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Abstract The quasi-shuffle product and mixable shuffle product are both generaliza-
tions of the shuffle product and have both been studied quite extensively recently. We
relate these two generalizations and realize quasi-shuffle product algebras as subalge-
bras of mixable shuffle product algebras. As an application, we obtain Hopf algebra
structures in free Rota–Baxter algebras.

1. Introduction

This paper studies the relationship between the mixable shuffle product and the quasi-
shuffle product, both generalizations of the shuffle product.

Mixable shuffles arise from the study of Rota–Baxter algebras. Let k be a commu-
tative ring and let λ ∈ k be fixed. A Rota–Baxter k-algebra of weight λ (previously
called a Baxter algebra) is a pair (R, P) in which R is a k-algebra and P : R → R is
a k-linear map, such that

P(x)P(y) = P(x P(y)) + P(P(x)y) + λP(xy), ∀x, y ∈ R. (1)

The concept of Rota–Baxter algebra was introduced by the mathematician Glen
Baxter [3] in 1960 to study the theory of fluctuations in probability. It was motivated by
the work of Spitzer on random walks [41]. Rota greatly contributed to the study of the
Rota–Baxter algebra by his pioneer work in the late 1960s and early 1970s [36, 37, 38]
and by his survey articles in late 1990s [39, 40]. Unaware of these works, in the early
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1980s the school around Faddeev, especially Semenov-Tian-Shansky [42], developed
a whole theory for the Lie algebraic version of equation (1), which is nowadays well-
know in the realm of the theory of integrable systems under the name of the (modified)
classical Yang–Baxter equation.1 In recent years, Rota–Baxter algebras have found
applications in quantum field theory [8, 9, 15, 16, 17], dendriform algebras [1, 10, 13,
31], number theory [22], Hopf algebras [2] and combinatorics [21].

Key to many of these applications is the realization of the free objects in which
the product is defined by mixable shuffles [23, 24] as a generalization of the shuffle
product. The shuffle product is a natural generalization of the integration by parts
formula and its construction can be traced back to Chen’s path integrals [7] in 1950s.
It has been defined and studied in many areas of mathematics, such as Lie and Hopf
algebras, algebraic K -theory, algebraic topology and combinatorics. Its applications
can also be found in chemistry and biology. It naturally carries the notion of a Rota–
Baxter operator of weight zero.

Another paper [26] on a generalization of the shuffle product, called the quasi-
shuffle product, was published by Hoffman2 [26] in the same year as the papers [23, 24]
on mixable shuffle products. Hoffman’s quasi-shuffle product plays a prominent role
in recent studies of harmonic functions, quasi-symmetric functions, multiple zeta
values [25, 27, 28, 4] (where in special cases it is also called stuffle product or harmonic
product) and q-multiple zeta values [5].

Despite the extensive works on the two generalizations of shuffle products, it appears
that they were carried out without being aware of each other. In particular, the relation
of quasi-shuffles with Rota–Baxter algebras seems unnoticed. For example, in the
numerous applications of quasi-shuffles to multiple zeta values in the current literature,
no connections with Rota–Baxter algebras and mixable shuffles have been mentioned.
In fact, concepts and results on Rota–Baxter algebras were rediscovered in the study of
multiple zeta values. For instance, the construction of the stuffle product in [5] follows
easily from the construction of free Rota–Baxter algebras in [6], while the generalized
shuffle product in [19] is the same as the mixable shuffle product in [23, 24].

The situation is similar in the theory of dendriform algebras. Even though both
quasi-shuffles and Rota–Baxter algebras have been used to give examples of dendri-
form algebras [1, 10, 12, 33], no connection of the two has been made. Also, in the
work of Kreimer, and Connes and Kreimer [29, 30, 8, 9] on renormalization theory in
perturbative quantum field theory, both the shuffle and its generalization in terms of
the quasi-shuffle, and Rota–Baxter algebras appeared, in different contexts.

It was noted in [11] that the two constructions should be related. Our first goal of
this paper is to make this connection precise. We show that the recursive formula for
the quasi-shuffle product has its explicit form in terms of the mixable shuffle product.
Both can be derived from the Baxter relation (1) that defines a Rota–Baxter algebra
of weight 1. We further show that the quasi-shuffle algebra on a locally finite set, to
be recalled below, is a subalgebra of a mixable shuffle algebra on the corresponding
locally finite algebra. With this connection, the concept of quasi-shuffle algebras can
be defined for a larger class of algebras.

1 The latter Baxter is the Australian physicist Rodney Baxter.
2 Hoffman mentioned in [26] that there was also a generalization in the thesis of F. Fares [18].
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This connection allows us to use the Hopf algebra structure on quasi-shuffle algebras
to obtain Hopf algebra structures on free Rota–Baxter algebras, generalizing a previous
work [2] on this topic. In the other direction, considering the critical role played by
the quasi-shuffle (stuffle) product in recent work on multiple zeta values and quasi-
symmetric functions, this connection should allow us to use the theory of Rota–Baxter
algebras in the studies of these exciting areas [14].

The paper is organized as follows. In the next section, we recall the concepts of shuf-
fles, quasi-shuffles and mixable shuffles, and describe their relations (Theorem 2.5).
In Section 3, we use these connections to obtain Hopf algebra structures on free
Rota–Baxter algebras (Theorem 3.3).

2. Shuffles, quasi-shuffles, and mixable shuffles

For the convenience of the reader and for the ease of later references, we recall the
definition of each product before giving the relation among them.

2.1. Shuffle product

The shuffle product can be defined in two ways, one recursively, one explicitly. We will
see that Hoffman’s quasi-shuffle product is a generalization of the recursive definition
and the mixable shuffle product is a generalization of the explicit definition.

Let k be a commutative ring with identity 1k. Let V be a k-module. Consider the
k-module

T (V ) =
⊕
n≥0

V ⊗n.

Here the tensor products are taken over k and we take V ⊗0 = k.
Usually the shuffle product on T (V ) starts with the shuffles of permutations [35, 43].

For m, n ∈ N+, define the set of (m, n)-shuffles by

S(m, n) =
{
σ ∈ Sm+n

∣∣∣∣σ−1(1) < σ−1(2) < . . . < σ−1(m),
σ−1(m + 1) < σ−1(m + 2) < . . . < σ−1(m + n)

}
.

Here Sm+n is the symmetric group on m + n letters.
For a = a1 ⊗ . . . ⊗ am ∈ V ⊗m , b = b1 ⊗ . . . ⊗ bn ∈ V ⊗n and σ ∈ S(m, n), the el-

ement

σ (a ⊗ b) = uσ (1) ⊗ uσ (2) ⊗ . . . ⊗ uσ (m+n) ∈ V ⊗(m+n),

where

uk =
{

ak, 1 ≤ k ≤ m,

bk−m, m + 1 ≤ k ≤ m + n,
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is called a shuffle of a and b. The sum

a X b :=
∑

σ∈S(m,n)

σ (a ⊗ b) (2)

is called the shuffle product of a and b. Also, by convention, a X b is the scalar
product if either m = 0 or n = 0. The operation X extends to a commutative and
associative binary operation on T (V ), making T (V ) into a commutative algebra with
identity, called the shuffle product algebra generated by V , which we denote by the
pair (T (V ), X). It is well-know [43] that, when V is a vector space over a field k, then
(T (V ), X) is endowed with a coproduct (deconcatenation), making it into a Hopf
algebra.

The shuffle product on T (V ) can also be recursively defined as follows. As above
we choose two elements a1 ⊗ · · · ⊗ am ∈ V ⊗m and b1 ⊗ · · · ⊗ bn ∈ V ⊗n , and define

a0X(b1 ⊗ b2 ⊗ . . . ⊗ bn) = a0b1 ⊗ b2 ⊗ . . . ⊗ bn,

(a1 ⊗ a2 ⊗ . . . ⊗ am)Xb0 = b0a1 ⊗ a2 ⊗ . . . ⊗ am, a0, b0 ∈ V ⊗0 = k,

and

(a1 ⊗ . . . ⊗ am)X(b1 ⊗ . . . ⊗ bn)

= a1 ⊗ (
(a2 ⊗ . . . ⊗ am)X(b1 ⊗ . . . ⊗ bn)

)
+ b1 ⊗ (

(a1 ⊗ . . . ⊗ am)X(b2 ⊗ . . . ⊗ bn)
)
, ai , b j ∈ V . (3)

Lemma 2.1. For every element v ∈ V , the k-linear map P(v) : (T (V ),X) →
(T (V ),X), P(v)(a) := v ⊗ a is a Rota–Baxter operator of weight zero.

Proof: Let a := a1 ⊗ · · · ⊗ am ∈ V ⊗m and b := b1 ⊗ · · · ⊗ bn ∈ V ⊗n . It is evident
from the recursive definition of the shuffle product in (3) that P(v)(a) X P(v)(b) =
P(v)(a X P(v)(b)) + P(v)(P(v)(a) X b). �

2.2. Quasi-shuffle product

We recall the construction of quasi-shuffle algebras [26]. Let X be a locally finite set,
that is, X is the disjoint union of finite sets Xn, n ≥ 1. The elements of Xn are defined
to have degree n. Elements in X are called letters and noncommutative monomials in
the letters are called words. Define X̄ = X ∪ {0}. Suppose that there is an operation

[·, ·] : X̄ × X̄ → X̄ (4)

with the properties

S0. [a, 0] = 0 for all a ∈ X̄ ;
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S1. [a, b] = [b, a] for all a, b ∈ X̄ ;
S2. [[a, b], c] = [a, [b, c]] for all a, b, c ∈ X̄ ;
S3. either [a, b] = 0 for all a, b ∈ X̄ , or deg([a, b]) = deg(a) + deg(b) for all a, b ∈

X̄ .

We define a Hoffman set to be a locally finite set X with a pairing (4) that satisfies
conditions S0-S3. Even though the original paper [26] only considered k to be a subfield
of C, much of the construction goes through for any commutative ring k. So we will
work in this generality whenever possible. Consider the k-module underlying the
noncommutative polynomial algebra A = k〈X〉, that is, the free k-algebra generated
by X . The identity 1 of A is called the empty word.

Definition 2.2. Let k be a commutative ring and let X be a Hoffman set. The quasi-
shuffle product ∗ on A is defined recursively by� 1 ∗ w = w ∗ 1 = w for any word w;� (aw1) ∗ (bw2) = a(w1 ∗ (bw2)) + b((aw1) ∗ w2) + [a, b](w1 ∗ w2), for any words

w1, w2 and letters a, b.

When [·, ·] is identically zero, ∗ is the usual shuffle product X defined recursively
in Eq. (3).

Theorem 2.3 ((Hoffman)[26]). (1) (A, ∗) is a commutative graded k-algebra.
(2) When [·, ·] ≡ 0, (A, ∗) is the shuffle product algebra (T (V ),X), where V is the

vector space generated by X.
(3) Suppose further k is a subfield of C. Together with the deconcatenation comulti-

plication

� : A → A ⊗ A, w �→
∑

uv=w

u ⊗ v

where uv is the concatenation of words, and counit

ε : A → k, w �→ δw,1,

(A, ∗) becomes a graded, connected bialgebra, in fact a Hopf algebra. When
[a, b] = 0 for all a, b ∈ X̄ , the Hopf algebra is the shuffle product Hopf algebra.

2.3. Mixable shuffle product

We next turn to the construction of mixable shuffle algebras and their properties [23].
The adjective mixable suggests that certain elements in the shuffles can be mixed or
merged. We first give an explicit formula of the product before giving a recursive
definition which, under proper restrictions, will be seen to be equivalent to Hoffman’s
quasi-shuffle product.

Intuitively, to form the shuffle product, one starts with two decks of cards and puts
together all possible shuffles of the two decks. Suppose a shuffle of the two decks is
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taken and suppose a card from the first deck is followed immediately by a card from
the second deck, we allow the option to merge the two cards and call the result a
mixable shuffle. To get the mixable shuffle product of the two decks of cards, one puts
together all possible mixable shuffles.

Given an (m, n)-shuffle σ ∈ S(m, n), a pair of indices (k, k + 1), 1 ≤ k < m + n,
is called an admissible pair for σ if σ (k) ≤ m < σ (k + 1). Denote T σ for the set of
admissible pairs for σ . For a subset T of T σ , call the pair (σ, T ) a mixable (m, n)-
shuffle. Let |T | be the cardinality of T . By convention, (σ, T ) = σ if T = ∅. Denote

S̄(m, n) = {(σ, T ) | σ ∈ S(m, n), T ⊂ T σ } (5)

for the set of mixable (m, n)-shuffles.
Let A be a commutative k-algebra not necessarily having an identity. We will define

another product, the mixable shuffle product, on the tensor space

T (A) :=
⊕
k≥0

A⊗k

and use it to construct the free commutative Rota–Baxter algebra on A. For a =
a1 ⊗ . . . ⊗ am ∈ A⊗m , b = b1 ⊗ . . . ⊗ bn ∈ A⊗n and (σ, T ) ∈ S̄(m, n), the element

σ (a ⊗ b; T ) = uσ (1)⊗̂uσ (2)⊗̂ . . . ⊗̂uσ (m+n) ∈ A⊗(m+n−|T |),

where for each pair (k, k + 1), 1 ≤ k < m + n,

uσ (k)⊗̂uσ (k+1) =
{

uσ (k)uσ (k+1), (k, k + 1) ∈ T
uσ (k) ⊗ uσ (k+1), (k, k + 1) �∈ T,

is called a mixable shuffle of the words a and b.
Now fix λ ∈ k. Define, for a and b as above, the mixable shuffle product

a �+b : = a �+
λ b =

∑
(σ,T )∈S̄(m,n)

λ|T |σ (a ⊗ b; T ) ∈
⊕

k≤m+n

A⊗k . (6)

As in the case of the shuffle product, the operation �+ extends to a commutative and
associative binary operation on

T +(A) :=
⊕
k≥1

A⊗k = A ⊕ A⊗2 ⊕ . . .

Making it a commutative algebra without identity. Note that this is so even when A
has an identity. This is similar to the case of tensor algebra. In any case, we take the
unitarization

X
+
λ (A) := X

+
k,λ(A) := k ⊕

⊕
k≥1

A⊗k = k ⊕ A ⊕ A⊗2 ⊕ . . . , (7)

Springer



J Algebr Comb (2006) 24:83–101 89

and obtain a commutative algebra with the identity 1 being 1k ∈ k [23]. We call it the
mixable shuffle algebra.

Suppose A has an identity 1A. Define

Xλ(A) := Xk,λ(A) := A ⊗ X
+
k,λ(A) (8)

to be the tensor product algebra. More precisely, the product � = �λ on Xλ(A) is
defined by

(a0 ⊗ a) �λ (b0 ⊗ b) := (a0b0) ⊗ (a �+
λ b), a0, b0 ∈ A, a, b ∈ X

+(A) (9)

and is called the augmented mixable shuffle product. Thus we have the algebra
isomorphism (embedding of the second tensor factor)

α : (X+
λ (A), �+

λ ) → (1A ⊗ X
+
λ (A), �λ). (10)

The pair of products �+
λ and �λ is a special case of the double products in Rota–Baxter

algebras. See the remark after Theorem 2.4.
Define the k-linear endomorphism PA := PA,λ on Xλ(A) by assigning

PA(a0 ⊗ a) = 1A ⊗ a0 ⊗ a, a ∈ A⊗n, n ≥ 1,

PA(a0 ⊗ c) = 1A ⊗ ca0, c ∈ A⊗0 = k
(11)

and extending by additivity. Let jA : A → Xλ(A) be the canonical inclusion map.
Call (Xλ(A), PA) the (mixable) shuffle Rota–Baxter k-algebra on A of weight λ.
The following theorem was proved in [23].

Theorem 2.4. The shuffle Rota–Baxter algebra (Xλ(A), PA), together with the nat-
ural embedding jA, is a free commutative Rota–Baxter k-algebra on A of weight
λ. More precisely, for any Rota–Baxter k-algebra (R, P) of weight λ and alge-
bra homomorphism f : A → R, there is a Rota–Baxter k-algebra homomorphism
f̃ : (Xλ(A), PA) → (R, P) such that f = f̃ ◦ jA.

The reader might find it unusual to see two products �+
λ and �λ defined on the same

underlying module ⊕k≥1 Ak . This is in fact typical in Rota–Baxter algebras. Let (R, P)
be a Rota–Baxter algebra of weight λ. Then

x �P y := x P(y) + P(x)y + λxy, ∀ x, y ∈ R,

defines an associative product on R, and, together with the linear operator P : R → R,
gives another Rota–Baxter algebra structure on R. This is called the double structure
on (R, P), denoted by (R, �P , P) to emphasize the different product. Furthermore,
P : (R, �P , P) → (R, P) is a Rota–Baxter algebra homomorphism: P(x �P y) =
P(x)P(y). This property is known to mathematicians since the 1960s. The Lie algebra
variation was independently discovered by physicists working in classical integrable
systems [42]. In general, we use the product on R to obtain the “double product”
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�P . In the construction of the free Rota–Baxter algebra reviewed above, we did the
opposite. We constructed the product �+

λ first and use it to obtain �λ. But �+
λ is the

double product of �λ, that is,

x �+
λ y = x �λ PA(y) + PA(x) �λ y + λx �λ y. (12)

This is not immediately clear just from the definitions of the products, but follows
by considering Theorem 2.4, which necessarily implies the map PA to be a weight λ

Rota–Baxter operator. For then we have

1A ⊗ (x �+
λ y) = (1A ⊗ x) �λ (1A ⊗ y)

= PA(x) �λ PA(y)

= PA
(
x �λ PA(y) + PA(x) �λ y + λx �λ y

)
= 1A ⊗ (

x �λ PA(y) + PA(x) �λ y + λx �λ y
)
.

As PA is injective, we obtain Eq. (12). We will return to this property in the proof of
Theorem 2.5.

2.4. The connection

We now establish the connection between quasi-shuffle product and mixable shuffle
product.

Let k be a commutative ring with identity. Let X = ∪n≥1 Xn be a Hoffman set. Then
the pairing [·, ·] in (4) extends by k-linearity to a binary operation on the free k-module
A = k{X} on X , making A into a commutative k-algebra without identity. Further A
is graded, with homogeneous components An = k{Xn}, the free k-module generated
by Xn . Let Ã = k ⊕ A be the unitary k-algebra spanned by A. Then Ã = k{X̃} where
X̃ = {1k} ∪ X with 1 Ã := (1k, 0) the identity of Ã. Here and in the rest of the paper,
we will use 1A (instead of 1 Ã) to denote this identity of Ã. We will call A (resp. Ã)
the algebra (resp. unitary algebra) spanned by X .

With the notations in Eq. (7) and (8), we have embeddings

β : X
+
λ (A) → X

+
λ ( Ã) → Xλ( Ã),

a �→ a �→ 1A ⊗ a.
(13)

of k-algebras. Here the first embedding is induced by the embedding A ↪→ Ã and the
second embedding is the natural one, X+

λ ( Ã) → Xλ( Ã) := Ã ⊗ X
+
λ ( Ã).

Theorem 2.5. For a Hoffman set X, the quasi-shuffle algebra A = k〈X〉 is isomor-
phic to the algebra X

+
1k

(A) and thus to the subalgebra 1A ⊗ X
+
1k

(A) of the free
commutative Rota–Baxter algebra X1k ( Ã) of weight 1k.

Proof: We define

f : X → X ⊆ A = A⊗1 ⊂ X
+
1k

(A)
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to be the canonical embedding. We note that both A, with the concatenation product,
and X

+
1k

(A), with the tensor product, are the free unitary non-commutative k-algebra
on X , that is, the tensor algebra on A. Thus f extends uniquely to an isomorphism
f̄ : A → X

+
1k

(A) of vector spaces such that for any letters a1, · · · , an ∈ X , we have

f̄ (a1 · · · an) = a1 ⊗ · · · ⊗ an ∈ A⊗n.

To prove that f̄ is also an isomorphism between A, with the quasi-shuffle product
∗, and X

+
1k

(A), with the mixable shuffle product �+
1k

, we just need to show that f̄
preserves the products. We first note that the recursive relation of ∗ in Definition 2.2 can
be inductively defined as follows. For any m, n ≥ 1 and a := a1 · · · am , b := b1 · · · bn

with ai , b j ∈ X, 1 ≤ i ≤ m, 1 ≤ j ≤ n, define a ∗ b by induction on the sum m + n.
Then m + n ≥ 2. When m + n = 2, we have a = a1 and b = b1. Define

a ∗ b = a1b1 + b1a1 + [a1, b1]. (14)

Assume that a ∗ b has been defined for m + n ≥ k ≥ 2 and consider a and b with
m + n = k + 1. Then m + n ≥ 3 and so at least one of m and n is greater than 1. Then
we define

a ∗ b = a1b1 · · · bn + b1

(
a1 ∗ (b2 · · · bn)

) + [a1, b1]b2 · · · bn, when m = 1, n ≥ 2,

(15)

a ∗ b = a1

(
(a2 · · · am) ∗ b1

) + b1a1 · · · am + [a1, b1]a2 · · · am, when m ≥ 2, n = 1,

(16)

a ∗ b = a1

(
(a2 · · · am) ∗ (b1 · · · bn)

) + b1

(
(a1 · · · am) ∗ (b2 · · · bn)

)
+[a1, b1]

(
(a2 · · · am) ∗ (b2 · · · bn)

)
, when m, n ≥ 2. (17)

Here the products by ∗ on the right hand side of each equation are well-defined by the
induction hypothesis. Then we define the multiplication by 1k by claiming that 1k is
the identity.

We now prove the multiplicity

f̄ (a ∗ b) = f̄ (a) �+
1k

f̄ (b). (18)

by a similar induction on m + n. When m + n = 2, then m = n = 1. Hence by Eq.
(14), we have

f̄ (a1 ∗ b1) = f̄ (a1b1 + b1a1 + [a1, b1]) = a1 ⊗ b1 + b1 ⊗ a1 + [a1, b1].

This is precisely f̄ (a1) �+ f̄ (b1) = a1 �+ b1 by Eq. (6) since the first two terms are
the shuffles of a1 and b1 and the third term comes from the only admissible pair (1, 2)
for the (1, 1)-shuffle id ∈ S(1, 1).
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Assume that Eq. (18) has been proved for m + n ≥ k ≥ 2 and consider a and b
with m + n = k + 1. Then either m = 1 and n ≥ 2, or m ≥ 2 and n = 1, or m ≥ 2
and n ≥ 2. We will check Eq. (18) when m ≥ 2 and n ≥ 2. The other cases are similar.

By Eq. (9), we have

(1A ⊗ f̄ (a)) �1k (1A ⊗ f̄ (b)) = 1A ⊗ (
f̄ (a) �+

1k
f̄ (b)

)
.

On the other hand, by Theorem 2.4, PA is a Rota–Baxter operator. So we have

(1A ⊗ f̄ (a)) �1k (1A ⊗ f̄ (b)) = PA( f̄ (a)) �1k PA( f̄ (b)) (by Eq. (11))

= PA

(
f̄ (a) �1k PA( f̄ (b)) + PA( f̄ (a)) �1k f̄ (a) + f̄ (a) �1k f̄ (b)

)
(by Rota − Baxter relation Eq. (1))

= 1A ⊗
(

(a1 ⊗ · · · ⊗ am) �1k (1A ⊗ b1 ⊗ · · · ⊗ bn)

+ (1A ⊗ a1 ⊗ · · · ⊗ am) �1k (b1 ⊗ · · · ⊗ bn) + (a1 ⊗ · · · ⊗ am) �1k (b1

⊗ · · · ⊗ bn)
)

(by definitions of f̄ and PA)

= 1A ⊗
(

a1 ⊗ (
(a2 ⊗ · · · ⊗ am) �+

1k
(b1 ⊗ · · · ⊗ bn)

)
+ b1 ⊗ (

(a1 ⊗ · · · ⊗ am) �+
1k

(b2 ⊗ · · · ⊗ bn)
)

+ [a1, b1] ⊗ (
(a2 ⊗ · · · ⊗ am) �+

1k
(b2 ⊗ · · · ⊗ bn)

))
(by Eq. (9))

= 1A ⊗
(

a1 ⊗ f̄
(
(a2 · · · am) ∗ (b1 · · · bn)

) + b1 ⊗ f̄
(
(a1 · · · am) ∗ (b2 · · · bn)

)
+ [a1, b1] ⊗ f̄

(
(a2 · · · am) ∗ (b2 · · · bn)

))
(by induction hypothesis)

= 1A ⊗ f̄
(

a1

(
(a2 · · · am) ∗ (b1 · · · bn)

) + b1

(
(a1 · · · am) ∗ (b2 · · · bn)

)
+ [a1, b1]

(
(a2 · · · am) ∗ (b2 · · · bn)

))
(by definition of f̄ ))

= 1A ⊗
(

f̄
(
(a1 · · · am) ∗ (b1 · · · bn)

))
(by Eq. (17)).

Since the map a �→ 1A ⊗ a is injective, we have f̄ (a ∗ b) = f̄ (a) �+
1k

f̄ (b). This com-

pletes the induction. Thus whenλ = 1, we have f̄ (a ∗ b) = f̄ (a) �+
1k

f̄ (b) for all words
a and b with m, n ≥ 1, and hence for all a and b with m, n ≥ 0 since when m = 0
or n = 0, we have a = 1 or b = 1 and the multiplications through ∗ and �+

1k
are both

given by the identity. This proves the first isomorphism. The second one then follows
from Eq. (13). �

The theorem can also be proved by showing that �+ satisfies the same recursion
relations (14)–(17) of ∗. We record these relations for later applications.
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Lemma 2.6. For a := a1 ⊗ · · · ⊗ am and b := b1 ⊗ · · · ⊗ bn in Xλ( Ã), we have

(i) a �+ b = a1 ⊗ b1 + b1 ⊗ a1 + λ[a1, b1], when m, n = 1,

(i i) a �+ b = a1 ⊗ b1 ⊗ · · · ⊗ bn + b1 ⊗ (
a1 �+ (b2 ⊗ · · · ⊗ bn)

)
+λ[a1, b1] ⊗ b2 ⊗ · · · ⊗ bn, when m = 1, n ≥ 2,

(i i i) a �+ b = a1 ⊗ (
(a2 ⊗ · · · ⊗ am) �+ b1

) + b1 ⊗ a1 ⊗ · · · ⊗ am (19)
+λ[a1, b1] ⊗ a2 ⊗ · · · ⊗ am, when m ≥ 2, n = 1,

(iv) a �+ b = a1 ⊗ (
(a2 ⊗ · · · ⊗ am) �+ (b1 ⊗ · · · ⊗ bn)

)
+b1 ⊗ (

(a1 ⊗ · · · ⊗ am) �+ (b2 ⊗ · · · ⊗ bn)
)

+ λ[a1, b1] ⊗ (
(a2 ⊗ · · · ⊗ am) �+ (b2 ⊗ · · · ⊗ bn)

)
, when m, n ≥ 2.

Proof: We will only prove the fourth equation. Verifications of the others are simpler.
Using Eq. (9) and the Rota–Baxter operator PA(x) = 1A ⊗ x , we have

1A ⊗ (a �+ b) = (1A ⊗ a) � (1A ⊗ b)

= PA(a) � PA(b)

= PA
(
a � PA(b) + PA(a) � b + λa � b

)
= PA

(
a � (1A ⊗ b) + (1A ⊗ a) � b + λa � b

)
= 1A ⊗

(
a1 ⊗ (

(a2 ⊗ · · · am) �+ b
) + b1 ⊗ (

a �+ (b2 ⊗ · · · ⊗ bn)
)

+λ[a1, b1] ⊗ (
(a2 ⊗ · · · ⊗ am) �+ (b2 ⊗ · · · ⊗ bn)

))
.

By the injectivity of PA, we have (iv). �

We now prove the following consequence of Theorem 2.5 and Theorem 2.3.

Corollary 2.7. Under the same assumptions of Theorem 2.5 and the additional as-
sumption that k is a subfield of C, for any λ ∈ k, the subalgebra X

+
λ (A) of X

+
λ ( Ã)

and the subalgebra 1A ⊗ X
+
λ (A) of Xλ( Ã) are Hopf algebras.

In the next section, we will extend this Hopf algebra to a larger Hopf algebra in Xλ( Ã).

Proof: Because of the isomorphism (10), we only need to prove for one of the sub-
algebras for any given λ. When λ = 1, the first part follows from Theorem 2.5 and
Theorem 2.3. When λ = 0, the first part is well-known (see [26], for example).

Now assume λ �= 1, 0. We will construct an algebra isomorphism

g : 1A ⊗ X
+
λ (A) → 1A ⊗ X

+
1 (A).

Then the Hopf algebra structure on the later algebra gives a Hopf algebra structure on
the former one.
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We first note that, if P is a Rota–Baxter operator of weight 1k on an algebra, then
Q := λP is a Rota–Baxter operator of weight λ on the same algebra. This is clear
since multiplying λ2 to the weight 1k Rota–Baxter equation of P:

P(x)P(y) = P(x P(y)) + P(P(x)y) + P(xy),

we obtain the weight λ Rota–Baxter equation of Q:

Q(x)Q(y) = Q(x Q(y)) + Q(Q(x)y) + λQ(xy).

This applies in particular to the free commutative Rota–Baxter algebra X1k ( Ã) of
weight 1k. Thus (X1k ( Ã), Q), where Q = λPA,1k , is a Rota–Baxter algebra of weight
λ. Here, to avoid confusion, we have used PA,1k to denote the Rota–Baxter operator
PA of weight 1k and will use PA,λ to denote the Rota–Baxter operator of weight λ on
Xλ( Ã). By Theorem 2.4, (Xλ( Ã), PA,λ) is the free Rota–Baxter algebra over Ã. So
the natural algebra embedding f : A → Ã → X1k ( Ã) induces a homomorphism

f̃ : (Xλ( Ã), PA,λ) → (X1k ( Ã), Q)

of Rota–Baxter algebras of weight λ, such that f̃ (a0) = a0 for a0 ∈ Ã. We will use
the following lemma.

Lemma 2.8. For any n ≥ 0 and a0, · · · , an ∈ Ã, we have

f̃ (a0 ⊗ · · · ⊗ an) = λn(a0 ⊗ · · · ⊗ an). (20)

Proof: We prove the equation by induction on n ≥ 0. When n = 0, we have f̃ (a0) =
f (a0) = a0, so the equation is true. Assume that the equation has been proved for n =
k ≥ 0 and consider a0 ⊗ · · · ⊗ ak+1 ∈ Ã⊗(k+1) ⊆ Xλ( Ã). Then using the properties
of f̃ , PA,λ and �λ, together with the induction hypothesis, we have

f̃ (a0 ⊗ · · · ⊗ ak+1) = f̃ (a0 �λ (1A ⊗ a1 ⊗ · · · ⊗ ak+1))

= f̃ (a0 �λ PA,λ(a1 ⊗ · · · ⊗ ak+1))

= f̃ (a0) �1k Q( f̃ (a1 ⊗ · · · ⊗ ak+1))

= a0 �1k λPA,1k (λka1 ⊗ · · · ⊗ ak+1)

= λk+1a0 �1k (1A ⊗ a1 ⊗ · · · ⊗ ak+1)

= λk+1a0 ⊗ · · · ⊗ ak+1.

This completes the induction. �

Since λ is invertible, f̃ has an inverse defined by

f ′(a0 ⊗ · · · ⊗ an) = λ−na0 ⊗ · · · ⊗ an.
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Therefore Xλ( Ã) is isomorphic to X1k ( Ã). For 1A ⊗ a1 ⊗ · · · ⊗ an ∈ 1A ⊗ A⊗n , we
have

f̃ (1A ⊗ a1 ⊗ · · · ⊗ an) = λn1A ⊗ a1 ⊗ · · · ⊗ an = 1A ⊗ λna1 ⊗ · · · ⊗ an

which is again in 1A ⊗ A⊗n . Similarly f ′(1A ⊗ A⊗n) ⊆ 1A ⊗ A⊗n . Thus f̃ restricts
to an isomorphism from 1A ⊗ X

+
λ (A) to 1A ⊗ X

+
1k

(A) and thus transfers the Hopf
algebra structure from the image to the preimage. �

3. Hopf algebras in Rota–Baxter algebras

We first recall the following theorem from [2].

Theorem 3.1 (Andrews-Guo-Keigher-Ono). For any commutative ring k with iden-
tity and for any λ ∈ k, the free Rota–Baxter algebra Xλ(k) is a Hopf k-algebra.

As shown in [2], when λ = 0, we have the divided power Hopf algebra.
We now extend this result to X( Ã) for a k-algebra Ã coming from a Hoffman set

X . To avoid confusion, we will use 1k for the identity of k and 1A for the identity of
Ã even though they are often identified under the structure map k → Ã of the unitary
k-algebra Ã.

Fix a λ ∈ k. First note that, as a k-module,

X
+(k) =

⊕
n≥0

k⊗n = k ⊕ k ⊕ k⊗2 + · · · .

There are two copies of k in the sum since k⊗0 = k ∼= k⊗1. The identity of X
+(k) is

the identity in the first copy, which we denote by 1⊗0
k = 1 as we did in (7). The second

copy of k, as well as its tensor powers k⊗n, n ≥ 2, are tensor powers of k-modules.
They are isomorphic as k-modules, but not identical. If we take 1k as a k-basis of k,
then we have

X
+(k) = k1 ⊕ k1k ⊕ k1⊗2

k ⊕ · · · =
⊕
n≥0

k1⊗n
k ,

where 1⊗k
k , k ≥ 1, are tensor powers of the vector 1k. Then

X(k) = k ⊗ X
+(k) = k(1k ⊗ 1) ⊕

⊕
n≥1

k(1k ⊗ 1⊗n
k )

with the identity 1k ⊗ 1. Since k is the base ring, the algebra homomorphism (10)
gives

α : (X+(k), �+) ∼= (1k ⊗ X
+(k), �) ∼= (X(k), �).
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Thus, by Theorem 3.1 we get

Lemma 3.2. For any λ ∈ k, (X+(k), �+) is a Hopf algebra.

For now let Ã be any unitary k-algebra with unit 1A. Then

X
+( Ã) =

⊕
n≥0

Ã⊗n = k1 ⊕ Ã ⊕ Ã⊗2 ⊕ · · ·

and

X( Ã) = Ã ⊗ X
+( Ã) = ( Ã ⊗ k1) ⊕ Ã⊗2 ⊕ Ã⊗3 · · · .

Since X( Ã) is an Ã-algebra, and hence a k-algebra, we have the structure map γ :
k → X( Ã) given by γ (c) = c1A ⊗ 1. By the universal property of the free k-Rota–
Baxter algebra X(k), we have an induced homomorphism γ : X(k) → X( Ã) of
Rota–Baxter algebras. It is given by [23]

γ (1k ⊗ 1⊗n
k ) = 1A ⊗ 1⊗n

A , n ≥ 0.

Let

γ + : X
+(k) → X

+( Ã), 1⊗n
k �→ 1⊗n

A , n ≥ 0.

We have the following commutative diagram

X
+(k)

γ +
−→ X

+( Ã)
↓ ↓

X(k) = k ⊗ X
+(k)

γ−→ X( Ã) = Ã ⊗ X
+( Ã)

where the vertical arrow are the injective maps to the second tensor factors.

Theorem 3.3. Let k ⊆ C be a field. Let X be a Hoffman set and let the algebras A and
Ã be the algebra and unitary algebra generated by X (as defined before Theorem 2.5).
Let λ ∈ k.

(1) The algebra product of γ +(X+(k)) and X
+(A) in X

+( Ã) has a Hopf algebra
structure that expands the Hopf algebra structures onγ +(X+(k)) (see Lemma 3.2)
and X

+(A) (see Corollary 2.7).
(2) The algebra product of γ (X(k)) and 1A ⊗ X

+(A) in X( Ã) has a Hopf algebra
structure that expands the Hopf algebra structures on γ (X(k)) (see Theorem 3.1)
and 1A ⊗ X

+(A) (see Corollary 2.7).

See Theorem 3.6 for a characterization of the elements in these Hopf algebras.
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Proof: Since the the isomorphism α : X
+( Ã) → 1A ⊗ X

+( Ã) in (10) restricts to
isomorphisms γ +(X+(k)) → γ (X(k)) and X

+(A) → 1A ⊗ X
+(A), we only need

to prove the first statement. Since the tensor product of two commutative, cocommu-
tative Hopf algebras is a Hopf algebra [34, 32], assuming Proposition 3.4 which is
stated and proved below, we see that γ +(X+(k)) �+ (1 ⊗ X

+(A)) is a Hopf algebra
for any λ ∈ k by Theorem 3.1 and Corollary 2.7. �

Proposition 3.4. For any weight λ ∈ k, let �+ be the mixable shuffle product of weight
λ. The two subalgebras γ +(X+(k)) and X

+(A) of X
+( Ã) are linearly disjoint.

Therefore, γ +(X+(k)) �+
X

+(A) is isomorphic to the tensor product γ (X(k)) ⊗
(1A ⊗ X

+(A)).

Proof: Let k ⊆ C, X, X̃ , A and Ã be as in Theorem 3.3. Since X is locally finite,
it is countable. So we can write X = {yn

∣∣ n ≥ 1}. Also denote y0 = 1A, the unit of
Ã. Thus X̃ = {yn

∣∣ n ∈ N} and Ã = ⊕n≥0kyn. For r ≥ 1 and I = (i1, · · · , ir ) ∈ Nr ,
denote y⊗I = yi1

⊗ · · · ⊗ yir . Then

A⊗r =
⊕

I∈Nr
>0

k y⊗I , Ã⊗r =
⊕
I∈Nr

k y⊗I .

By convention, we define N0 = N0
>0 = {∅}, and y⊗∅ = 1. Let I = ∪r≥0Nr

>0 and Ĩ =
∪r≥0Nr . We then have

X
+(A) =

⊕
I∈I

k y⊗I , X
+( Ã) =

⊕
I∈Ĩ

k y⊗I .

Recall that

γ +(X+(k)) =
⊕
n≥0

k1⊗n
A .

So to prove that ⊕n≥0k 1⊗n
A and X

+(A) are linearly disjoint under the product �+, we
only need to prove

Claim 3.1. The set {1⊗n
A �+ y⊗I

∣∣ n ≥ 0, I ∈ I} is linearly independent.

Before proceeding further, we give a formula for the product 1⊗n
A �+ y⊗I which

expresses a mixable shuffle product as a sum of shuffle products in Eq. (2).

Lemma 3.5. For any m ≥ 0 and I ∈ I, we have

1⊗m
A �+ y⊗I =

m∑
i=0

λi

(
n

i

)
1⊗(m−i)

A Xy⊗I .
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Proof: Define the length of I ∈ Nr to be �(I ) = r . We will prove by induction on
w = m + �(I ). When w = 0, we have m = �(I ) = 0. Then 1⊗m

A and y⊗I are both 1, so
the lemma is clear, as it is if either m = 0 or �(I ) = 0. Suppose it holds for all 1⊗m

A �+

y⊗I with m + � < w. For given 1⊗m
A and y⊗I = yi1

⊗ · · · ⊗ yir with m ≥ 1, r ≥ 1
and m + r = w, let y′ = yi2

⊗ · · · ⊗ yir if r > 1 and y′ = 1 if r = 1. Applying the
recursive relation of �+ in Eq. (19), the induction hypothesis, the Pascal equality and
the recursive relation of X in Eq. (3), we have

1⊗m
A �+ y⊗I = 1A ⊗ (1⊗(m−1)

A �+ y⊗I ) + yi1
⊗ (1⊗m

A �+ y′) + λ yi1
⊗ (1⊗(m−1)

A �+ y′)

= 1A ⊗
(

m−1∑
i=0

λi

(
n

i

)
1⊗(m−1−i)

A Xy⊗I

)
+ yi1

⊗
(

m∑
i=0

λi

(
n−1

i

)
1⊗(m−i)

A Xy′
)

+ λ yi1
⊗

(
m−1∑
i=0

λi

(
n−1

i

)
1⊗(m−1−i)

A Xy′
)

1A ⊗
(

m−1∑
i=0

λi

(
n

i

)
1⊗(m−1−i)

A Xy⊗I

)
+ yi1

⊗
(

m∑
i=0

λi

(
n−1

i

)
1⊗(m−i)

A Xy′
)

+ yi1
⊗

(
m∑

i=1

λi

(
n−1

i−1

)
1⊗(m−i)

A Xy′
)

1A ⊗
(

m−1∑
i=0

λi

(
n

i

)
1⊗(m−1−i)

A Xy⊗I

)
+ yi1

⊗
(

m∑
i=0

λi

(
n

i

)
1⊗(m−i)

A Xy′
)

(3)=
m−1∑
i=0

λi

(
n

i

)
1⊗(m−i)

A Xy⊗I + λm y ⊗
(

n

m

)
1 Xy′.

Since yi1
⊗ (1 Xy′) = yi1

⊗ y′ = y = 1⊗0
A Xy, we get exactly what we want. �

We continue with the proof of Proposition 3.4. For r ≥ 1, let [r ] = (1, · · · , r ). For
a sequence I = (i1, · · · , ir ) ∈ Nr , denote SSupp(I ) (called sequential support) for
the subsequence (with ordering) of I of non-zero entries. For an all zero sequence
I = (0, · · · , 0) and the empty sequence ∅, we define SSupp(I ) = ∅. We then get a
map

SSupp : Ĩ → Ĩ.

Clearly, I = {I ∈ Ĩ
∣∣ SSupp(I ) = I }. So

Ĩ =
•⋃

I∈ISSupp−1(I ).
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For each I ∈ I, consider the subset OI = {y⊗J

∣∣ J ∈ SSupp−1(I )}. Then we have

{y⊗I

∣∣ I ∈ Ĩ} =
•⋃

I∈IOI .

So OI span linearly independent subspaces of X( Ã).
By Lemma 3.5, 1⊗n

A �+ y⊗I , n ≥ 0, is in the linear span of OI . Thus to prove
Claim 3.1 and hence Proposition 3.4, we only need to prove that, for a fix I ∈ I, the
subset {1⊗n

A �+ y⊗I

∣∣ n ≥ 0} is linearly independent.
Suppose the contrary. Then there are integers n1 > n2 > · · · > nr ≥ 0 and c1 �= 0

in k such that
∑r

i=1 ci 1
⊗ni
A �+ yI = 0. Express this sum as a linear combination in

terms of the basis OI . By Lemma 3.5, the coefficient of 1⊗n1

A ⊗ yI is c1, so we must
have c1 = 0, a contradiction. �

It is desirable to characterize the elements in the Hopf algebra γ +(X+(k)) �+

X
+(A). This is our last goal in this article. Recall that the length of y⊗I with

I ∈ Nr , r ≥ 0, is defined to be �(y⊗r ) = �(I ) = r . For a given I ∈ Nn , the sum∑
y⊗J over J ∈ Nn with SSupp(J ) = SSupp(I ), is called the one-shuffled element

of y⊗I , denoted by O(y⊗I ). So O(y⊗I ) is the sum over elements of OI of length
�(I ). For example, if I = (2, 0, 1), then the corresponding one-shuffle element of
y⊗I = y2 ⊗ 1A ⊗ y1 is O(y⊗I ) = y2 ⊗ 1A ⊗ y1 + 1A ⊗ y2 ⊗ y1 + y2 ⊗ y1 ⊗ 1A. On
the other hand, O(y⊗I ) is y⊗I if I is either an all zero sequence or an all non-zero
sequence. It is so named because the sum can be obtained from shuffling the subse-
quence of y⊗I of the 1A-entries with the subsequence of I of the non-1A entries (from
SSupp(I )). To put it in another way, define a relation ∼ on Ĩ by I1 ∼ I2 if �(I1) = �(I2)
and SSupp(I1) = SSupp(I2). Then it is easy to check that ∼ is an equivalence relation
and a one-shuffled element is of the form

∑
y⊗J where the sum is taken over all J in

an equivalence class.
We now give another version of Theorem 3.3.

Theorem 3.6. Under the hypotheses of Theorem 3.3, the subspace of X+( Ã) spanned
by one-shuffled elements form a Hopf algebra that contains the Hopf algebras
γ +(X+(k)) and X

+(A).

By Theorem 3.3, we only need to prove the following lemma.

Lemma 3.7. The product of γ +(X+(k)) and X
+(A) in X

+( Ã) is given by the
subspace generated by one-shuffled elements.

Proof: To prove the lemma, let U be the product of γ +(X+(k)) and X
+(A) in

X
+( Ã), and let V be the subspace of one-shuffled elements of X

+( Ã). Then by
Lemma 3.5 and the comments before the theorem, we have U ⊆ V . To prove V ⊆ U ,
we only need to show that, for each k ≥ 0 and I ∈ (N+)n, n ≥ 0, the one-shuffled
element 1⊗k

A X x⊗I is in U . When n = 0, x⊗I = 1. So 1⊗k
A X x⊗I = 1⊗k

A which is
in γ +(X+(k)) and hence in U . When n ≥ 1, we use induction on k. When k = 0,
then 1⊗k

A X x⊗I = x⊗I which is in X
+(A), hence is in U . Assume that it is true for
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1⊗k
A , k < m and consider 1⊗m

A X x⊗I . By Lemma 3.5, we have

1⊗m
A �+ y⊗I =

m∑
i=0

λi

(
n

i

)
1⊗(m−i)

A Xy⊗I .

The left hand side of the equation is in U and, by induction, every term on the right
hand side except the first one (with i = 0) is also in U . Thus the first term, which is
1⊗m

A Xy⊗, is also in U . This completes the induction. �

Acknowledgements We thank Zongzhu Lin and James Stasheff for helpful discussions and thank the
referee for detailed comments that improved the clarity of the presentation. The first named author thanks
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