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Abstract Let � be an irreducible crystallographic root system with Weyl group W and

coroot lattice Q̌, spanning a Euclidean space V . Let m be a positive integer and Am
� be the

arrangement of hyperplanes in V of the form (α, x) = k for α ∈ � and k = 0, 1, . . . , m. It

is known that the number N+(�, m) of bounded dominant regions of Am
� is equal to the

number of facets of the positive part �m
+(�) of the generalized cluster complex associated to

the pair (�, m) by S. Fomin and N. Reading.

We define a statistic on the set of bounded dominant regions of Am
� and conjecture that the

corresponding refinement of N+(�, m) coincides with the h-vector of �m
+(�). We compute

these refined numbers for the classical root systems as well as for all root systems when

m = 1 and verify the conjecture when � has type A, B or C and when m = 1. We give

several combinatorial interpretations to these numbers in terms of chains of order ideals in

the root poset of �, orbits of the action of W on the quotient Q̌/ (mh − 1) Q̌ and coroot

lattice points inside a certain simplex, analogous to the ones given by the first author in the

case of the set of all dominant regions of Am
�. We also provide a dual interpretation in terms

of order filters in the root poset of � in the special case m = 1.
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1. Introduction and results

Let V be an �-dimensional Euclidean space, with inner product ( , ). Let � be a (finite)

irreducible crystallographic root system spanning V and m be a fixed nonnegative integer.

We denote byAm
� the collection of hyperplanes in V defined by the affine equations (α, x) = k

for α ∈ � and k = 0, 1, . . . , m, known as the mth extended Catalan arrangement associated

to �. Thus Am
� is invariant under the action of the Weyl group W associated to � and reduces

to the Coxeter arrangementA� for m = 0. Let �m(�) denote the generalized cluster complex

associated to the pair (�, m) by S. Fomin and N. Reading [7]. This is a simplicial complex

which reduces to the cluster complex �(�) of S. Fomin and A. Zelevinsky [9] when m = 1.

It contains a natural subcomplex, called the positive part of �m(�) and denoted by �m
+(�), as

an induced subcomplex. The complex �m(�) was also studied independently by the second

author [18] when � is of type A or B; see Section 2 for further information and references.

The Weyl group W acts on the coroot lattice Q̌ of � and its dilate (mh − 1) Q̌, where h
denotes the Coxeter number of �. Hence W acts also on the quotient Tm = Q̌/ (mh − 1) Q̌.

For a fixed choice of a positive system �+ ⊆ �, consider the partial order on �+ defined by

letting α ≤ β if β − α is a nonnegative linear combination of positive roots, known as the root
poset of �. An order filter or dual order ideal in �+ is a subset I of �+ such that α ∈ I and

α ≤ β in �+ imply β ∈ I. The filter I is called positive if it does not contain any simple root.

The following theorem connects the objects just discussed. Parts (i), (ii) and (iii) appear

in [1, Corollary 1.3], [7, Proposition 2.13] and [10, Theorem 7.4.2], respectively. The last

statement was found independently in [1, 13, 16].

Theorem 1.1. ([1, 7, 10]) Let � be an irreducible crystallographic root system of rank �

with Weyl group W , Coxeter number h and exponents e1, e2, . . . , e�. Let m be a positive
integer and let

N+(�, m) =
�∏

i=1

ei + mh − 1

ei + 1
.

The following are equal to N+(�, m):

(i) the number of bounded regions of Am
� which lie in the fundamental chamber of A�,

(ii) the number of facets of �m
+(�) and

(iii) the number of orbits of the action of W on Q̌/ (mh − 1) Q̌.

Moreover, for m = 1 this number is equal to the number of positive filters in the root poset
of �.

The purpose of this paper is to define and study a refinement of the number N+(�, m)

and prove that it has similar properties with the one defined by the first author [2] for the

total number

N (�, m) =
�∏

i=1

ei + mh + 1

ei + 1

of regions of Am
� in the fundamental chamber of A�. To be more precise let Hα,k be the affine

hyperplane in V defined by the equation (α, x) = k and A◦ be the fundamental alcove of the

affine Weyl arrangement corresponding to �. A wall of a region R of Am
� is a hyperplane in

V which supports a facet of R. For 0 ≤ i ≤ � we denote by hi (�, m) the number of regions

R of Am
� in the fundamental chamber of A� for which exactly � − i walls of R of the form
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Hα,m separate R from A◦, meaning that (α, x) > m holds for x ∈ R. The numbers hi (�, m)

were introduced and studied in [2]. Let hi (�
m(�)) and hi (�

m
+(�)) be the i th entries of the

h-vector of the simplicial complexes �m(�) and �m
+(�), respectively. It follows from case

by case computations in [2, 7, 18] that hi (�, m) = hi (�
m(�)) for all i when � is of classical

type in the Cartan-Killing classification.

We define h+
i (�, m) as the number of bounded regions R of Am

� in the fundamental

chamber of A� for which exactly � − i walls of R of the form Hα,m do not separate R from

the fundamental alcove A◦. Theorem 1.1 implies that the sum of the numbers h+
i (�, m),

as well as that of hi (�
m
+(�)), for 0 ≤ i ≤ � is equal to N+(�, m). The significance of the

numbers h+
i (�, m) comes from the following conjecture, which can be viewed as the positive

analogue of [7, Conjecture 3.1].

Conjecture 1.2. For any irreducible crystallographic root system � and all m ≥ 1 and 0 ≤
i ≤ � we have h+

i (�, m) = hi (�
m
+(�)).

Our first main result (Corollary 5.5) establishes the previous conjecture when m = 1 and

when � has type A, B or C and m is arbitrary. Our second main result provides combinatorial

interpretations to the numbers h+
i (�, m) similar to the ones given in [2] for hi (�, m). To

state this result we need to recall (or modify) some definitions and notation from [2]. For

y ∈ Tm consider the stabilizer of y with respect to the W -action on Tm . This is a subgroup

of W generated by reflections. The minimum number of reflections needed to generate this

subgroup is its rank and is denoted by r (y). We may use the notation r (x) for a W -orbit x
in Tm since stabilizers of elements of Tm in the same W -orbit are conjugate subgroups of

W and hence have the same rank. A subset J of �+ is an order ideal if �+ \J is a filter.

An increasing chain J1 ⊆ J2 ⊆ · · · ⊆ Jm of ideals in �+ is a geometric chain of ideals of

length m if

(Ji + J j ) ∩ �+ ⊆ Ji+ j (1)

holds for all indices i, j with i + j ≤ m and

(Ii + I j ) ∩ �+ ⊆ Ii+ j (2)

holds for all indices i, j , where Ii = �+ \Ji for 0 ≤ i ≤ m and Ii = Im for i > m. Such a

chain is called positive ifJm contains the set of simple roots or, equivalently, if Im is a positive

filter. A positive root α is indecomposable of rank m with respect to this increasing chain of

ideals if α is a maximal element of Jm\Jm−1 and it is not possible to write α = β + γ with

β ∈ Ji and γ ∈ J j for indices i, j ≥ 1 with i + j = m. The following theorem refines part

of Theorem 1.1.

Theorem 1.3. Let � be an irreducible crystallographic root system of rank � with Weyl
group W , m be a positive integer and Om(�) be the set of orbits of the action of W on
Q̌/ (mh − 1) Q̌. For any 0 ≤ i ≤ � the following are equal:

(i) the number h+
�−i (�, m),

(ii) the number of positive geometric chains of ideals in the root poset �+ of length m having
i indecomposable elements of rank m,

(iii) the number of orbits x ∈ Om(�) with r (x) = i and
(iv) the number of points in Q̌ ∩ (mh − 1) A◦ which lie in i walls of (mh − 1) A◦.
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In particular, the number of positive geometric chains of ideals in �+ of length m is equal
to N+(�, m).

The equivalence of (iii) and (iv) follows essentially from the results of [10, Section 7.4].

In the special case m = 1 the arrangement Am
� consists of the hyperplanes Hα and Hα,1 for all

α ∈ � and is known as the Catalan arrangement associated to �, denoted Cat�. Moreover

a geometric chain of ideals consists of a single ideal J in �. This chain is positive if J
contains the set of simple roots or, equivalently, if I = �+ \J is a positive filter and in that

case the set of rank one indecomposable elements is the set of maximal elements of J . We

write h+
i (�) instead of h+

i (�, m) when m = 1. Part of the next corollary is implicit in the

work of E. Sommers [16, Section 6].

Corollary 1.4. Let�be an irreducible crystallographic root system of rank �with Weyl group
W and O(�) be the set of orbits of the action of W on Q̌/(h − 1) Q̌. For any 0 ≤ i ≤ � the
following are equal:

(i) the number of ideals in the root poset �+ which contain the set of simple roots and have
i maximal elements,

(ii) the number h+
�−i (�) of bounded regions R of Cat� in the fundamental chamber of A�

such that i walls of R of the form Hα,1 do not separate R from A◦,
(iii) the number of orbits x ∈ O(�) with r (x) = i ,
(iv) the number of points in Q̌ ∩ (h − 1) A◦ which lie in i walls of (h − 1) A◦ and
(v) the entry h�−i (�+(�)) of the h-vector of the positive part of �(�).

Our last theorem provides a different interpretation to the numbers h+
i (�) in terms of

order filters in �+.

Theorem 1.5. For any irreducible crystallographic root system � and any nonnegative
integer i the number h+

i (�) is equal to the number of positive filters in �+ having i minimal
elements.

Theorem 1.3 is proved in Sections 3 and 4 by means of two bijections. The first is the

restriction of a bijection of [2, Section 3] and maps the set of positive geometric chains of

ideals in �+ of length m to the set of bounded regions of Am
� in the fundamental chamber

(Theorem 3.6) while the second maps this set of regions to the set of W -orbits of Tm . In the

case m = 1 the composite of these two bijections gives essentially a bijection of Sommers

[16] from the set of positive filters in �+ to Q̌ ∩ (h − 1) A◦. The proof of Theorem 1.3 in

these two sections parallels the one of Theorem 1.2 in [2] and for this reason most of the

details are omitted. The main difference is that the unique alcove in a fixed bounded region

of Am
� which is furthest away from A◦ plays the role played in [2] by the unique alcove in

a region of Am
� closest to A◦. The existence of these maximal alcoves was first established

and exploited in the special case m = 1 by Sommers [16]. In Section 5 we prove Conjecture

1.2 when m = 1 and when � has type A, B or C and m is arbitrary (Corollary 5.5) using

the fact that hi (�, m) = hi (�
m(�)) holds for all i in these cases. A key ingredient in the

proof is a new combinatorial interpretation (see part (iii) of Theorems 5.1 and 5.2) to the

f -numbers defined from the hi (�, m) and h+
i (�, m) via the usual identity relating f -vectors

and h-vectors of simplicial complexes. In Section 6 we compute the numbers which appear in

Theorem 1.3 for root systems of classical type and those in Corollary 1.4 for root systems of

exceptional type. We also prove Theorem 1.5 by exploiting the symmetry of the distribution
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of the set of all filters in �+ by the number of minimal elements, observed by D. Panyushev

[13]. Some useful background material is summarized in Section 2. We conclude with some

remarks in Section 7.

Apart from [2], our motivation for this work comes to a great extent from the papers by

Fomin and Reading [7], Fomin and Zelevinsky [9] and Sommers [16].

2. Preliminaries

In this section we introduce notation and terminology and recall a few useful facts related

to root systems, affine Weyl groups, generalized cluster complexes and the combinatorics of

Am
�. We refer to [11] and [2, 6, 7] for further background and references and warn the reader

that, throughout the paper, some of our notation and terminology differs from that employed

in [2] (this is done in part to ease the co-existence of order filters and order ideals in this

paper, typically denoted by the letters I and J , respectively, and in part to match some of

the notation of [7]).

Root systems and Weyl groups. Let V be an �-dimensional Euclidean space with inner

product ( , ). Given a hyperplane arrangement A in V , meaning a discrete set of affine

subspaces of V of codimension one, the regions of A are the connected components of the

space obtained from V by removing the hyperplanes in A. Let � be a crystallographic root

system spanning V . For any real k and α ∈ � we denote by Hα,k the hyperplane in V defined

by the equation (α, x) = k and set Hα = Hα,0. We fix a positive system �+ ⊆ � and the

corresponding (ordered) set of simple roots � = {σ1, . . . , σ�}. For 1 ≤ i ≤ � we denote by si

the orthogonal reflection in the hyperpane Hσi , called a simple reflection. We will often write

�I instead of �, where I is an index set in bijection with �, and denote by �J the parabolic

root system corresponding to J ⊆ I . If � is irreducible we denote by α̃ the highest positive

root, by e1, e2, . . . , e� the exponents and by h the Coxeter number of � and set p = mh − 1,

where m is a fixed positive integer. The following well known lemmas will be used, as

in [2].

Lemma 2.1. ([2, Lemma 2.1]) (i) If α1, α2, . . . , αr ∈ �+ with r ≥ 2 and α = α1 +
α2 + · · · + αr ∈ �+ then there exists i with 1 ≤ i ≤ r such that α − αi ∈ �+.
(ii) (cf. [13, 16]) If α1, α2, . . . , αr ∈ � and α1 + α2 + · · · + αr = α ∈ � then α1 = α or
there exists i with 2 ≤ i ≤ r such that α1 + αi ∈ � ∪ {0}. �

Lemma 2.2. ([4, Ch. 6, 1.11, Proposition 31] [11, p. 84]) If � is irreducible and α̃ =∑�
i=1 ci σi then

∑�
i=1 ci = h − 1.

We denote by A� the Coxeter arrangement associated to �, i.e. the collection of linear

hyperplanes Hα in V with α ∈ �, and by W the corresponding Weyl group, generated by

the reflections in these hyperplanes. Thus W is finite and minimally generated by the set

of simple reflections, it leaves � invariant and acts simply transitively on the set of regions

of A�, called chambers. The fundamental chamber is the region defined by the inequalities

0 < (α, x) for α ∈ �+. A subset of V is called dominant if it is contained in the fundamental

chamber. The coroot lattice Q̌ of � is the Z-span of the set of coroots

�∨ =
{

2α

(α, α)
: α ∈ �

}
.
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From now on we assume for simplicity that � is irreducible. The group W acts on the

lattice Q̌ and on its sublattice p Q̌, hence it also acts on the quotient Tm(�) = Q̌/p Q̌. We

denote by Om(�) the set of orbits of the W -action on Tm(�) and use the notation T (�) and

O(�) when m = 1. We denote by Ã� the affine Coxeter arrangement, which is the infinite

hyperplane arrangement in V consisting of the hyperplanes Hα,k for α ∈ � and k ∈ Z, and by

Wa the affine Weyl group, generated by the reflections in the hyperplanes of Ã�. The group

Wa is the semidirect product of W and the translation group in V corresponding to the coroot

lattice Q̌ and is minimally generated by the set {s0, s1, . . . , s�} of simple affine reflections,

where s0 is the reflection in the hyperplane Hα̃,1. For w ∈ Wa and 0 ≤ i ≤ �, the reflection

si is a right ascent of w if �(wsi ) > �(w), where �(w) is the length of the shortest expression

of w as a product of simple affine reflections. The group Wa acts simply transitively on the

set of regions of Ã�, called alcoves. The fundamental alcove of Ã� can be defined as

A◦ = {x ∈ V : 0 < (σi , x) for 1 ≤ i ≤ � and (α̃, x) < 1}.
Note that every alcove can be written as wA◦ for a unique w ∈ Wa . Moreover, given α ∈ �+,

there exists a unique integer r , denoted r (w, α), such that r − 1 < (α, x) < r holds for all

x ∈ wA◦. The next lemma is a reformulation of the main result of [15].

Lemma 2.3. ([15, Theorem 5.2]). Let rα be an integer for each α ∈ �+. There exists w ∈ Wa

such that r (w, α) = rα for each α ∈ �+ if and only if

rα + rβ − 1 ≤ rα+β ≤ rα + rβ (3)

for all α, β ∈ �+ with α + β ∈ �+.

We say that two open regions in V are separated by a hyperplane H ∈ Ã� if they lie in

different half-spaces relative to H . If R is a region of a subarrangement of Ã� or the closure

of such a region (in particular, if R is a chamber or an alcove), we refer to the hyperplanes

of Ã� which support facets of the closure of R as the walls of R.

Generalized cluster complexes. Let � be crystallographic (possibly reducible) of rank �.

The generalized cluster complex �m(�) is an abstract simplicial complex on the vertex set

�m
≥−1 consisting of the negative simple roots and m copies of each positive root; we refer to

[7, Section 1.2] for the definition. It is a pure complex of dimension � − 1 [7, Proposition

1.7]. If � is a direct product � = �1 × �2 then �m(�) is the simplicial join of �m(�1)

and �m(�2). We denote by �m
+(�) the induced subcomplex of �m(�) on the set of vertices

obtained from �m
≥−1 by removing the negative simple roots and call this simplicial complex

the positive part of �m(�). For 0 ≤ i ≤ � we denote by fi−1(�m(�)) and fi−1(�m
+(�)) the

number of (i − 1)-dimensional faces of the complex �m(�) and �m
+(�), respectively. These

numbers are related to the hi (�
m(�)) and hi (�

m
+(�)) by the equations

�∑
i=0

fi−1(�m(�))(x − 1)�−i =
�∑

i=0

hi (�
m(�)) x�−i (4)

and

�∑
i=0

fi−1(�m
+(�))(x − 1)�−i =

�∑
i=0

hi (�
m
+(�)) x�−i (5)

respectively.
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Following [7, 18] we give explicit combinatorial descriptions of the complexes �m(�) and

�m
+(�) when � has type A, B or C . For � = An−1 let P be a convex polygon with mn + 2

vertices. A diagonal of P is called m-allowable if it divides P into two polygons each with

number of vertices congruent to 2 mod m. Vertices of �m(�) are the m-allowable diagonals

of P and faces are the sets of pairwise noncrossing diagonals of this kind. For � = Bn or Cn

let Q be a centrally symmetric convex polygon with 2mn + 2 vertices. A vertex of �m(�) is

either a diameter of Q, i.e. a diagonal connecting antipodal vertices, or a pair of m-allowable

diagonals related by a half-turn about the center of Q. A set of vertices of �m(�) forms a

face if the diagonals of Q defining these vertices are pairwise noncrossing. In all cases the

explicit bijection of �m
≥−1 with the set of allowable diagonals of P or Q just described is

analogous to the one given in [9, Section 3.5] for the usual cluster complex �(�), so that the

negative simple roots form an m-snake of allowable diagonals in P or Q and �m
+(�) is the

subcomplex of �m(�) obtained by removing the vertices in the m-snake.

The negative part of a face c of �m(�) is the set of indices J ⊆ I , where � = �I ,

which correspond to the negative simple roots contained in c. The next lemma appears as [9,

Proposition 3.6] in the case m = 1 and follows from the explicit description of the relevant

complexes in the remaining cases.

Lemma 2.4. Assume that either m = 1 or �I has type A, B or C. For any J ⊆ I the map
c �→ c\ {−αi : i ∈ J } is a bijection from the set of faces of �m(�I ) with negative part J to
the set of faces of �m

+(�I\J ). In particular

fk−1(�m(�I )) =
∑
J⊆I

fk−|J |−1(�m
+(�I\J )), (6)

where fi−1(�) = 0 if i < 0 for any complex �. �

For m = 1 essentially the same equation as (6) has appeared in the context of quiver

representations in [12, Section 6].

Regions of Am
� and chains of filters. Let � be irreducible and crystallographic of rank �.

For 0 ≤ i ≤ � let hi (�, m) be the number of dominant regions R of Am
� for which exactly

� − i walls of R of the form Hα,m separate R from A◦, as in Section 1. We recall another

combinatorial interpretation of hi (�, m) from [2] using slightly different terminology. We

call a decreasing chain

�+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im

of filters in �+ a geometric chain of filters of length m if (1) and (2) hold under the same

conventions as in Section 1 (the term co-filtered chain of dual order ideals was used in [2]

instead). A positive root α is indecomposable of rank m with respect to this chain if α ∈ Im

and it is not possible to write α = β + γ with β ∈ Ii and γ ∈ I j for indices i, j ≥ 0 with

i + j = m. Let RI be the set of points x ∈ V which satisfy

(α, x) > r , if α ∈ Ir

0 < (α, x) < r , if α ∈ Jr
(7)

for 0 ≤ r ≤ m, where Jr = �+ \Ir . The following statement combines parts of Theorems

3.6 and 3.11 in [2].
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Theorem 2.5. The map I �→ RI is a bijection from the set of geometric chains of filters
of length m in �+ to the set of dominant regions of Am

�. Moreover a positive root α is
indecomposable of rank m with respect to I if and only if Hα,m is a wall of RI which
separates RI from A◦.

In particular hi (�, m) is equal to the number of geometric chains of filters in �+ of length

m having � − i indecomposable elements of rank m.

By modifying the definition given earlier or using the interpretation in the last statement

of the previous theorem we can define the numbers hi (�, m) when � is reducible as well.

Clearly

hk(�1 × �2, m) =
∑

i+ j=k

hi (�1, m) h j (�2, m)

for any crystallographic root systems �1, �2.

3. Chains of ideals, bounded regions and maximal alcoves

In this section we generalize some of the results of Sommers [16] on bounded dominant

regions of Cat� and positive filters in �+ to bounded dominant regions of Am
� and positive

geometric chains of ideals and establish the equality of the numbers appearing in (i) and (ii)

in the statement of Theorem 1.3. The results of this and the following section are analogues

of the results of Sections 3 and 4 of [2] on the set of all dominant regions of Am
�. Their proofs

are obtained by minor adjustments from those of [2], suggested by the modifications of the

relevant definitions, and thus are only sketched or omitted.

Let � be irreducible and crystallographic of rank � and let J be a positive geometric

chain of ideals

∅ = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jm

in �+ of length m, so that (1) and (2) hold, where Ii = �+\Ji , and � ⊆ Jm . We define

rα(J ) = min{r1 + r2 + · · · + rk : α = α1 + α2 + · · · + αk with αi ∈ Jri for all i}

for any α ∈ �+. Observe that rα(J ) is well defined since � ⊆ Jm and that rα(J ) ≤ r for

α ∈ Jr , with rα(J ) = 1 if and only if α ∈ J1.

Lemma 3.1. If α = α1 + α2 + · · · + αk ∈ �+ and αi ∈ �+ for all i then

rα(J ) ≤
k∑

i=1

rαi (J ).

Proof: This is clear from the definition. �

Lemma 3.2. Let α ∈ �+ and rα(J ) = r .

(i) If r ≤ m then α ∈ Jr .
(ii) If r > m then there exist β, γ ∈ �+ with α = β + γ and r = rβ (J ) + rγ (J ). Moreover

we may choose β so that rβ (J ) ≤ m.
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Proof: Analogous to the proof of [2, Lemma 3.2]. �

Lemma 3.3. If α, β, α + β ∈ �+ and a, b are integers such that rα+β (J ) ≤ a + b then
rα(J ) ≤ a or rβ (J ) ≤ b.

Proof: By induction on rα+β (J ), as in the proof of [2, Lemma 3.3]. �

Corollary 3.4. We have

rα(J ) + rβ (J ) − 1 ≤ rα+β (J ) ≤ rα(J ) + rβ (J )

whenever α, β, α + β ∈ �+.

Proof: The second inequality is a special case of Lemma 3.1 and the first follows from

Lemma 3.3 letting a = rα(J ) − 1 and b = rα+β (J ) − a. �

We denote by RJ the set of points x ∈ V which satisfy the inequalities in (7). Since

� ⊆ Jm we have 0 < (σi , x) < m for all 1 ≤ i ≤ � and x ∈ RJ and therefore RJ is bounded.

Proposition 3.5. There exists a unique w ∈ Wa such that r (w, α) = rα(J ) for α ∈ �+.
Moreover, wA◦ ⊆ RJ . In particular, RJ is nonempty.

Proof: The existence in the first statement follows from Lemma 2.3 and Corollary 3.4 while

uniqueness is obvious. For the second statement let α ∈ �+ and 1 ≤ r ≤ m. Part (i) of Lemma

3.2 implies that rα(J ) ≤ r if and only if α ∈ Jr . Hence from the inequalities

rα(J ) − 1 < (α, x) < rα(J ),

which hold for x ∈ wA◦, we conclude that wA◦ ⊆ RJ . �

Let ψ be the map which assigns the set RJ to a positive geometric chain of idealsJ in �+

of length m. Conversely, given a bounded dominant region R of Am
� let φ(R) be the sequence

∅ = J0 ⊆ J1 ⊆ J2 ⊆ · · · ⊆ Jm where Jr is the set of α ∈ �+ for which (α, x) < r holds

in R. Clearly each Jr is an ideal in �+.

Theorem 3.6. The map ψ is a bijection from the set of positive geometric chains of ideals
in �+ of length m to the set of bounded dominant regions of Am

�, and the map φ is its
inverse.

Proof: That ψ is well defined follows from Proposition 3.5, which guarantees that RJ

is nonempty (and bounded). To check that φ is well defined observe that if R is a

bounded dominant region of Am
� and if (α, x) < i and (β, x) < j hold for x ∈ R then

(α + β, x) < i + j must hold for x ∈ R, so that φ(J ) satisfies (1). Similarly, φ(J ) satisfies

(2). That � ⊆ Jm follows from [1, Lemma 4.1]. It is clear that ψ and φ are inverses of each

other. �

Let R = RJ be a bounded dominant region of Am
�, where J = φ(R). Let wR denote

the element of the affine Weyl group Wa which is assigned to J in Proposition 3.5. The
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following proposition implies that wR A◦ is the alcove in R which is the furthest away from

A◦. In the special case m = 1 the existence of such an alcove was established by Sommers

[16, Proposition 5.4].

Proposition 3.7. Let R be a bounded dominant region of Am
�. The element wR is the unique

w ∈ Wa such that wA◦ ⊆ R and whenever α ∈ �+, r ∈ Z and (α, x) > r holds for some
x ∈ R we have (α, x) > r for all x ∈ wA◦.

Proof: Analogous to the proof of [2, Proposition 3.7]. �

We now introduce the notion of an indecomposable element with respect to the increasing

chain of ideals J .

Definition 3.8. Given 1 ≤ r ≤ m, a root α ∈ �+ is indecomposable of rank r with respect
to J if α ∈ Jr and

(i) rα(J ) = r ,
(ii) it is not possible to write α = β + γ with β ∈ Ji and γ ∈ J j for indices i, j ≥ 1 with

i + j = r and
(iii) if rα+β (J ) = t ≤ m for some β ∈ �+ then β ∈ Jt−r .

Observe that, by part (i) of Lemma 3.2, the assumption α ∈ Jr in this definition is actually

implied by condition (i). For r = m the definition is equivalent to the one proposed in Section

1, as the following lemma shows.

Lemma 3.9. A positive root α is indecomposable of rank m with respect to J if and only if
α is a maximal element of Jm\Jm−1 and it is not possible to write α = β + γ with β ∈ Ji

and γ ∈ J j for indices i, j ≥ 1 with i + j = m.

Proof: Suppose that α ∈ Jm is indecomposable of rank m. Since rα(J ) = m we must have

α /∈ Jm−1. Hence to show that α satisfies the condition in the statement of the lemma it

suffices to show that α is maximal in Jm . If not then by Lemma 2.1 (i) there exists β ∈ �+

such that α + β ∈ Jm . Then clearly rα+β (J ) ≤ m and rα+β (J ) ≥ m by Corollary 3.4. Hence

rα+β (J ) = m and condition (iii) of Definition 3.8 leads to a contradiction.

For the converse, suppose that α ∈ Jm satisfies the condition in the statement of the

lemma. In view of part (i) of Lemma 3.2, condition (iii) in Definition 3.8 is satisfied since

α is assumed to be maximal in Jm . Hence to show that α is indecomposable of rank m it

suffices to show that rα(J ) = m. This is implied by the assumption that α /∈ Jm−1 and part

(i) of Lemma 3.2. �

Lemma 3.10. Suppose that α is indecomposable with respect to J .

(i) We have rα(J ) = rβ (J ) + rγ (J ) − 1 whenever α = β + γ with β, γ ∈ �+.
(ii) We have rα(J ) + rβ (J ) = rα+β (J ) whenever β, α + β ∈ �+.

Proof: Analogous to the proof of [2, Lemma 3.10]. For part (ii), letting rα(J ) =
r and rα+β (J ) = t , we prove instead that rβ (J ) ≤ t − r . This implies the result by

Corollary 3.4. �
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Fig. 1 The maximal alcoves of the bounded dominant regions and the simplex p A◦ for � = A2 and m = 2.

The following theorem explains the connection between indecomposable elements of J
and walls of RJ .

Theorem 3.11. If J is a positive geometric chain of ideals in �+ of length m with corre-
sponding region R = RJ and 1 ≤ r ≤ m then the following sets are equal:

(i) the set of indecomposable roots α ∈ �+ with respect to J of rank r,
(ii) the set of α ∈ �+ such that Hα,r is a wall of R which does not separate R from A◦ and

(iii) the set of α ∈ �+ such that Hα,r is a wall of wR A◦ which does not separate wR A◦
from A◦.

Proof: We prove that Fr (R) ⊆ Fr (J ) ⊆ Fr (wR) ⊆ Fr (R) for the three sets defined in the

statement of the theorem as in the proof of [2, Theorem 3.11], replacing the inequalities

(α, x) > k which appear there by (α, x) < r and recalling from the proof of Proposition 3.7

that (α, x) < rα(J ) holds for all α ∈ �+ and x ∈ RJ . �

We denote by Wm(�) the subset of Wa consisting of the elements wR for the bounded

dominant regions R of Am
�; see Figure 1 for the case � = A2 and m = 2. We abbrevi-

ate this set as W (�) in the case m = 1. The elements of W (�) are called maximal in

[16].

Corollary 3.12. For any nonnegative integers i1, i2, . . . , im the following are equal:

(i) the number of positive geometric chains of ideals in �+ of length m having ir indecom-
posable elements of rank r for each 1 ≤ r ≤ m,

(ii) the number of bounded dominant regions R of Am
� such that ir walls of R of the form

Hα,r do not separate R from A◦ for each 1 ≤ r ≤ m and
(iii) the number of w ∈ Wm(�) such that ir walls of wA◦ of the form Hα,r do not separate

wA◦ from A◦ for each 1 ≤ r ≤ m.
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Proof: Combine Theorems 3.6 and 3.11. �

The following corollary is immediate.

Corollary 3.13. For any nonnegative integer i the numbers which appear in (i) and (ii) in
the statement of Theorem 1.3 are both equal to the number of w ∈ Wm(�) such that i walls
of wA◦ of the form Hα,m do not separate wA◦ from A◦.

As was the case with hi (�, m), the interpretation in part (ii) of Theorem 1.3 mentioned

in the previous corollary or the original definition can be used to define h+
i (�, m) when � is

reducible. Equivalently we define

h+
k (�1 × �2, m) =

∑
i+ j=k

h+
i (�1, m) h+

j (�2, m)

for any crystallographic root systems �1, �2. We now consider the special case m = 1. A

positive geometric chain of ideals J of length m in this case is simply a single ideal J in

�+ such that � ⊆ J , meaning that I = �+ \J is a positive filter. By Lemma 3.9 the rank

one indecomposable elements of J are exactly the maximal elements of J .

Corollary 3.14. For any nonnegative integer i the following are equal to h+
�−i (�):

(i) the number of ideals in the root poset �+ which contain all simple roots and have i
maximal elements,

(ii) the number of bounded dominant regions R of Cat� such that i walls of R of the form
Hα,1 do not separate R from A◦,

(iii) the number of w ∈ W (�) such that i walls of wA◦ of the form Hα,1 do not separate wA◦
from A◦ and

(iv) the number of elements w ∈ W (�) having i right ascents.

Proof: This follows from the case m = 1 of Corollary 3.12 and [2, Lemma 2.5]. �

4. Coroot lattice points and the affine Weyl group

In this section we complete the proof of Theorem 1.3 (see Corollary 4.4). We assume that �

is irreducible and crystallographic of rank �.

As in [2, Section 4], by the reflection in W corresponding to a hyperplane Hα,k we

mean the reflection in the linear hyperplane Hα . We let p = mh − 1, as in Section 2, and

Dm(�) = Q̌ ∩ p A◦. The following elementary lemma, for which a detailed proof can be

found in [10, Section 7.4], implies that Dm(�) is a set of representatives for the orbits of the

W -action on Tm(�).

Lemma 4.1. (cf. [10, Lemma 7.4.1]) The natural inclusion map from Dm(�) to the set
Om(�) of orbits of the W -action on Tm(�) is a bijection.

Moreover, if y ∈ Dm(�) then the stabilizer of y with respect to the W -action on Tm(�)

is the subgroup of W generated by the reflections corresponding to the walls of p A◦ which

contain y. In particular, r (y) is equal to the number of walls of p A◦ which contain y.
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We will define a bijection ρ : Wm(�) → Dm(�) such that for w ∈ Wm(�), the number of

walls of wA◦ of the form Hα,m which do not separate wA◦ from A◦ is equal to the number

of walls of p A◦ which contain ρ(w). Let R f be the region of Am
� defined by the inequalities

m − 1 < (α, x) < m for 1 ≤ i ≤ �. Let w f = wR f be the unique element w of Wm(�) such

that wA◦ ⊆ R f . We define the map ρ : Wm(�) → Q̌ by

ρ(w) = (w f w−1) · 0

for w ∈ Wm(�). Observe that, by Lemma 2.2, the alcove w f A◦ can be described explicitly

as the open simplex in V defined by the linear inequalities (σi , x) < m for 1 ≤ i ≤ � and

(α̃, x) > mh − m − 1. For any 1 ≤ r ≤ m we define the simplex

r
m = {x ∈ V : m − r ≤ (σi , x) for 1 ≤ i ≤ � and (α̃, x) ≤ mh − m + r − 1},

so that m
m = p A◦. For any �-dimensional simplex  in V bounded by hyperplanes Hα,k in

Ã� with α ∈ � ∪ {α̃} we denote by H (, i) the wall of  orthogonal to α̃ or σi , if i = 0

or i > 0, respectively. We write H (w, i) instead of H (wA◦, i) for w ∈ Wa . The reader is

invited to test the results that follow in the case pictured in Figure 1.

Theorem 4.2. The map ρ is a bijection from Wm(�) to Dm(�). Moreover for any w ∈
Wm(�), 1 ≤ r ≤ m and 0 ≤ i ≤ �, the point ρ(w) lies on the wall H (r

m, i) if and only if
the wall (ww−1

f ) H (w f , i) of wA◦ is of the form Hα,r and does not separate wA◦ from A◦.

Proof: Analogous to the proof of [2, Theorem 4.2]. �

Corollary 4.3. For any nonnegative integers i1, i2, . . . , im each of the quantities which ap-
pear in the statement of Corollary 3.12 is equal to the number of points in Dm(�) which lie
in ir walls of r

m for all 1 ≤ r ≤ m.

Proof: This follows from Theorem 4.2. �

The next corollary completes the proof of Theorem 1.3.

Corollary 4.4. For any 0 ≤ i ≤ � the following are equal to h+
�−i (�, m):

(i) the number of points in Dm(�) which lie in i walls of p A◦ and
(ii) the number of w ∈ Wm(�) such that i walls of wA◦ of the form Hα,m do not separate

wA◦ from A◦.

Proof: By Lemma 4.1, the number of orbits x ∈ Om(�) with rank r (x) = i is equal to the

number of points in Dm(�) which lie in i walls of p A◦. The statement now follows by

specializing Corollary 4.3 and recalling that m
m = p A◦. �

Remark 4.5. Part (ii) of Corollary 4.4 implies that h+
� (�, m) is equal to the cardinality of

Q̌ ∩ (mh − 1)A◦. An argument similar to the one employed in [2, Remark 4.5] shows that

Q̌ ∩ (mh − 1)A◦ is equinumerous to Q̌ ∩ (mh − h − 1)A◦. Therefore from Theorem 1.1

(iii) we conclude that h+
� (�, m) = N+(�, m − 1). Since the reduced Euler characteristic
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χ̃ (�m
+(�)) of �m

+(�) is equal to (−1)�−1h�(�m
+(�)), it follows from the results of the next

section that

χ̃ (�m
+(�)) = (−1)�−1 N+(�, m − 1)

if � has type A, B or C (see [7, (3.1)] for the corresponding property of �m(�)). �

The following conjecture is the positive analogue of [7, Conjecture 3.7].

Conjecture 4.6. For any crystallographic root system � and all m ≥ 1 the complex �m
+(�)

is pure (� − 1)-dimensional and shellable and has reduced Euler characteristic equal to

(−1)�−1 N+(�, m − 1).

In particular it is Cohen-Macaulay and has the homotopy type of a wedge of N+(�, m − 1)

spheres of dimension � − 1.

5. The numbers f i (Φ, m) and f +
i (Φ, m)

Let � be a crystallographic root system of rank � spanning the Euclidean space V . We define

numbers fi (�, m) and f +
i (�, m) by the relations

�∑
i=0

fi−1(�, m)(x − 1)�−i =
�∑

i=0

hi (�, m) x�−i (8)

and

�∑
i=0

f +
i−1(�, m)(x − 1)�−i =

�∑
i=0

h+
i (�, m) x�−i (9)

respectively. Comparing to equation (5) we see that Conjecture 1.2 for the pair (�, m) is

equivalent to the statement that

f +
i−1(�, m) = fi−1(�m

+(�)) (10)

for all i , where fi−1(�m
+(�)) is as in Section 2. We will give a combinatorial interpretation to

the numbers fi−1(�, m) and f +
i−1(�, m) as follows. For 0 ≤ k ≤ � we denote by Fk(�, m)

the collection of k-dimensional (nonempty) sets of the form⋂
(α,r ) ∈ �+×{0,1,...,m}

H̃α,r (11)

where H̃α,r can be ⎧⎪⎨⎪⎩
H+

α,0, if r = 0,

H−
α,m, H+

α,m or Hα,m, if r = m,

H−
α,r or H+

α,r , if 1 ≤ r < m

and H−
α,r and H+

α,r denote the two open half-spaces in V defined by the inequalities (α, x) <

r and (α, x) > r , respectively. Observe that each element of Fk(�, m) is dominant. We
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also denote by F+
k (�, m) the elements of Fk(�, m) which are bounded subsets of V or,

equivalently, the sets of the form (11) with H̃σi ,m = H−
σi ,m or Hσi ,m for 1 ≤ i ≤ �. In the

special case m = 1 part (iii) of the following theorem is the content of Remark 5.10 (v) in

[6].

Theorem 5.1. For any irreducible crystallographic root system � and all m ≥ 1 and 0 ≤
k ≤ � the number fk−1(�, m) counts

(i) pairs (R, S) where R is a dominant region of Am
� and S is a set of � − k walls of R of

the form Hα,m which separate R from A◦,
(ii) pairs (I, T ) where I is a geometric chain of filters in �+ of length m and T is a set of

� − k indecomposable roots of rank m with respect to I and
(iii) the elements of Fk(�, m).

Proof: From (8) we have

fk−1(�, m) =
k∑

i=0

hi (�, m)

(
� − i

� − k

)
which cleary implies (i) and (ii) (see Theorem 2.5). To complete the proof it suffices to give a

bijection from the set Rk(�, m) of pairs (R, S) which appear in (i) to Fk(�, m). Given such

a pair τ = (R, S) let g(τ ) be the intersection (11), where H̃α,r is chosen so that R ⊆ H̃α,r

unless r = m and Hα,r ∈ S, in which case H̃α,r = Hα,r . Let S = {Hα1,m, Hα2,m, . . . , Hα�−k ,m}
and let FS be the intersection of the hyperplanes in S. It follows from [2, Corollary 3.14] that

S is a proper subset of the set of walls of an alcove of Ã� and hence that FS is nonempty and

k-dimensional. To show that g(τ ) is nonempty and k-dimensional, so that g : Rk(�, m) →
Fk(�, m) is well defined, we need to show that FS is not contained in any hyperplane Hα,r

with α ∈ �+ and 0 ≤ r ≤ m other than those in S. So suppose that FS ⊆ Hα,r with α ∈ �+

and r ≥ 0. Then there are real numbers λ1, λ2, . . . , λ�−k such that

α = λ1α1 + λ2α2 + · · · + λ�−kα�−k (12)

and r = m(λ1 + λ2 + · · · + λ�−k). Observe that the αi are minimal elements of the last filter

in the geometric chain of filters in �+ corresponding to R and hence that they form an

antichain in �+, meaning a set of pairwise incomparable elements. It follows from the first

main result of [16] (see the proof of [3, Corollary 6.2]) that the coefficients λi in (12) are

nonnegative integers. Hence either r > m or α = αi and r = m for some i , so that Hα,r ∈ S.

To show that g is a bijection we will show that given F ∈ Fk(�, m) there exists a unique

τ ∈ Rk(�, m) with g(τ ) = F . Let (�∨
1 , �∨

2 , . . . , �∨
� ) be the linear basis of V which is dual

to �, in the sense that

(σi , �
∨
j ) = δi j .

Observe that if g(τ ) = F with τ = (R, S), x is a point in F and εi are sufficiently small

positive numbers then

x +
�∑

i=1

εi�
∨
i ∈ R. (13)
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Since regions of Am
� are pairwise disjoint this implies uniqueness of R, and hence of τ .

To prove the existence let R be the unique region of Am
� defined by (13). Equivalently R can

be obtained by replacing all hyperplanes of the form Hα,m in the intersection (11) defining F
by H+

α,m . It suffices to show that any such hyperplane Hα,m is a wall of R since then, if S is

the set of hyperplanes of the form Hα,m which contain F then τ = (R, S) ∈ Rk(�, m) and

g(τ ) = F .

Suppose on the contrary that Hα,m ⊇ F is not a wall of R. It follows from Theorem

2.5 that α is not indecomposable of rank m with respect to the geometric chain I of filters

�+ = I0 ⊇ I1 ⊇ · · · ⊇ Im corresponding to R and hence that one can write α = β + γ

for some β ∈ Ii , γ ∈ I j with i + j = m. Since (α, x) = m for x ∈ F and (β, x) > i and

(γ, x) > j hold for x ∈ R, so that (β, x) ≥ i and (γ, x) ≥ j hold for x ∈ F , we must have

(β, x) = i and (γ, x) = j for x ∈ F . However one of i, j must be less than m and this

contradicts the fact that F can be contained in Hα,r for α ∈ �+ only if r = m. �

The proof of the next theorem is entirely similar to that of Theorem 5.1 and is omitted.

Theorem 5.2. For any irreducible crystallographic root system � and all m ≥ 1 and 0 ≤
k ≤ � the number f +

k−1(�, m) counts

(i) pairs (R, S) where R is a dominant bounded region of Am
� and S is a set of � − k walls

of R of the form Hα,m which do not separate R from A◦,
(ii) pairs (J , T ) where J is a positive geometric chain of ideals in �+ of length m and T

is a set of � − k indecomposable roots of rank m with respect to J and
(iii) the elements of F+

k (�, m). �

The reader is invited to use part (iii) of Theorems 5.1 and 5.2 as well as Figure 1 to verify

that f−1 = 1, f0 = 8, f1 = 12, f +
−1 = 1, f +

0 = 6 and f +
1 = 7 when � = A2 and m = 2.

It should be clear that apart from the necessary modifications in the statements of part (i),

Theorems 5.1 and 5.2 are also valid when � is reducible.

Lemma 5.3. For any crystallographic root system �I and all m ≥ 1 and 0 ≤ k ≤ � we have

fk−1(�I , m) =
∑
J⊆I

f +
k−|J |−1(�I\J , m).

Proof: For J ⊆ I let VJ be the linear span of the simple roots indexed by the elements of

J and let pJ : VI → VI\J be the orthogonal projection onto VI\J . We define the simple part
of F ∈ Fk(�I , m) as the set of indices j ∈ I such that F ⊆ H+

σ j ,m . Observe that if J is the

simple part of F then for α ∈ �+ and x ∈ F we have

(α, x) = (α, pJ (x)), if α ∈ �I\J

(α, x) > m, otherwise.

It follows that pJ induces a bijection from the set of elements of Fk(�I , m) with simple

part J to F+
k−|J |(�I\J , m). Hence counting the elements of Fk(�I , m) according to their

simple part proves the lemma. �
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The same type of argument as that in the next corollary appears in the proof of [12,

Proposition 6.1].

Corollary 5.4. If for some pair (�, m) every parabolic subsystem of � satisfies (6) and
we have hi (�, m) = hi (�

m(�)) for all i then we have h+
i (�, m) = hi (�

m
+(�)) for all i as

well.

Proof: From the assumption we have fk−1(�, m) = fk−1(�m(�)) for all k. Equation (6)

and Lemma 5.3 imply that f +
k−1(�, m) = fk−1(�m

+(�)) for all k via Möbius inversion on the

set of pairs (k, I ) partially ordered by letting

(l, J ) ≤ (k, I ) if and only if J ⊆ I and k − l = |I\J |.

This is equivalent to the conclusion of the corollary. �

Corollary 5.5. Conjecture 1.2 holds for root systems of type A, B or C and any m ≥ 1 and
for all root systems when m = 1.

Proof: This follows from Lemma 2.4, the previous corollary and the fact that the equality

hi (�, m) = hi (�
m(�)) can be checked case by case from the explicit formulas given in

[2, 7, 18] in the cases under consideration. �

We conclude this section with a combinatorial interpretation to f +
k−1(�, m) similar to

those provided in parts (i) and (ii) of Theorem 5.2.

Theorem 5.6. For any irreducible crystallographic root system � and all m ≥ 1 and 0 ≤
k ≤ � the number f +

k−1(�, m) counts

(i) pairs (R, S) where R is a dominant region of Am
� and S is a set of � − k walls of R of

the form Hα,m which separate R from A◦ such that S contains all such walls of R with
α ∈ � and

(ii) pairs (I, T ) where I is a geometric chain of filters in �+ of length m and T is a set
of � − k indecomposable roots of rank m with respect to I which contains all simple
indecomposable roots of rank m with respect to I.

Proof: The sets in (i) and (ii) are equinumerous by Theorem 2.5. To complete the proof one

can argue that the map g in the proof of Theorem 5.1 restricts to a bijection from the set in

(i) to F+
k (�, m). Alternatively, arguing as in the proof of Corollary 5.4, it suffices to show

that

fk−1(�I , m) =
∑
J⊆I

g+
k−|J |−1(�I\J , m),

where � = �I and g+
k−1(�, m) denotes the cardinality of the set of pairs, say G+

k (�, m),

which appears in (ii). Let Gk(�I , m) denote the set of pairs defined in (ii) of the statement of

Theorem 5.1. For (I, T ) ∈ Gk(�I , m) call the set of simple roots which are indecomposable

of rank m with respect to I and are not contained in T the simple part of (I, T ) and for
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any J ⊆ I denote by �J the order filter of roots α ∈ �+
I for which σ ≤ α for some σ ∈ J .

It is straightforward to check from the definitions that the map which sends a pair (I, T )

to (I\�J , T ), where I\�J denotes the chain obtained from I by removing �J from each

filter of I, induces a bijection from the set of elements of Gk(�I , m) with simple part J to

G+
k−|J |(�I\J , m). Therefore counting the elements of Gk(�I , m) according to their simple

part gives the desired equality. �

6. Classical types and the case m = 1

In this section we compute the numbers h+
i (�, m) and f +

i−1(�, m) in the cases of the classical

root systems.

Proposition 6.1. The number h+
i (�, m) is equal to

1

i + 1

(
n − 1

i

)(
mn − 2

i

)
, if � = An−1,

(
n

i

)(
mn − 1

i

)
, if � = Bn or Cn,

(
n

i

)(
m(n − 1) − 1

i

)
+

(
n − 2

i − 2

)(
m(n − 1)

i

)
, if � = Dn.

Proof: The proof can be obtained from that of [2, Proposition 5.1] by replacing the quantity

mh + 1 by mh − 1 and using Theorem 1.3 (iii) instead of [2, Theorem 1.2 (ii)]. �

The following corollary is a straightforward consequence of Proposition 6.1 and

equation (9).

Corollary 6.2. The number f +
k−1(�, m) is equal to

1

k + 1

(
n − 1

k

)(
mn + k − 1

k

)
, if � = An−1,

(
n

k

)(
mn + k − 1

k

)
, if � = Bn or Cn ,

(
n

k

)(
m(n − 1) + k − 1

k

)
+

(
n − 2

k − 2

)(
m(n − 1) + k − 2

k

)
, if � = Dn .

�

In the case m = 1, the following corollary for � = An−1 and � = Bn, Cn is a special case

of [5, (34)] and [5, (46)], respectively.
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Corollary 6.3. The number fk−1(�m
+(�)) is equal to

1

k + 1

(
n − 1

k

)(
mn + k − 1

k

)
, if � = An−1,(

n

k

)(
mn + k − 1

k

)
, if � = Bn or Cn .

Moreover

fk−1(�+(Dn)) =
(

n

k

)(
n + k − 2

k

)
+

(
n − 2

k − 2

)(
n + k − 3

k

)
.

Proof: Combine Corollaries 5.5 and 6.2. �

Remark 6.4. The number of positive filters in �+ with i minimal elements has been com-

puted for the exceptional root systems by Victor Reiner as shown in Table 1.

Proof of Theorem 1.5: We will prove the statement of the theorem without the assumption

that � is irreducible. Let � be the rank of � = �I . We write hk(�I ) instead of hk(�I , 1),

so that h�−k(�I ) counts the filters in �+
I with k minimal elements as well as the ideals in

�+
I with k maximal elements. Let h̃+

k (�) denote the number of positive filters in �+ with k
minimal elements. Counting filters in �+

I by the set of simple roots they contain gives

h�−k(�I ) =
∑
J⊆I

h̃+
k−|J |(�I\J ). (14)

Similarly, counting ideals in �+
I by the set of simple roots they do not contain gives

h�−k(�I ) =
∑
J⊆I

h+
�−|J |−k(�I\J ).

Since it is known [13] that h�−k(�I ) = hk(�I ) the previous relation can also be written

as

h�−k(�I ) =
∑
J⊆I

h+
k−|J |(�I\J ). (15)

Table 1 The numbers h+
i (�) for the exceptional root systems

i 0 1 2 3 4 5 6 7

� = G2 1 4

� = F4 1 20 35 10

� = E6 1 30 135 175 70 7

� = E7 1 56 420 952 770 216 16

� = E8 1 112 1323 4774 6622 3696 770 44
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Comparing (14) and (15) and using Möbius inversion as in Section 5 gives h̃+
k (�J ) = h+

k (�J )

for all J ⊆ I , which is the statement of the theorem. �

7. Remarks

1. The following reciprocity relation

N+(�, m − 1) = (−1)�N (�, −m) (16)

was observed by Fomin and Reading [7, (2.12)]. We will show that, as suggested by S.

Fomin (private communication), this relation is in fact an instance of Ehrhart reciprocity.

Let i(n) be the cardinality of Q̌ ∩ n A◦ for n ∈ N. It is clear that the vertices of the

simplex A◦ have rational coordinates in the basis � of V of simple roots, hence also in the

basis �∨ = {2α/(α, α) : α ∈ �} of V . Therefore the function i(n) is the Ehrhart quasi-

polynomial of A◦ with respect to the lattice Q̌ (see [17, Section 4.6] for an introduction

to the theory of Ehrhart quasi-polynomials). Ehrhart reciprocity [17, Theorem 4.6.26]

implies that

(−1)�i(−n) = # (Q̌ ∩ n A◦)

for n ∈ N and hence, setting n = mh − 1 and consulting [2, Theorem 1.1], that

(−1)�N (�, −m) = # (Q̌ ∩ (mh − 1)A◦).

Remark 4.5 asserts that

# (Q̌ ∩ (mh − 1)A◦) = N+(�, m − 1)

and hence (16) holds.

2. It would be interesting to give combinatorial proofs of the formulas in Corollary 6.3

directly from the description of the relevant complexes given in [7, 9, 18] and Section 2.

3. After this paper was completed the following came to our attention. (i) The numbers h̃+
i (�)

of positive filters in �+ with i minimal elements are also discussed and partially computed

in [14, Section 3]. (ii) Theorem 2.7 in [8] implies that Lemma 2.4 is valid for all pairs

(�, m). In view of (ii) and the equality hi (�, m) = hi (�
m(�)) (see [2, 7, 8]) when � = Dn ,

it follows from Corollary 5.4 that Conjecture 1.2 is also valid for root systems of type D and

arbitrary m.
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