ ︸
r3−λ2+u

for case (2).

The rectified tableau has λ2 2’s followed by λ1 − λ2 3’s in the top row, and λ2 3’s in the

bottom row. From this description, we see that adding a 2 to wT̃ #
λ

as in (13) affects the

completely reduced tableau by preventing one of the 3’s from the bottom row from being

slid up to the top row; i.e., λ2 is increased by 1. Since we add only one box at a time and

the only shape in rank 0 is (s, 0), we know that the number of boxes in the second row can

never exceed the rank.

We now invoke the ∗-duality of the crystal graph to deal with how boxes can be removed

from λ. If vλ ∈ BC(s�2) has rank p, there is a unique vertex v′
λ, called the complementary

vertex of vλ, with rank 2s − p for which the corresponding Uq (Dn−1)-crystal is B(λ). This

involution agrees with the ∗-crystal involution of section 3.3. We wish to show that there is

an arrow from vλ to vμ, where λ/μ is a single box and rs(vμ) = rs(vλ) + 1. Recall that by

definition, this is the case when for some T ∈ B(vλ) we have f̃1(T ) ∈ B(vμ). Observe that

rs(v′
λ) = rs(v′

μ) + 1, and λ is the result of adding a box to μ; therefore, there is an arrow from
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Fig. 1 Branching component graph BC(B̃2,2)

v′
μ to v′

λ. It follows that we can find some T ∈ B(v′
μ) such that f̃1(T ) ∈ B(v′

λ). In turn, we

have T ∗ ∈ B(vμ) and ( f̃1(T ))∗ = ẽ1(T ∗) ∈ B(vλ). Since we know that f̃1(ẽ1(T ∗)) = T ∗ ∈
B(vμ), we have shown that there is an arrow from vλ to vμ.

The arguments of sections 5.2 and 5.3 prove Proposition 5.1.

5.4. Construction of BC(B̃2,s)

Observe that BC(B̃2,s) = ⋃s
i=0 BC(i�2). Let vλ ∈ BC(i�2) ⊂ BC(B̃2,s). Define R(vλ) =

ri (vλ) + s − i . This defines a rank on all of BC(B̃2,s). Note that BC(i�2) ⊂ BC((i + 1)�2),

and this inclusion is compatible with R. Also note that if R(vλ) = p, then v′
λ, the comple-

mentary vertex to vλ, is now defined to be the vertex of rank 2s − p with the same shape

and in the same component as vλ.

To illustrate, BC(B̃2,2) is given in Fig. 1, with rank 0 in the first line, rank 1 in the second,

etc.

6. Affine Kashiwara operators

Since we know that B{0} and B{1} are isomorphic as directed graphs, it is clear that we can

put 0-colored edges in the branching component graph in such a way that interchanging the

1-edges and the 0-edges and applying some shape-preserving bijection σ̌ to the vertices of

the branching component graph will produce an isomorphic colored directed graph. Such a

bijection can be naturally extended to σ : B̃2,s → B̃2,s as follows. Let b ∈ B(vλ) ⊂ B̃2,s for

some branching component vertex vλ, and let uλ denote the Uq (Dn−1)-highest weight vector

of B(vλ). Then for some finite sequence i1, . . . , ik of integers in {2, . . . , n}, we know that

f̃i1
· · · f̃ik uλ = b. Let v

†
λ = σ̌ (vλ), and let u†

λ be the highest weight vector of B(v
†
λ). We may

define σ (b) = f̃i1
· · · f̃ik u†

λ. This involution of B̃2,s allows us to define the affine structure of

the crystal by the following equations:

f̃0 = σ f̃1σ and ẽ0 = σ ẽ1σ. (14)

Definition 6.1. The affine crystal B̃2,s is given by the set T (s) as defined in section 4 with

ẽi , f̃i for 1 ≤ i ≤ n as in (11) and ẽ0, f̃0 as in (14).
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Fig. 2 Definition of σ̌ on BC(B̃2,2)

Using σ̌ as defined in section 6.1, it will be shown in section 7 that the resulting U ′
q (D(1)

n )-

crystal B̃2,s is perfect.

6.1. Construction of σ̌

We will define σ̌ (vλ) for R(vλ) ≤ s, and observe that σ̌ (v′
λ) = σ̌ (vλ)′, where v′ denotes the

complementary vertex of v. Let vλ ∈ BC(k�2), R(vλ) = p, and � be minimal such that

ι̌sk(vλ) ∈ ι̌s�(BC(��2)), where ι̌
j
i is the embedding of BC(i�2) in BC( j�2) for i < j . Then by

the inclusion BC(i�2) ⊂ BC((i + 1)�2) for i = 0, . . . , s − 1, there are s − � + 1 vertices

of the same shape as vλ of rank p in BC(B̃2,s), one in each BC( j�2) for j = �, . . . , s.

We define σ̌ (vλ) to be the vertex of the same shape as vλ of rank 2s − p in the component

BC((s + � − k)�2).

The action of σ̌ on BC(B̃2,2) is given in Fig. 2.

6.2. Combinatorial construction of σ

We can also give a direct combinatorial description of σ (T ) for any T ∈ B̃2,s . As an aux-

illiary construction (which will also be useful in its own right later on), we combina-

torially describe ι
j
i : B(i�2) ↪→ B( j�2), the unique crystal embedding that agrees with

ι̌
j
i : BC(i�2) ↪→ BC( j�2).

Remark 6.2. It will often be useful to identify B(k�2) with its image in B̃2,s . We will use

the notation T ∈ B(k�2) ⊂ B̃2,s to indicate this identification.

Let i ∈ {0, . . . , s − 1}, so ιi+1
i denotes the embedding of B(i�2) in B((i + 1)�2). Let

T ∈ B(i�2) ⊂ B̃2,s . This embedding can be combinatorially understood through the fol-

lowing observations:

Remark 6.3.� ϕk(T ) = ϕk(ιi+1
i (T )) and εk(T ) = εk(ιi+1

i (T )) for k = 2, . . . , n;� D2,s(ιi+1
i (T )) has one more column than D2,s(T ) (recall D2,s from section 4);
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R(v(ιi+1

i (T ))), so the rank of v(ιi+1
i (T )) in BC((i + 1)�2) is one greater than the rank

of v(T ) in BC(i�2).

In other words, we know that T has a maximal a-configuration of size s − i (section 4),

and has completely reduced form T # (section 5). Furthermore, let r1T be the number of 1’s in

the first row of D2,s(T ) to the left of a null-configuration, and similarly define r2T , r3T , t1T ,

and t2T as in (12). Then the rank of v(T ) in BC(i�2) is i − t1T + t2T . We wish to construct

a tableau S with an a-configuration of size s − i − 1 such that S# = T # and (i + 1) − t1S +
t2S = (i − t1T + t2T ) + 1; i.e., t1S − t2S = t1T − t2T . Based on properties of the height 2

type D sliding algorithm of section 3.4, these conditions can only be satisfied when

t j S = t jT + 1 for j = 1, 2.

We can calculate ιi+1
i (T ) by the following algorithm:

Algorithm 6.4.

(1) Remove the a-configuration of size s − i from T and slide it to get a 2 × i tableau.

(2) Remove the 1’s, 1̄’s and the null-configuration from the result to get a skew tableau of

shape (i, i − t2T )/(t1T ).

(3) Using the type D sliding algorithm, produce a skew tableau of shape ((i + 1), (i + 1) −
(t2T + 1))/(t1T + 1).

(4) Fill this tableau with 1’s, 1̄’s, and a null-configuration so that the result is a 2 × (i + 1)

tableau.

(5) Use the height 2 fill map F2,s (section 4) to insert s − i − 1 columns into the tableau.

This produces the unique tableau satisfying the three properties of Remark 6.3.

Example 6.5. Let

T = 1 1 2 2 2 3̄ 2̄

2 2 3 2̄ 2̄ 2̄ 1̄
∈ B(5�2) ⊂ B̃2,7.

Running through the steps of our algorithm (using relation (2) of section 3.4 for step (3))

gives us

(1)
1 1 2 3̄ 2̄

2 2 3 2̄ 1̄

(2) 2 3̄ 2̄

2 2 3 2̄

(3)
3 3̄ 2̄

2 2 3 3̄

(4)
1 1 1 3 3̄ 2̄

2 2 3 3̄ 1̄ 1̄
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(5) ι65(T ) = 1 1 1 3 3 3̄ 2̄

2 2 3 3̄ 3̄ 1̄ 1̄
∈ B(6�2) ⊂ B̃2,7.

Composing these maps gives us the following algorithm for calculating ι
j
i (T ), where

T ∈ B(i�2) and s ≥ j > i .

Algorithm 6.6.

(1) Remove the a-configuration of size s − i from T and slide it to get a 2 × i tableau.

(2) Remove the 1’s, 1̄’s and the null-configuration from the result to get a skew tableau of

shape (i, i − t2T )/(t1T ).

(3) Using the type D sliding algorithm, produce a skew tableau of shape (( j), ( j) − (t2T +
( j − i)))/(t1T + ( j − i)).

(4) Fill this tableau with 1’s, 1̄’s, and a null-configuration so that the result is a 2 × j tableau.

(5) Use the height 2 fill map F2,s (section 4) to insert s − j columns into the tableau.

We can also define a map ι
j
i : B(i�2) → B( j�2) ∪ {0} for j < i by

ι
j
i (T ) =

{
(ιij )

−1(T ) if T ∈ ιij (B( j�2)),

0 otherwise .

Reversing the above algorithm makes this map explicit. Lastly, we define ιii to be the identity

map on B(i�2), so ι
j
i is defined for all i, j ∈ {0, . . . , s}.

We have already observed that by the ∗-duality of B(k�2) ⊂ B̃2,s , each vertex vλ ∈
B(k�2) has a complementary vertex v′

λ ∈ B(k�2) such that R(vλ) + R(v′
λ) = 2s. We de-

fine the involution ∗BC on B̃2,s as follows: Let T ∈ B(vλ) such that T = f̃i1
· · · f̃im uλ, where

uλ is the Uq (Dn−1)-highest weight tableau of B(vλ). Then T ∗BC = f̃i1
· · · f̃im u′

λ, where u′
λ

is the Uq (Dn−1)-highest weight tableau of B(v′
λ). Alternatively, this map is the composi-

tion of ∗ with the “local ∗” map, which applies only to the tableaux in B(vλ) viewed as a

Uq (Dn−1)-crystal.

We now define σ (T ) combinatorially. Suppose T ∈ B(k�2) ⊂ B̃2,s , and let � be minimal

such that ιsk(T ) ∈ ιs�(B(��2)). Then

σ (T ) = ιs+�−k
k (T ∗BC ) = (ιs+�−k

k (T ))∗BC , (15)

where it was used that ι
j
i commutes with ∗BC .

6.3. Properties of f̃0 and ẽ0

This combinatorial approach immediately gives us useful information about this crystal,

such as the following lemma.

Lemma 6.7. For k = 0, 1, . . . , s, let uk denote the highest weight vector of the classical
component B(k�2) ⊂ B̃2,s . Then

f̃0(uk) =
{

uk+1 if k < s,

0 if k = s.
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Proof: Observe that

uk = 1

2
· · · 1

2︸ ︷︷ ︸
k

1

1̄
· · · 1

1̄︸ ︷︷ ︸
s−k

;

We wish to calculate f̃0(uk) = σ f̃1σ (uk).

Note that uk /∈ ιkk−1(B((k − 1)�2)), so � = k in the combinatorial definition of σ above.

It follows that σ (uk) = ιsk(u∗BC
k ), which is

ιsk(u∗BC
k ) = ιsk

(
1

1̄
· · · 1

1̄︸ ︷︷ ︸
s−k

2

1̄
· · · 2

1̄︸ ︷︷ ︸
k

)
= ∅s−k

2

1̄
· · · 2

1̄︸ ︷︷ ︸
k

,

where ∅i denotes a null-configuration of size i (see Definition 5.2). If k = s, f̃1 kills this

tableau, as claimed in the second case of the lemma. Otherwise, acting by f̃1 will decrease

the size of the null-configuration by 1 and add another 2
1̄

to the columns on the right. It

follows that ιks kills this tableau, but ιk+1
s does not, so now � = k + 1 in the combinatorial

definition of σ . Thus,

σ f̃1σ (uk) = ιk+1
s

(
1

2
· · · 1

2︸ ︷︷ ︸
k+1

∅s−k−1

)
= 1

2
· · · 1

2︸ ︷︷ ︸
k+1

1

1̄
· · · 1

1̄︸ ︷︷ ︸
s−k−1

= uk+1.

�

Corollary 6.8. Let uk be as above for k > 0. Then

ẽ0(uk) = uk−1.

A similar combinatorial analysis can be carried out on lowest weight tableaux to show

that f̃0(u∗
k ) = u∗

k−1 and ẽ0(u∗
k ) = u∗

k+1 for appropriate values of k. Since u0 = u∗
0, this gives

us the following corollary:

Corollary 6.9. For highest weight vectors uk and lowest weight vectors u∗
k , we have

ϕ0(uk) = ε0(u∗
k ) = s − k and ϕ0(u∗

k ) = ε0(uk) = s + k

7. Perfectness of B̃2,s

7.1. Overview

To show that B̃2,s is perfect, it must be shown that all criteria of Definition 2.1 are satisfied

with � = s. We have taken part 3 of Definition 2.1 as part of our hypothesis for Theorem 1.1,

so we do not attempt to prove this here.
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Part 2 of Definition 2.1 is satisfied by simply noting that λ = �2 = s�2 − 2s�0 is a

weight in Pcl such that Bλ = {us} contains only one tableau and all other tableaux in B̃2,s

have “lower” weights.

In section 7.2, we show that B̃2,s ⊗ B̃2,s is connected proving part 1 of Definition 2.1.

Parts 4 and 5 of Definition 2.1 will be dealt with simultaneously in sections 7.4 and 7.5

by examining the levels of tableaux combinatorially. We will see that the level of a generic

tableau is at least s and the tableaux of level s are in bijection with the level s weights.

In section 7.6 we show that B̃2,s is the unique affine crystal satsifying the properties of

Conjecture 3.4 thereby proving Theorem 1.1.

7.2. Connectedness of B̃2,s

Lemma 7.1 (Part 1 of Definition 2.1). The crystal B̃2,s ⊗ B̃2,s is connected.

Proof: (This proof is very similar to that in [18, Proposition 5.1].) For k = 0, 1, . . . , s,

let uk denote the highest weight vector of the classical component B(k�2) ⊂ B̃2,s , as in

Lemma 6.7. We will show that an arbitrary vertex b ⊗ b′ ∈ B̃2,s ⊗ B̃2,s is connected to u0 ⊗
u0.

We know that for some j ∈ {0, . . . , s}, we have b′ ∈ B( j�2). Then for some pair of

sequences i1, i2, . . . , i p (with entries in {1, . . . , n}) and m1, m2, . . . , m p (with entries in

Z>0) and some b1 ∈ B̃2,s , we have ẽm1

i1
ẽm2

i2
· · · ẽ

m p

i p
(b ⊗ b′) = b1 ⊗ u j .

By Corollary 6.9, ϕ0(u j ) = s − j , so if ε0(b1) ≤ s − j , Lemma 6.7 tells us that ẽ j
0(b1 ⊗

u j ) = b1 ⊗ u0. If ε0(b1) = r > s − j , then ẽr−s+ j
0 (b1 ⊗ u j ) = b2 ⊗ u j , where ε0(b2) =

r − (r − s + j) = s − j , so ẽ j
0(b2 ⊗ u j ) = b2 ⊗ u0. In either case, our arbitrary b ⊗ b′ is

connected to an element of the form b′′ ⊗ u0.

Let j ′ be such that b′′ ∈ B( j ′�2). Since u0 is the unique element of B(0), the crystal for

the trivial representation of Uq (Dn), we know that B( j ′�2) ⊗ B(0) � B( j ′�2). Therefore,

b′′ ⊗ u0 is connected to u j ′ ⊗ u0. Finally, we note that ϕ0(u0) = s < s + j ′ = ε0(u j ′ ) for

j ′ 
= 0, so ẽ j ′
0 (u j ′ ⊗ u0) = ẽ j ′

0 (u j ′ ) ⊗ u0 = u0 ⊗ u0, completing the proof. �

7.3. Preliminary observations

We first make a few observations.

Proposition 7.2. Let T ∈ B(k�2) ⊂ B̃2,s , and set Tm = ιmk (T ) for m = s, s − 1, . . . , �,
where � is minimal such that ι�k(T ) 
= 0. If � 
= s, we have for s > m ≥ �

ε1(Tm+1) = ε1(Tm) + 1 and ε0(Tm+1) = ε0(Tm) − 1,

ϕ1(Tm+1) = ϕ1(Tm) + 1 and ϕ0(Tm+1) = ϕ0(Tm) − 1.

Proof: Let � ≤ m ≤ s − 1, so ιm+1
m is defined. We first consider the difference between the

reduced 1-signatures of D2,s(Tm) and D2,s(Tm+1) = D2,s(ιm+1
m (Tm)), since the action of ẽ1

on these tableaux is defined by the action of the classical ẽ1 on their image under D2,s .

Let −M+P be the reduced 1-signature of D2,s(Tm). As in section 5.3, let r1 denote the

number of 1’s in D2,s(Tm), r3 the number of 1̄’s, r2 the size of the null-configuration, and

t1 = r1 + r2, t2 = r2 + r3. Then there is a contribution −r2+r2 to the 1-signature from the
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null-configuration, and the remaining −’s and +’s come from 1’s with a letter greater than

2 below them and 1̄’s with a letter less than 2̄ above them, respectively.

We now have two cases, as in section 5.3. If t1 + t2 ≥ s, ιm+1
m simply increases the size of

the null-configuration in D2,s(Tm) by 1. It follows that the reduced 1-signature of D2,s(Tm+1)

is −M+1+P+1, as we wished to show. On the other hand, if t1 + t2 < s, after step (2) of

Algorithm 6.4 for ιm+1
m we have a tableau of shape (m, m − r3)/(r1). In step (3), we slide this

into shape (m + 1, m + 1 − (r3 + 1))/(r1 + 1). We claim that the rightmost “uncovered”

letter in the second row of this tableau is greater than 2 and the leftmost “unsupported”

letter in the first row is less than 2̄. As observed in the preceding paragraph, this implies that

after refilling the empty spaces as in step (4) of Algorithm 6.4 the reduced 1-signature of our

tableau is −M+1+P+1 in this case as well.

Let us first consider the leftmost “unsupported” letter. After step (2), our tableau is of the

form

ar1+1 · · · am−r3
am−r3+1 · · · as

b1 · · · br1
br1+1 · · · bm−r3

and its column word is unchanged by the slide

ar1+1 · · · am−r3
am−r3+1 · · · as

b1 · · · br1
br1+1 · · · bm−r3

,

so we have am−r3
< bm−r3

≤ 2̄.

The second row of this tableau has m − r3 boxes just as it did before sliding, so the boxes

in the bottom row will never be moved. It follows that this sliding procedure only changes

L-shaped subtableaux into

�

-shapes (i.e., into ) and never involves any �- or

L

-shapes. According to the Lecouvey D-equivalence relations from section 3.4, such moves

can only be made when the letters in the bottom row are strictly greater than 2. Specifically,

in relations (3) and (4), the letter which is “uncovered” is either n or n̄, while in relations

(1) and (2) only the second case of each relation applies. This proves our claim, and thus the

first half of the proposition.

Since ẽ0 = σ ◦ ẽ1 ◦ σ , we can derive the statements about ε0 and ϕ0 from the correspond-

ing statements about ε1 and ϕ1. More precisely, ε0(T ) = ε1(σ (T )) and ϕ0(T ) = ϕ1(σ (T ))

and by (15) we have

σ (Tm) = (
ιs+�−m
m ◦ ιmk (T )

)∗BC = ιs+�−m
k (T ∗BC ).

Hence

ε0(Tm+1) = ε1(σ (Tm+1)) = ε1(ιs+�−m−1
k (T ∗BC ))

= ε1(ιs+�−m
k (T ∗BC )) − 1 = ε1(σ (Tm)) − 1 = ε0(Tm) − 1.

A similar computation can be carried out for ϕ0. �
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Corollary 7.3. Given the above hypotheses, we have

〈h0 + h1, ε(Ts)〉 = 〈h0 + h1, ε(Ts−1)〉 = · · · = 〈h0 + h1, ε(T�)〉 
= 0.

The following observation is an immediate consequence of Remark 6.3:

Corollary 7.4. For i = 2, . . . , n,

〈hi , ε(Ts)〉 = 〈hi , ε(Ts−1)〉 = · · · = 〈hi , ε(T�)〉.

Lemma 7.5. The map ϒ s
s−1 : T (s − 1) ↪→ T (s) viewed as sending the set underlying

B̃2,s−1 into the set underlying B̃2,s increases the level of a tableau by exactly 1.

Proof: This map is defined by sending each summand B(k�2) ⊂ B̃2,s−1 to B(k�2) ⊂ B̃2,s

for k = 0, . . . , s − 1, so ϕi (ϒ
s
s−1(T )) = ϕi (T ) for i = 1, . . . , n. To calculate the change

in ϕ0(T ), we must consider the difference between ϕ1(σs−1(T )) and ϕ1(σs(ϒ s
s−1(T ))). By

our descriptions of maps on crystals, we have σs(ϒ s
s−1(T )) = ϒ s

s−1(ι
j+1
j (σs−1(T ))), where

j is determined by σs−1(T ) ∈ B( j�2) ⊂ B̃2,s−1. By Proposition 7.2, ϕ1(ι
j+1
j (σs−1(T ))) =

ϕ1(σs−1(T )) + 1. �

7.4. Surjectivity

Given a weight λ ∈ (P+
cl )s , we construct a tableau Tλ ∈ B̃2,s such that ε(Tλ) = ϕ(Tλ) = λ.

This amounts to constructing Tλ so that its reduced i-signature is −εi (Tλ)+εi (Tλ). Note that

such a tableau is invariant under the ∗-involution, so its symmetry allows us to define it

beginning with the middle, and proceeding outwards.

For i = 0, . . . , n, let ki = 〈hi , λ〉. We first construct a tableau Tλ′ corresponding to the

weight λ′ = ∑n
i=2 ki�i . We begin with the middle kn−1 + kn columns of Tλ′ . If kn−1 + kn is

even and kn ≥ kn−1, these columns of Tλ′ are

n − 2

n − 1
· · · n − 2

n − 1︸ ︷︷ ︸
kn−1

n − 1

n
· · · n − 1

n︸ ︷︷ ︸
(kn−kn−1)/2

n

n − 1
· · · n

n − 1︸ ︷︷ ︸
(kn−kn−1)/2

n − 1

n − 2
· · · n − 1

n − 2︸ ︷︷ ︸
kn−1

If kn−1 + kn is odd and kn ≥ kn−1, we have

n − 2

n − 1
· · · n − 2

n − 1︸ ︷︷ ︸
kn−1

n − 1

n
· · · n − 1

n︸ ︷︷ ︸
(kn−kn−1−1)/2

n̄

n

n

n − 1
· · · n

n − 1︸ ︷︷ ︸
(kn−kn−1−1)/2

n − 1

n − 2
· · · n − 1

n − 2︸ ︷︷ ︸
kn−1

In either case, if kn < kn−1, interchange n and n̄, and kn and kn−1 in the above configurations.

Next we put a configuration of the form

1

2
· · · 1

2︸ ︷︷ ︸
k2

2

3
· · · 2

3︸ ︷︷ ︸
k3

· · · n − 3

n − 2
· · · n − 3

n − 2︸ ︷︷ ︸
kn−2Springer



J Algebr Comb (2006) 23: 317–354 345

on the left, and a configuration of the form

n − 2

n − 3
· · · n − 2

n − 3︸ ︷︷ ︸
kn−2

n − 3

n − 4
· · · n − 3

n − 4︸ ︷︷ ︸
kn−3

· · · 2̄

1
· · · 2̄

1︸ ︷︷ ︸
k2

on the right. Denote the set of tableaux constructed by the procedure up to this point by

M(s ′).
Observe that the reduced 1-signature of Tλ′ is empty, so 〈h1, ϕ(Tλ′ )〉 = 0. Furthermore,

since λ′ has the same number of 1’s as 1̄’s, it is fixed by σ , so 〈h0, ϕ(Tλ′ )〉 = 0 as well. Thus

Proposition 7.2 implies that Tλ′ ∈ B̃2,s
min ∩ B(s ′�2) \ ιs

′
s ′−1(B((s ′ − 1)�2)) as a subset of B̃2,s ′

.

Recall the embedding ϒ s
s ′ : B̃2,s ′

↪→ B̃2,s from Definition 4.11. Since s ′ is the minimal m
for which ιms ′ (Tλ′ ) 
= 0, Lemma 7.5 and its proof tell us that ε0(F2,s(Tλ′ )) = s − s ′, where

the fill map F2,s inserts an a-configuration to increase the width of Tλ′ to s. By the same

proposition the desired tableau is Tλ = ι
s ′+k1

s ′ ◦ F2,s(Tλ′ ). We denote by Mmin(s) the set of

tableaux constructed by this procedure.

7.5. Injectivity

In this subsection we show that the tableaux in Mmin(s) are all the minimal tableaux in

B̃2,s .

We first introduce some useful notation. Observe that any tableau T can be written as

T = T1T2T3T4T5, where the block Ti has width ki , and all letters in T1 (resp. T5) are unbarred

or n̄ in the second row (resp. barred or n in the first row), all columns in T2 (resp. T4) are

of the form a
b̄ where a < b ≤ n − 1 (resp. b < a ≤ n − 1), and all columns in T3 are of the

form a
ā for some a. Note that for a tableau in B(s�2) ⊂ B̃2,s we have 0 ≤ k3 ≤ 1. Also note

that T2 and T4 do not contain any n’s or n̄’s.

Theorem 7.6. We have Mmin(s) = B̃2,s
min.

Proof: We prove the theorem by induction on s. For the base case, we checked explicitly

that the statement of the theorem is true for s = 0, 1, 2.

By our induction hypothesis, Mmin(s − 1) = B̃2,s−1
min . By Lemma 7.5, ϒ s

s−1 increases the

level of a tableau by 1, and therefore ϒ s
s−1(B̃2,s−1

min ) = (B̃2,s \ B(s�2))min. By Corollaries 7.3

and 7.4, ιss−1 does not change the level of a tableau, so it suffices to show that

M(s) = B̃2,s
min ∩ (B(s�2) \ ιss−1(B((s − 1)�2))). (16)

By Lemmas 7.8 and 7.9 below, if T is a minimal tableau not in the image of ιss−1, it

has k2 = k4 = 0, and if k3 = 1, then T3 = n
n̄ or T3 = n̄

n . By Lemma 7.10, equation (16)

follows. �

Here we state the lemmas used in the proof of Theorem 7.6. The proofs are given in

Appendices A–D and together with Theorem 7.6 all rely on induction on s. The base cases

s = 0, 1, 2 have been checked explicitly.

Lemma 7.7. For all t ∈ B̃2,s we have 〈c, ε(t)〉 ≥ s and 〈c, ϕ(t)〉 ≥ s.
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Lemma 7.8. If T ∈ (B̃2,s ∩ B(s�2))min, we have k1 + k2 = k4 + k5 = �s/2� with k1, k2, k4

and k5 as defined in the beginning of this subsection.

Lemma 7.9. Suppose T ∈ (B̃2,s ∩ B(s�2))min has both an unbarred letter and a barred
letter in a single column a

b̄ other than n
n̄ , n̄

n , n−1
n̄ , or n

n−1
. Then T ∈ ιss−1(B((s − 1)�2).

Lemma 7.10. Let T ∈ (B̃2,s ∩ B(s�2))min such that T does not contain any column a
b̄ for

1 ≤ a, b ≤ n except possibly n−1
n̄ , n

n̄ , or n
n−1

. Then T ∈ M(s).

7.6. Uniqueness

Theorem 1.1 follows as a corollary from the next proposition.

Proposition 7.11. B̃2,s is the unique affine finite-dimensional crystal structure satisfying
the properties of Conjecture 3.4.

For the proof of Proposition 7.11 we must show that our choice of σ is the only choice

satisfying the properties of Conjecture 3.4. Recall from the beginning of section 6 the rela-

tionship between σ and σ̌ . Let T ∈ B̃2,s . We know that

wt(T ) =
n∑

i=0

ki�i ⇔ wt(σ (T )) = k1�0 + k0�1 +
n∑

i=2

ki�i . (17)

Once σ̌ is determined, the given definition of σ (sending Dn−1 highest weight vectors to

Dn−1 highest weight vectors, etc.) is the only involution of the set of tableaux in B̃2,s satis-

fying (17) and agreeing with σ̌ .

As we observed in section 6.1, σ̌ (v) and v must be associated with the same partition,

and if v′ is the complementary vertex of v, σ̌ (v′) is the complementary vertex of σ̌ (v). We

now prove a few lemmas that uniquely determine σ̌ .

Please note that in this section we often use the phrase “the tableau b is in the branching

component vertex v” to mean b ∈ B(v).

Lemma 7.12. Suppose b ∈ B̃2,s is in a branching component vertex of rank p and f̃0(b) 
=
0. Then the branching component vertex containing f̃0(b) has rank p − 1.

Proof: Recall from the weight structure of type D algebras that α0 = 2�0 − �2 and

wt( f̃0(b)) = wt(b) − α0. Define cw(b) = wt(b) − (ϕ0(b) − ε0(b))�0. The above implies

that cw( f̃0(b)) = cw(b) + �2 = cw(b) + ε1 + ε2. Similarly, cw( f̃i (b)) = cw(b) − αi , so

that by (9) only f̃1 changes the ε1 component by −1. Since f̃1 increases the rank by one

and f̃0 changes the ε1 component by +1, it follows that f̃0 decreases the rank by one. �

Since f̃1 increases the rank by one, f̃0 decreases the rank by one and f̃0 = σ f̃1σ , the

following corollary holds.

Corollary 7.13. Suppose b is in a branching component vertex v of rank p. Then σ̌ (v), the
branching component vertex containing σ (b), has rank 2s − p.
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Note that this determines σ̌ on B(s�2) \ ιss−1(B((s − 1)�2)), and is in agreement with

our definition of σ̌ restricted to that domain.

Lemma 7.14. Let v ∈ BC(k�2) be a branching component vertex of rank s associated with
a rectangular partition, and let � be minimal such that v ∈ ι̌k�(BC(��2)). Then the hypothesis
that B̃2,s is perfect of level s can only be satisfied if σ̌ (v) is the vertex associated with the
same shape as v with rank s in BC((s + � − k)�2).

Proof: We have already shown that σ̌ (v) has the same shape as v and has rank s, so it only

remains to show that σ̌ (v) ∈ BC((s + � − k)�2).

First, observe that v must contain a minimal tableau as constructed in section 7.4, accord-

ing to the following table.

shape associated with v weight of tableau in v

(2m) m�2 + (k − 2m)�1 + (s − k)�0

(m, m) m�3 + (k − 2m)�1 + (s − k)�0

Let T be the tableau constructed by this prescription, so that 〈c, cw(T )〉 = k. The crite-

rion that 〈c, ϕ(T )〉 ≥ s forces us to have ϕ0(T ) = ϕ1(σ (T )) ≥ s − k. We denote Ti = ιik(T ),

and thus have ϕ1(Ti ) = i − �.

We show inductively that σ (Ti ) = Ts+�−i for � ≤ i ≤ s. As a base case, we see that

〈c, cw(T�)〉 = �, so we must have ϕ1(σ (T�)) ≥ s − �. The only Ti for which this inequal-

ity holds is Ts , where we have ϕ1(Ts) = s − �.

For the induction step, assume that σ sends T�, T�+1, . . . , Tk−1 to Ts, . . . , Ts+�−k+1,

respectively. By the above inequality this implies ϕ1(σ (Tk)) ≥ s − k, which specifies that

σ (Tk) = Ts+�−k . �

Definition 7.15. Recall the definition of ϒ s
s ′ from Definition 4.11. We define ϒ̌ s

s ′ :

BC(B̃2,s ′
) ↪→ BC(B̃2,s) by ϒ̌ s

s ′ (v) = v′ if for some T ∈ B(v), we have ϒ s
s ′ (T ) ∈ B(v′).

Lemma 7.16. Let v ∈ BC(k�2) be a branching component vertex of rank 1 ≤ p ≤ s − 1

associated to the shape (λ1, λ2). Suppose that for the branching component vertex w ∈
BC(k�2) of rank p + 1 with shape (λ1 − 1, λ2), B̃2,s has the correct energy function and is
perfect only if σ̌ (w) is as described in section 6.1. Then B̃2,s has the correct energy function
only if σ̌ (v) is as described in section 6.1.

Proof: First, recall that the partitions associated to vertices of rank p in BC(B̃2,s) are pro-

duced by adding or removing one box from the partitions associated to vertices of rank

p − 1. Since the vertex of rank 0 is associated with a rectangle of shape (s), the lowest rank

for which we can have a two-row rectangle is s. It follows that removing a box from the first

row of v results in a partition of rank p + 1, so there is in fact a vertex w as described in the

statement of the lemma.

Let � be minimal such that v ∈ ι̌k�(BC(��2)). We may assume v /∈ BC(��2), and let σ̌ (v)

be determined by the involutive property of σ̌ in the case v ∈ BC(��2). Specifically, we will

show that the vertex v′ ∈ BC(s�2) with the same shape and rank as v has the property that

σ̌ (v′) is the complementary vertex of v, and therefore σ̌ (v) is the complementary vertex of

v′.
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The top row of w is one box shorter than the top row of v, so that w ∈ ι̌k�−1(BC((� −
1)�2)), and � − 1 is minimal with this property. By our hypothesis, σ̌ (w) is the vertex with

shape (λ1 − 1, λ2) of rank 2s − p − 1 in BC((s + (� − 1) − k)�2).

We now use induction on s. Suppose that the only choice of σ̌ for which B̃2,s−1 is perfect

and has an energy function is the choice of section 6.1. Part 3 of Conjecture 3.4 states

that in B̃2,s , the energy on the component B((s − k)�2) is −k, and so the difference in

energy between B((s − k)�2) and B((s − j)�2) is j − k. In order for this to be true for

all 1 ≤ k, j ≤ s − 1, the action of f̃0 and ẽ0 on B̃2,s must agree with the action on B̃2,s−1.

More precisely, if v and w are in different classical components of B̃2,s−1 and f̃0(v) = w

in B̃2,s−1, then f̃0(ϒ s
s−1(v)) = ϒ s

s−1(w); this statement extends naturally to BC(B̃2,s−1) and

BC(B̃2,s).

Let v† denote the vertex with shape (λ1, λ2) of rank 2s − p in BC((s + � − k)�2). Since

we assumed k 
= �, we know that v† /∈ BC(s�2), and therefore v† has a preimage under

ϒ̌ s
s−1. From our construction of σ̌ we know that in BC(B̃2,s−1), (ϒ̌ s

s−1)−1(v†) has a 0 arrow

to (ϒ̌ s
s−1)−1(σ̌ (w)). Our induction argument tells us that in BC(B̃2,s), v† has a 0 arrow to

σ̌ (w). Since v has a 1 arrow to w and we must have f̃0 = σ f̃1σ , we conclude that in fact

σ̌ (v) = v†. �

Lemma 7.17. Let v ∈ BC(k�2) be a branching component vertex of rank s associated to
the non-rectangular shape (λ1, λ2), and suppose that for the branching component vertex
w ∈ BC(k�2) of rank s − 1 with shape (λ1, λ2 + 1), B̃2,s has the correct energy function
and is perfect only if σ̌ (w) is as described in section 6.1. Then B̃2,s has the correct energy
function only if σ̌ (v) is as described in section 6.1.

Proof: (This proof is very similar to the proof of Lemma 7.16.)

Let � be minimal such that v ∈ ι̌k�(BC(��2)), assuming k 
= �. Note that � is also minimal

for w ∈ ι̌k�(BC(��2)), since the shapes for v and w have the same number of boxes in the

first row. By our hypothesis, σ̌ (w) is the vertex with shape (λ1, λ2 + 1) of rank s + 1 in

BC((s + � − k)�2). Let v† be the vertex with shape (λ1, λ2) of rank s in BC((s + � − k)�2).

From our construction of σ̌ , we know that in BC(B̃2,s−1), (ϒ̌ s
s−1)−1(w) has a 0 arrow to

(ϒ̌ s
s−1)−1(σ̌ (v†)). It follows from our induction argument that in BC(B̃2,s), w has a 0 arrow

to σ̌ (v†). Since w has a 1 arrow to v and we must have f̃0 = σ f̃1σ , we conclude that in fact

σ̌ (v) = v†. �

Corollary 7.18. Corollary 7.13 and Lemmas 7.14, 7.16 and 7.17 determine σ̌ on BC(B̃2,s)

uniquely.

Proof: For any vertex v associated with shape (λ1, λ2) with rank p ≤ s, σ̌ (v) is fixed by

the image under σ̌ of a vertex with shape (λ1 − s + p, λ2) and rank s by Lemma 7.16.

If λ1 − s + p 
= λ2, Lemmas 7.16 and 7.17 may be used together to reduce determining

σ̌ (v) to determining the action of σ̌ on a rectangular vertex of rank s, which is given by

Lemma 7.14. �

8. Discussion

In this section we discuss some applications and open problems regarding the crystals B̃2,s

introduced in this paper.
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The major open question regarding B̃2,s is of course its existence, which was assumed

throughout this paper. A possible method of proof is a generalization of the fusion construc-

tion of [10].

In [16], Kashiwara conjectures that for any quantum affine algebra, Br,s is isomorphic as

a classical crystal to a Demazure crystal in an irreducible affine highest weight module of

weight s max(1, 2/(αr , αr ))�r − s�0, where �r = �r − a∨
r �0 (except for type A(2)

2n ). The

f̃0 edges that stay within the Demazure crystal should be among the f̃0 edges of Br,s . The

combinatorial structure of B̃2,s as constructed in this paper might give a hint on how to make

this correspondence more precise.

For a tensor product of affine finite crystals B = BL ⊗ · · · ⊗ B1 and a dominant integral

weight λ define the set of classically restricted paths as

P(B, λ) = {
b ∈ B | wt(b) = λ, ẽi (b) = 0 for all i ∈ J

}
where J = {1, 2, . . . , n}. The classically restricted one dimensional sum is defined to be

X (B, λ; q) =
∑

b∈P(B,λ)

q DB (b).

In [5, Section 4] fermionic formulas M(B, λ; q) are defined which are sums of products of

q-binomial coefficients, and it is conjectured that X (B, λ; q) = M(B, λ; q). This conjecture

has been proven for type A(1)
n [19, 20, 21] and various other cases [1, 24, 25, 26, 27, 29, 30].

It is expected that the X = M conjecture can also be proven in the case of tensor prod-

ucts of crystals B̃2,s as constructed in this paper by using the splitting map (see [30]) and

the single column bijection of type D(1)
n (see [29]). Using these maps, one should obtain a

statistic-preserving bijection between the set of tableaux T (s) defined in section 4 and a set

of rigged configurations which naturally indexes the q-binomial coefficients in the fermionic

formulas. The statistics that are preserved by this bijection (energy in the case of tableaux,

co-charge in the case of rigged configurations) are the exponents of q in the X = M formula.

Appendix A. Proof of Lemma 7.7

By induction hypothesis, B̃2,s−1
min = Mmin(s − 1).

Observe that by Corollaries 7.3 and 7.4 ι
j
i is level preserving, and by Lemma 7.5, the

map ϒ s
s−1 increases the level of a tableau by one. Our induction hypothesis therefore allows

us to assume that t ∈ B(s�2) \ ιss−1(B((s − 1)�2). Combinatorially, we may characterize

such tableaux as being those which are legal in the classical sense and for which removing

all 1’s, 1̄’s, and null configurations produces a tableau which is Lecouvey D-equivalent to

a tableau whose first row has width s. This characterization follows from the combinatorial

description of ιss−1 in Algorithm 6.4.

We may further restrict our attention by the observation that if T is minimal, then so is

T ∗. We may therefore assume T to be in the top half (inclusive of the middle row) of the

branching component graph. This means that T has no more 1̄’s than 1’s.

Our approach is to consider the tableau T ′ that results from removing the leftmost column

from T . We will show that if T ′ is minimal, the level of T exceeds the level of T ′ by at least

2, and if T ′ is not minimal, the level of T is at least as great as the level of T ′.
First consider the case when T ′ is minimal. Since T is assumed to be such that re-

moving all 1’s and 1̄’s produces a tableau which is Lecouvey D-equivalent to a tableau
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whose first row has width s, it is the case that removing all 1’s and 1̄’s from T ′

produces a tableau which is Lecouvey D-equivalent to a tableau whose first row has

width s − 1. The minimal tableaux of B̃2,s−1 with this property are precisely M(s − 1).

By properties of M(s − 1), we know that ϕ0(T ′) = 0, so ϕ0(T ) ≥ ϕ0(T ′). Since our

base case is s = 2, we know that the first column of T is a
b , where a and b are

both unbarred. Observe that ϕ(T ) = ϕ(T ′) + 2�b + non-negative weight if b 
= n − 1 or

ϕ(T ) = ϕ(T ′) + �n−1 + �n + non-negative weight if b = n − 1. Hence, the level is in-

creased by at least 2.

Now suppose T ′ is not minimal. The level of the i-signatures (that is to say, the level of

the sum of the weights ϕi (T ′) which depend on i-signatures) cannot have a net decrease for

i = 1, . . . , n, but there is now a possibility that ϕ0(T ) < ϕ0(T ′). We will show that when

ϕ0(T ) < ϕ0(T ′), the level of the i-signatures goes up by at least ϕ0(T ′) − ϕ0(T ).

First, suppose T has no 1’s. Then by one of our hypotheses, it also has no 1̄’s, and is

therefore fixed by σ : it follows that ϕ0(T ) = ϕ1(T ), so we may assume the upper-left entry

of T to be 1.

We know that ϕ0(T ) is equal to the number of −’s in the reduced 1-signature of σ (T ).

Consider the following tableaux:

T ′ = 1

b1

· · · 1

bm1︸ ︷︷ ︸
m1

am1+1

bm1+1

· · · as−m2

bs−m2

as−m2+1

1̄
· · · as

1̄︸ ︷︷ ︸
m2

T = 1

b

1

b1

· · · 1

bm1︸ ︷︷ ︸
m1

am1+1

bm1+1

· · · as−m2

bs−m2

as−m2+1

1̄
· · · as

1̄︸ ︷︷ ︸
m2

σ (T ′) = 1

b1

· · · 1

bm2−1

1

b′
m2︸ ︷︷ ︸

m2

a′
m2+1

b′
m2+1

· · · a′
s−m1

b′
s−m1

a′
s−m1+1

1̄
· · · a′

s

1̄︸ ︷︷ ︸
m1

σ (T ) = 1

b

1

b1

· · · 1

bm2−1︸ ︷︷ ︸
m2

a′′
m2

b′′
m2

· · · a′′
s−m1−1

b′′
s−m1−1

a′′
s−m1

1̄
· · · a′′

s

1̄︸ ︷︷ ︸
m1+1

.

Note that our assumption that m2 ≤ m1 + 1 ensures that the absence of primes on

b, b1, . . . , bm2−1 is accurate.

Let us consider all possible ways for the number of −’s in the 1-signature to be smaller

for σ (T ) than for σ (T ′). The number of 1’s is the same, so the only way this contribution

could be decreased is by having more 2’s in the first m2 letters of the bottom row. This can

only come about by having b = 2, and only one − may be removed in this way.

The other possibility is for the number of −’s contributed by 2̄’s to be decreased. The

only Lecouvey relation which removes a 2̄ assumes the presence of a column 2
2̄
, which

we disallow (null-configuration). To decrease this contribution therefore requires an addi-

tional + in the 1-signature of σ (T ) compared to that of σ (T ′), which will bracket one of

the −’s from a 2̄. The additional + may come from one of the additional 1̄’s, or from a

2 that is “pushed out” from under the 1’s at the beginning in the case b = 2. Note that

this second possibility is mutually exclusive with having more 2’s bracketing 1’s at the

beginning.
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In any case, we see that ϕ0(T ) − ϕ0(T ′) ≤ 2, and that when this value is 2, the first col-

umn of T is 1
2
. This column adds no +’s to the i-signatures, but does provide a new − in the

2-signature. Since �2 is a level 2 weight, the level stays the same in this case.

If ϕ0(T ) − ϕ0(T ′) = 1 and the first column of T is 1
2
, we in fact have a net increase

in level. If b 
= 2, the i-signature levels go up by at least 1, so still the total level cannot

decrease.

Appendix B. Proof of Lemma 7.8

We first establish that 〈c, ϕ(T )〉 ≥ 2k1 + 2k2 + k3, and thus by ∗-duality, 〈c, ε(T )〉 ≥ k3 +
2k4 + 2k5 as well. Recall that 0 ≤ k3 ≤ 1.

First, observe that every letter in the bottom row of T1 contributes:� a − to the reduced a-signature if 2 ≤ a ≤ n − 2 is in the bottom row;� a − to both the (n − 1)-signature and the n-signature if n − 1 is in the bottom row;� a − to the n-signature (resp. (n − 1)-signature) if n (resp. n̄) is the bottom row.

Suppose T1 has a column of the form a
b with b 
= a + 1, or b = n̄ and a 
= n − 1. For the −

in the a-signature of T contributed by this a to be bracketed, we must have a column of the

form a′
a+1

to the left of this column in T1, with a′ < a. Applying this observation recursively,

we see that to bracket as many −’s as possible we must eventually have a column of the

form 1
c for some c 
= 2. Note that in the case of columns of the form n−1

n (resp. n−1
n̄ ) the

unbracketed − in the n-signature (resp. (n − 1)-signature) from n − 1 cannot be bracketed,

since n and n̄ may not appear in the same row.

Now, consider a column a
b̄ in T2, so we have a < b, and thus also ā > b̄. Recall that

T2 has no n’s or n̄’s, so b ≤ n − 1. This column contributes −’s to the a-signature and the

(b − 1)-signature of T . In this case, these −’s may be bracketed. Due to the conditions that

the rows and columns of T are increasing, the − from the a can only be bracketed by an

a + 1 in the bottom row of T1 and the − from the b̄ can only be bracketed by a b in the

bottom row of T1. Furthermore, the letter above these must be strictly less than a and b − 1,

respectively. By the reasoning in the previous paragraph, we see that to bracket every −
engendered by the column a

b̄ we must have two columns of the form 1
a′ , with each a′ 
= 2.

If k3 = 1, T has a column of the form a
ā . We have two cases; 2 ≤ a ≤ n − 1, and a = n

(resp. a = n̄). In the first case, we have a − in the (a − 1)-signature from the ā in this

column. Because of the prohibition against configurations of the form a a
ā , this − can only

be bracketed by a + from an a in the bottom row of T1. Therefore, this column engenders

another column of the form 1
a′ . In the case of a = n (resp. a = n̄), we have a − in the

(n − 1)-signature (resp. n-signature) which cannot be bracketed.

To bracket the maximal number of −’s (i.e., to minimize 〈c, ϕ(T )〉) we see that unless

T3 = n
n̄ or T3 = n̄

n , we must have

T1T2T3 = 1

b1

· · · 1

b2k2+k3︸ ︷︷ ︸
2k2+k3

a2k2+k3+1

b2k2+k3+1

· · · ak1

bk1︸ ︷︷ ︸
k1−(2k2+k3)

ak1+1

b̄k1+1

· · · ak1+k2+k3

b̄k1+k2+k3︸ ︷︷ ︸
k2+k3

, (18)

where each column in the first block contributes 3 to 〈c, ϕ(T )〉, each column in the second

block contributes 2 to 〈c, ϕ(T )〉, and the third block contributes nothing. In the case T3 = n
n̄

or T3 = n̄
n , we have k2 = 0, so we simply have T1T2T3 = T1T3, where each column in T1
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increases 〈c, ϕ(T )〉 by at least 2 and T3 increases 〈c, ϕ(T )〉 by 1. We therefore have in the

first case 〈c, ϕ(T )〉 ≥ 3(2k2 + k3) + 2(k1 − 2k2 − k3) = 2k1 + 2k2 + k3, and in the second

case 〈c, ϕ(T )〉 ≥ 2k1 + k3 = 2k1 + 2k2 + k3 , as we wished to show.

Since by Lemma 7.7 elements in B̃2,s have level at least s, it follows that when

T ∈ (B̃2,s ∩ B(s�2))min, we have k1 + k2 ≤ �s/2�, and by ∗-duality that k4 + k5 ≤ �s/2�.

Furthermore, since s = k1 + k2 + k3 + k4 + k5, it follows that k1 + k2 = k4 + k5 = � s
2
� and

k3 = 0 if s is even and k3 = 1 if s is odd.

Appendix C. Proof of Lemma 7.9

By using the reverse of Algorithm 6.4, it suffices to show the following:

(1) T has a 1;

(2) T has a 1̄;

(3) after removing all 1’s and 1̄’s, applying the Lecouvey D relations will reduce the width

of T .

The proof of Lemma 7.8 shows that if k2 
= 0, or k3 = 1 and T3 
= n
n̄ ,

n̄
n , then T has a

1. By ∗-duality, if k4 
= 0, or the same condition is placed on k3 and T3, then T has a 1̄.

We will show that if k2 + k3 
= 0, then k3 + k4 
= 0, which will prove statements (1) and (2)

above.

If k3 = 1 this statement is trivial, so we assume k3 = 0. We show that the assumptions

k2 
= 0 and k4 = 0 lead to a contradiction. From the proof of Lemma 7.8, we know that for

T to be minimal, every − from T5 must be bracketed. Because of the increasing conditions

on the rows and columns of T , the −’s from the bottom row of T5 cannot be bracketed by

+’s from T5, so there must be at least k5 +’s from T1T2. Inspection of (18) shows us that

the first block contributes no +’s, the second block contributes k1 − 2k2 many +’s, and the

third block contributes 2k2 many +’s. We thus have k1 ≥ k5; but Lemma 7.8 tells us that

k1 + k2 = k4 + k5, contradicting our assumption that k2 
= 0 and k4 = 0.

For the proof of statement (3), we must show that every configuration a
c
b in T avoids

the following patterns (recall the Lecouvey D sliding algorithm from section 3.4): x
n
n̄ and

x
n̄
n with x ≤ n − 1; n−1

n̄
n−1

; n−1
n

n−1
; and c ≥ a, unless c = a = b̄. If T has any of these

patterns, the top row will not slide over.

First, simply observe that the first four specified configurations exclude the possibility

of having a column of the form a
b̄ other than n

n̄ or n̄
n . It therefore suffices to show that the

presence of a column d
ē , 2 ≤ d, e ≤ n − 1 implies that T avoids c ≥ a, unless c = a = b̄.

We break our analysis of this criterion into several special cases:

Case 1: a and b are barred, c is unbarred: trivial.

Case 2: a is unbarred, b and c are barred: This excludes the possibility of having d
ē ∈ T .

Case 3: a and c are unbarred, b is barred: We know the − in the c-signature from c must be

bracketed; if it is by b, we have b = c̄. As we saw in the proof of Lemma 7.8, we must have

the − in the (c − 1)-signature from c̄ bracketed by a c in the bottom row. This forces a ≥ c.

If the − in the c-signature from c is bracketed by a c + 1, it also must be in the bottom row,

forcing a > c.

Case 4: a, b, c all unbarred: Suppose c ≥ a. Let d be the leftmost unbarred letter weakly to

the right of c which does not have its − bracketed by the letter immediately below it. (Such

a letter exists, since we assume the occurence of d
ē ∈ T , except when d = e; this case will
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be treated below.) This letter d must be bracketed by a d + 1 in the bottom row, and it must

be weakly to the left of a. But we have d + 1 > d ≥ c ≥ a ≥ d + 1; contradiction.

If instead we have a d
d̄ column, we must have the − from the d̄ bracketed by a d in the

bottom row weakly to the left of a. In this case d ≥ c ≥ a ≥ d so c = d , and we have a d d
d̄

configuration, contradicting our assumption that T ∈ B(s�2).

Case 5: a, b, c all barred: Similarly to case 4, suppose c ≥ a and let d be the rightmost barred

letter weakly to the left of a which does not have its + bracketed by the letter immediately

above it. (If none exists, we have a d̄
d case, see below.) It must be bracketed by a d̄ + 1 in

the top row to the right of c. We then have d ≤ a ≤ c ≤ d̄ + 1; contradiction.

If we have a d̄
d column (note that d is barred), the + from the d̄ must be bracketed by a

d in the top row to the right of c. This implies that d ≥ c ≥ a ≥ d, so a = d and we have a
d̄
d d configuration, again contradicting our assumption that T ∈ B(s�2).

Appendix D. Proof of Lemma 7.10

In the notation of section 7.5, we have k2 = k4 = 0, and if k3 = 1, T3 = n
n̄ or T3 = n̄

n . Lemma

7.8 thus tells us that k1 = k5.

Next we show that a column j
i must be of the form i−1

i for T to be in B̃2,s
min. For i = 2

we have j = 1 by columnstrictness. Now suppose that j
i is the leftmost column such that

j < i − 1. Then j contributes a � j to ϕ(T ) and hence 〈c, ϕ(T )〉 ≥ 2k1 + k3 + 1 = s + 1,

so that T is not minimal. By a similar argument 〈c, ε(T )〉 > s unless all columns of the form
ī
j̄ must obey j = i − 1.

A column i
i−1

for i > 2 (resp. n
n−1

) contributes a − to the (i − 2)-signature (resp. (n − 2)-

signature) of T . This − can only be compensated by a + in the (i − 2)-signature (resp.

(n − 2)-signature) from a column i−1
i (resp. n−1

n ). Hence for T to be minimal the number of

columns of the form i−1
i (resp. n−1

n ) needs to be the same as the number of columns of the

form i
i−1

(resp. n
n−1

). This proves that T ∈ M(s).
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