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Abstract We consider Green polynomials at roots of unity, corresponding to partitions
which we call l-partitions. We obtain a combinatorial formula for Green polynomials
corresponding to l-partitions at primitive lth roots of unity. The formula is rephrased
in terms of representation theory of the symmetric group.

1. Introduction

Green polynomials [5] at roots of unity were first considered by A. Morris and N.
Sultana. They study in [15] Hall-Littlewood symmetric functions at roots of unity in
connection with modular representation theory of the symmetric group. They conjec-
ture a certain recurrence formula for Green polynomials at roots of unity corresponding
to rectangle partitions. The orders of the roots are restricted to the multiplicity of the
rectangle partition. The conjecture was proved by A. Lascoux, B. Leclerc and J. -Y.
Thibon [9], as an application of their result on Hall-Littlewood functions at roots of
unity. They showed in [8] a factorization formula for Hall-Littlewood functions at roots
of unity, and a plethystic formula for the case corresponding to rectangle partitions.
These formulas play a key role in the proof of the conjecture.

In this paper, we consider Green polynomials at roots of unity, corresponding to
partitions which we call l-partitions. The l-partitions are defined to be the partitions
whose multiplicities are all divisible by a fixed positive integer l. Lascoux-Leclerc-
Thibon showed that Green polynomials corresponding to l-partitions at primitive lth
roots of unity are described by the inner product of complete symmetric functions
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and power-sum symmetric functions (see, e.g., [2]). We obtain in the present article
an explicit formula for the inner product in terms of partitions, and hence obtain a
combinatorial description of those Green polynomials at primitive lth roots of unity.

We also consider the formula in terms of representation theory of the symmetric
group. Let n be a positive integer, and Sn the symmetric group of n letters. There corre-
sponds to each partition μ of positive integer n a graded Sn-module Rμ, the DeConcini-
Procesi-Tanisaki algebra corresponding to μ. The DeConcini-Procesi-Tanisaki algebra
was first considered by DeConcini-Procesi [3] as an algebraic model for the Springer
representation [10, 19] of Weyl groups. It is known that the Green polynomial corre-
sponding to a partition μ gives the graded character value of the graded Sn-module
Rμ. We understand our combinatorial formula in terms of the representation theory
of Sn on these graded representations, in the case where the partition is an l-partition.
Indeed, the formula is rephrased as a representation theoretical interpretation of a
certain combinatorial property of the graded module Rμ.

If μ is an l-partition, then the subspaces of Rμ, defined by taking the direct sum
of homogeneous components whose degrees are congruent modulo l, have the same
dimension (dim Rμ)/ l. The property is referred to in this paper as ‘coincidence of
dimension’. In this case, our formula states that these submodules of Rμ of equal di-
mension are induced from representations of certain subgroup of Sn , which are all one-
dimensional. In fact, this representation theoretical interpretation of the coincidence
of dimensions of Rμ is equivalent to the following Sn × Cl-module isomorphism:

Rμ
∼= IndSn

Sμ
R∅,

where Sμ denotes the Young subgroup corresponding to the partition μ, R∅ the
DeCoicini-Procesi-Tanisaki algebra corresponding to the empty partition ∅ which
is isomorphic to C, viewed as the trivial representation of Sμ. As Sn-modules, this
isomorphism is well known (c.f., [4]). The point which should be respected here is
that the isomorphism includes the action of the cyclic group Cl . It can be regarded
that the isomorphism partially recovers the grading in Lusztig’s induction theorem of
the Springer representations for the symmetric groups (c.f., [17]).

The paper is organized as follows. In Section 2, we collect fundamental facts
on Hall-Littlewood functions and Green polynomials at roots of unity. Formulas of
Lascoux-Leclerc-Thibon on these materials are reviewed. In Section 3, we obtain
a combinatorial formula for the Green polynomials corresponding to l-partitions at
primitive lth roots of unity. In Section 4, we consider, as an application of the formula,
the coincidence of dimensions of the algebra Rμ in terms of representation theory of
Sn . In Section 5, we make a final remark.

2. Green polynomials and modified Hall-Littlewood functions

Let x = (x1, x2, . . . , xn, . . .) denote a set of infinite variables, and � the ring of sym-
metric functions with the variables x1, x2, . . . , xn, . . . We follow [11] for notation
on symmetric functions. Let pρ(x) denote the power-sum symmetric function cor-
responding to a partition ρ � n, and Pμ(x ; q) denote the Hall-Littlewood symmetric
function corresponding to a partition μ � n. Since the Hall-Littlewood functions form
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a Z[q]-basis of the ring of symmetric functions �[q] = � ⊗ Z[q], we can expand
pρ(x) into a linear combination of Pμ(x ; q)’s with the coefficients in Z[q]:

pρ(x) =
∑
μ�n

Xμ
ρ (q)Pμ(x ; q), Xμ

ρ (q) ∈ Z[q].

Then the Green polynomials Qμ
ρ (q) are defined by

Qμ
ρ (q) = qn(μ) Xμ

ρ (q−1). (2.1)

They are polynomials in q with integer coefficients, and the degree is given by n(μ) =∑d
i=1(i − 1)μi , where μ = (μ1, μ2, . . . , μd ).
The aim of the present article is to consider the Green polynomials at roots of

unity for the partitions which we call the l-partitions, that is, the partitions μ =
(1m1 2m1 · · · nmn ) for which the multiplicities m1, m2, . . . , mn are all divisible by a
positive integer l. We also use a symbol mi (μ) to depict the multiplicity of i in a
partition μ. We recall here a result of Lascoux, Leclerc and Thibon on the Green
polynomials for l-partitions at lth roots of unity (see, e.g., [2, Theorem 9.7]). Let l
be a positive integer, and μ = (1m1 2m2 · · · nmn ) an l-partition. Then μ1/ l denotes the
partition (1q1 2q2 · · · nqn ), where mi = lqi for each i = 1, 2, . . . n. For a partition ν of a
positive intger, let lν denote the partition obtained by multiplying each component of ν

by l. Let hν denotes the complete symmetric function corresponding to the partition ν,
and 〈 f, g〉 denotes the usual inner product of the ring of symmetric functions, defined
by

〈pλ(x), pμ(x)〉 = zλδλμ, (2.2)

where zλ = 1k1 k1!2k2 k2! · · · nkn kn! for λ = (1k1 2k2 · · · nkn ), and δλμ the Kronecker
delta.

Proposition 1 (Lascoux-Leclerc-Thibon). Let l be a positive integer, and μ an l-
partition. Let ζl be a primitive lth root of unity. Then it holds that

Xμ
ρ (ζl) 
= 0 =⇒ ρ = lν,

for some partition ν � n/ l. In this case, we have

Xμ
ρ (ζl) = (−1)(l−1)|μ1/ l |ll(ν)〈pν, hμ1/ l 〉.

The following two results on Hall-Littlewood functions at roots of unity, due to
Lascoux-Leclerc-Thibon, play a key role in the proof of Proposition 1, of which we
also make use in the present article. Let μ be a partition of n. Let Qμ(x ; q) denote the
symmetric function with parameter q , defined by

Qμ(x ; q) := bμ Pμ(x ; q),
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where bμ = ∏n
i=1(1 − q)(1 − q2) · · · (1 − qmi (μ)). This symmetric function Qμ(x ; q)

is also called the Hall-Littlewood symmetric function. These two classes {Pλ(x ; q)},
{Qλ(x ; q)} of symmetric functions are dual to each other with respect to the Hall-
Littlewood inner product [11, p. 225]. Let Q′

μ(x ; q) denote the modified Hall-
Littlewood symmetric function, which is defined by

Q′
μ(x ; q) = Qμ

(
x

1 − q
; q

)
,

i.e., the symmetric function obtained by replacing the variable x = (x1, x2, . . .) with
x/1 − q = (x1, qx1, q2x1, . . . ; x2, qx2, q2x2, . . .) in Qμ(x ; q). Then it is not difficult
to see that the Hall-Littlewood symmetric functions {Pλ(x ; q)} and modified Hall-
Littlewood functions {Q′

λ(x ; q)} are dual to each other with respect to the usual inner
product of the ring of symmetric function �[q]. It immediately follows from this fact
that the Green polynomial Xμ

ρ (q) is obtained by

Xμ
ρ (q) = 〈

Q′
μ(x ; q), pρ

〉
for all partitions μ, ρ � n.

Proposition 2 ([9, Theorem 2.1]). Let μ be a partition μ = (1m1 2m2 · · · nmn ) of n.
Let l be a positive integer. Suppose that mi = lqi + ri , 0 ≤ ri ≤ l − 1 for each i =
1, 2, . . . , n. Then it holds that

Q′
μ(x ; ζl) = Q′

μ̄(x ; ζl)
n∏

i=1

{
Q′

(i l )(x ; ζl)
}qi

,

where μ̄ denotes the partition (1r1 2r2 · · · nrn ).

Proposition 3 ([9, Theorem 2.2]). Let l and r be a positive integers. Then we have

Q′
(rl )(x ; ζl) = (−1)(l−1)r (pl ◦ hr )(x),

where (pl ◦ hr )(x) denotes the plethysm of the complete symmetric function hr by the
power-sum symmetric function pl .

3. Explicit formula

Let l > 1 be a positive integer, and μ � n an l-partition. Let qi = mi/ l for each
i = 1, 2, . . . , n. Recall that μ1/ l is by definition the partition (1q1 2q2 · · · nqn ) of
n/ l. (In fact, qi = 0 for all i > n/ l.) Let ν = (ν1, ν2, . . . , νr ) be a partition, and
κ = (κ (1), κ (2), . . . , κ (r )) a sequence of partitions. Then κ � ν means that κ (i) � νi for
each i = 1, 2, . . . , r , and κ is called a partition of ν. If κ is a partition of ν, then lκ
denotes the partition of a positive integer whose components are those of κ multiplied
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by l. For a partition κ = (κ (i)) � ν, define

mk(κ) :=
∑
i≥1

mk
(
κ (i)

)
for each k, and

mκ :=
∏
k≥1

(
mk(κ )

mk(κ (1)), mk(κ (2)), . . .

)
,

where
( i

j,k,...

)
denotes the multinomial coefficient.

Example 4. If μ = (4, 4, 2, 2) and l = 2, then μ1/ l = (4, 2). There exists ten parti-
tions ofμ1/ l : ((4), (2)), ((3, 1), (2)), ((2, 2), (1, 1)), ((2, 1, 1), (1, 1)) etc. The partitions
of the form 2κ for κ � (4, 2) are the following: (8, 4), (6, 4, 2), (4, 4, 4), (4, 4, 2, 2),
(4, 2, 2, 2, 2), (8, 2, 2), (6, 2, 2, 2), (2, 2, 2, 2, 2, 2). Remark that it is possible for
different κ � μ1/ l that the resulting partitions lκ coincide, e.g., 2((2, 2), (1, 1)) =
2((2, 1, 1), (2)) = (4, 4, 2, 2). If κ = ((2, 1, 1), (2)) � (4, 2), then we have mκ =(

2
2,0

)(
2

1,1

) = 2. If κ ′ = ((2, 2), (1, 1)) � (4, 2), then mκ ′ = (
2

0,2

)(
2

2,0

) = 1.

The aim of this section is to prove the following theorem.

Theorem 5. Let l be a positive integer, and μ � n an l-partition of a positive integer
n. Then we have:

1. For a partition ρ � n, the condition Qμ
ρ (ζl) 
= 0 holds if and only if ρ is a partition

of the form lκ for some κ � μ1/ l .
2. For a partition ρ = lκ , κ � μ1/ l , we have

Qμ
ρ (ζl) =

⎛⎜⎜⎝ ∑
τ�μ1/ l

lτ=ρ

mτ

⎞⎟⎟⎠ ll(ρ), (3.1)

where l(ρ) denotes the length of ρ.

To prove the theorem, we first show a similar result for the Green polynomial Xμ
ρ (q)

at q = ζl , which is equivalent to Theorem 5.

Proposition 6. Let l be a positive integer, and μ � n an l-partition. Then we have:

1. Xμ
ρ (ζl) 
= 0 ⇐⇒ ρ = lκ for some κ � μ1/ l .

2. For ρ = lκ , κ � μ1/ l , we have

Xμ
ρ (ζl) = (−1)n(l−1)/ l

⎛⎜⎜⎝ ∑
τ�μ1/ l

lτ=ρ

mτ

⎞⎟⎟⎠ ll(ρ).
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Proof: Let μ � n be an l-partition, and suppose that μ = (1m1 2m2 · · · nmn ). Recall that

Xμ
ρ (q) = 〈Q′

μ(x ; q), pρ(x)〉.

Let qi = mi/ l for each i = 1, 2, . . . , n. By Proposition 2, we have

Q′
μ(x ; ζl) = {

Q′
(1l )(x ; ζl)

}q1
{

Q′
(2l )(x ; ζl)

}q2 · · · {Q′
((n/ l)l )

(x ; ζl)
}qn/ l

.

Thus, we have

Xμ
ρ (ζl) =

〈
n/ l∏
i=1

{
Q′

(i l )(x ; ζl)
}qi

, pρ(x)

〉
. (3.2)

It follows from Proposition 3 and (3.2) that

Xμ
ρ (ζl) = (−1)(l−1)(q1+q2+···+qn/ l )

〈
n/ l∏
i=1

(pl ◦ hi )
qi (x), pρ(x)

〉
. (3.3)

Since

hi (x) =
∑
λ�i

z−1
λ pλ(x),

we have

pl ◦ hi (x) =
∑
λ�i

z−1
λ plλ(x). (3.4)

It follows from (3.3) and (3.4) that

Xμ
ρ (ζl) = (−1)(l−1)n/ l

∑
κ�μ1/ l

zρ

zκ

〈plκ (x), pρ(x)〉. (3.5)

Since {pλ(x)|λ ∈ Par} is a orthogonal basis (2.2), it holds that

Xμ
ρ (ζl) 
= 0 =⇒ ρ = lκ (3.6)

for some κ � μ1/ l .
Let qi = mi/ l for each i . Then the partitions κ � μ1/ l are of the form

κ = (
κ (11), κ (12), . . . , κ (1q1); κ (21), κ (22), . . . , κ (2q2); · · · ),

where κ (i j) is a partition of i for each j = 1, 2, . . . , qi , i = 1, 2, . . . , n/ l. Let ρ be a
partition of the form ρ = lκ for some κ = (κ (i j)) � μ. Let τ = (τ (i j)) is a partition of
μ1/ l satisfying lτ = ρ. Suppose that

τ (i j) =
(

1m(i j)
1 2m(i j)

2 · · · im(i j)
i

)
� i
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for each i = 1, 2, . . . , n/ l and j = 1, 2, . . . , qi . If we set

mk =
∑
(i j)

m(i j)
k

for each k, then we have

ρ = (lm1 (2l)m2 · · · nmn/ l ) � n. (3.7)

Therefore, by (3.5) and (3.6), we have

Xμ
ρ (ζl) = (−1)(l−1)n/ l

∑
τ�μ1/ l

lτ=ρ

zρ

zτ

.

By (3.7), it holds for such a τ � μ1/ l that

zρ

zτ

= lm1 m1!(2l)m2 m2! · · · nmn/ l mn/ l!∏
(i j) 1m(i j)

1 m(i j)
1 !2m(i j)

2 m(i j)
2 ! · · · im(i j)

i m(i j)
i !

= lm1∏
(i j) 1m(i j)

1

(2l)m2∏
(i j) 2m(i j)

2

· · · × m1!∏
(i j) m(i j)

1 !

m2!∏
(i j) m(i j)

2 !
· · ·

= lm1+m2+···+mn/ l

(
m1{

m(i j)
1

}) (
m2{

m(i j)
2

}) · · ·
(

mn/ l{
m(i j)

n/ l

})
= ll(ρ)mτ ,

which proves the condition 2. Moreover, the condition 2 shows that Xμ
ρ (ζl) 
= 0 for

ρ = lτ , τ � μ1/ l , which completes the proof of the theorem. �

To prove Theorem 5, we need the following auxiliary result.

Lemma 7. Let l be a positive integer, and μ an l-partition. Then (2n(μ) + (l − 1)n)/ l
is an even integer.

Proof: Let us consider the case where n/ l is even. In this case, it is clear that (l − 1)n/ l
is even. It remains to show in this case that 2n(μ)/ l is even. By the assumption, the
Young diagram of the l-partition μ consists of even number of connected vertical
l-strip. In the definition of n(μ), the sum of integers assigned to such a connected
vertical l-strip is of the form (l(l − 1)/2) + ml2 (m = 0, 1, 2, . . .). Hence n(μ) is a
multiple of l, which shows that 2n(μ)/ l is even.

Suppose that n/ l is odd. First we consider the case where l is odd. In this case,
it also holds that n(μ) is a multiple of l, and it is clear that (l − 1)n/ l is even, since
l − 1 is even. Hence (2n(μ) + (l − 1)n)/ l is even. Next we consider the case where
l is even. In this case, it is clear that (l − 1)n/ l is odd. Hence we have to show that
2n(μ)/ l is an odd integer. By the definition, n(μ) is the sum of n/ l positive integers of
the form (l(l − 1)/2) + ml2 (m ∈ Z≥0). Therefore, 2n(μ)/ l is the sum of n/ l positive
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integers of the form (l − 1) + 2ml (m = 0, 1, 2, . . .). Since n/ l is odd, this is an odd
integer. �

We shall finish the proof of Theorem 5. By (2.1), we have

Qμ
ρ (ζl) 
= 0 ⇐⇒ Xμ

ρ (ζl) 
= 0.

By Proposition 6, this shows the first part of Theorem 5. Again by (2.1), it holds that

Qμ
ρ (ζl) = ζ

n(μ)
l Xμ

ρ

(
ζ−1

l

)
. (3.7)

By Proposition 6, Xμ
ρ

(
ζ−1

l

)
does not depend on the particular choice of the primitive

lth root of unity. Hence, by (3.7) and Proposition 6, we have

Qμ
ρ (ζl) = (−1)

2n(μ)+(l−1)n
l

⎛⎜⎜⎝ ∑
τ�μ1/ l

lτ=ρ

mτ

⎞⎟⎟⎠ ll(ρ)

Since μ is an l-partition, it holds from Lemma 7 that

Qμ
ρ (ζl) =

⎛⎜⎜⎝ ∑
τ�μ1/ l

lτ=ρ

mτ

⎞⎟⎟⎠ ll(ρ),

which completes the proof of Theorem 5.

Example 8. Let μ = (4, 4, 2, 2) and l = 2. Then μ is a 2-partition, and μ1/2 = (4, 2).
Let ρ be a partition (4, 4, 2, 2). Then there exists two partition ((2, 2), (1, 1)),
((2, 1, 1), (2)) of μ1/2 = (4, 2) satisfying 2κ = μ1/2. For these κ’s, we have
m((2,2),(1,1)) = (

2
0,2

)(
2

2,0

) = 1, m((2,1,1),(2)) = (
2

2,0

)(
2

1,1

) = 2. Therefore it holds that

Qμ
ρ (ζ2) = (1 + 2)24 = 48.

4. Representation theory of the symmetric group

In this section, we rephrase Theorem 5 in terms of representation theory of the sym-
metric group. It is known that the Green polynomial Qμ

ρ (q) (ρ � n) gives the graded
character values of a certain graded representation Rμ, called the DeConcini-Procesi-
Tanisaki algebra. The formula (3.1) shows that a certain combinatorial property of the
algebra Rμ, corresponding to an l-partition μ, is interpreted in terms of representation
theory of the symmetric group.

Let n be a positive integer and Sn the symmetric group of n letters. If μ � n
be a partition, then there corresponds a homogeneous ideal Iμ of the polynomial
ring C[x1, x2, . . . , xn], which is Sn-invariant. The symmetric group Sn acts on the
polynomial ring C[x1, x2, . . . , xn] as permutations of the variables, i.e., for σ ∈ Sn
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and f = f (x1, x2, . . . , xn),

(σ. f )(x1, x2, . . . , xn) := f (xσ (1), xσ (2), . . . , xσ (n)).

The DeConcini-Procesi-Tanisaki algebra Rμ is defined to be the quotient algebra

Rμ = C[x1, x2, . . . , xn]/Iμ

of the polynomial ring. The algebra Rμ was first studied by C. de Concini and C. Procesi
[3], as the Sn-module structure on the cohomology ring of a certain subvariety Xμ of
the flag variety, the fixed point subvariety. T. Tanisaki [20] considers the generator of
the defining ideal of Rμ, and give a simple combinatorial description in terms of the
partition μ. For other topics related to a combinatorial point of view, see e.g., [4].

Since the defining ideal is homogeneous and Sn-invariant, the algebra Rμ has a
structure of graded Sn-module

Rμ =
n(μ)⊕
d=0

Rd
μ,

i.e., each homogeneous component Rd
μ is Sn-submodule of Rμ. The algebra Rμ is

finite dimensional for each μ � n, and it is known that the dimension is given by the
multinomial coefficient

dim Rμ =
(

n

μ1, μ2, . . . , μd

)
,

if μ = (μ1, μ2, . . . , μd ). With the Tanisaki generators, the structure of Rμ is easily
seen for some special μ. If μ = (n), then Rμ = C the trivial representation of Sn . If
μ = (1n), then Rμ coincides with the coinvariant algebra Rn of Sn , which is isomorphic
to the left regular representation of Sn . For a general μ � n, it is known that, as an
Sn-module,

Rμ
∼= IndSn

Sμ
1,

where 1 stands for the trivial representation of the Young subgroup Sμ.
It is known that the Green polynomial Qμ

ρ (q) gives the graded Sn-character of

the algebra Rμ. For each d = 0, 1, . . . , n(μ), let charRd
μ denote the character of the

Sn-module Rd
μ. Then the graded character charq Rμ of the graded Sn-module Rμ is

defined by

charq Rμ(ρ) =
n(μ)∑
d=0

qdcharRd
μ(ρ),
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where ρ is a partition of n, and charRd
μ(ρ) denotes the character value of the Sn-modules

Rd
μ on the conjugacy class of cycle type ρ. Then we have (see, e.g., [4])

charq Rμ(ρ) = Qμ
ρ (q),

for each ρ � n.
In [12], it is verified that the Green polynomial Qμ

ρ (q) has the following factorization
formula.

Proposition 9. Let μ, ρ be partitions of a positive integer n, and Mμ the maximum
value of the multiplicities {m1(μ), m2(μ), . . . , mn(μ)}. Then there exists a polynomial
Gμ

ρ (q) in q with integer coefficients satisfying

Qμ
ρ (q) = (1 − q)(1 − q2) · · · (1 − q Mμ )

(1 − q)m1(ρ)(1 − q2)m2(ρ) · · · (1 − qn)mn (ρ)
Gμ

ρ (q).

It is immediately follows from the formula that the Hilbert polynomial HRμ
(q) =∑

d qd dim Rd
μ of the algebra Rμ is of the form

HRμ
(q) = (1 − q)(1 − q2) · · · (1 − q Mμ )

(1 − q)n
Gμ

(1n )(q),

where Gμ

(1n )(q) is a polynomial in q with integer coefficients.
A proof of the following lemma, due to T. Oshima, is found in [14].

Lemma 10. Let f (q) = a0 + a1q + a2q2 + · · · be a polynomial in q with inte-
ger coefficients. Let l be a fixed positive integer such that l ≥ 2, and for each
k = 0, 1, . . . , l − 1 define

c(k; l) :=
∑

d≡k mod l

ad .

Then these c(k; l)’s coincide with each other if and only if the polynomial f (q) has
roots of unity ζ

j
l as zeros for each j = 1, 2, . . . , l − 1.

We remark here that if the polynomial f (q) = a0 + a1q + a2q2 + · · · is of the form
(1 + q + q2 + · · · + ql−1)g(q) for a certain polynomial g(q), then it is clear by straight
computation that the ‘mod l-sums’c(k; l) of the coefficients of f do not depend on k.
Note that this is not clear for the case of the Hilbert polynomial HRμ

(q).
Let μ be a partition, and l a positive integer such that 2 ≤ l ≤ Mμ. ( We exclude

the case l = 1, since it is trivial for our argument. ) For each k = 0, 1, . . . , l − 1, we
define

Rμ(k; l) :=
⊕

d≡k mod l

Rd
μ.
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Then it is immediately seen from Lemma 10 that these submodules Rμ(k; l)(k = 0,

1, . . . , l − 1) have the same dimension. In the rest of this section, we shall consider
the following problem that provides a representation theoretical interpretation for the
property ‘coincidence of dimension’:

Find a subgroup H (l) of Sn , and H (l)-modules Z (k; l) (k = 0, 1, . . . , l − 1) of
equal dimension such that there exists a isomorphism of Sn-modules Rμ(k; l) ∼=
IndSn

H (l) Z (k; l) for each k = 0, 1, . . . , l − 1.

Let μ be an l-partition. We shall define the product a = aμ(l) ∈ Sn of cyclic permu-
tations corresponding to μ and l. To avoid abuse of notation, we settle the definition
through the following example. It is clear from the definition that the element a cor-
responding to an l-partition has the order l.

Example 11 (The definition of a). Let μ be the partition (3, 3, 2, 2, 2, 2). Then the
partition μ is a 2-partition. Consider the following standard Young tableau

1 2 3
4 5 6
7 8
9 10
11 12
13 14 .

Then the tableau decomposes modulo 2 into the following three parts:

1 2 3
4 5 6 ,

7 8
9 10 ,

11 12
13 14 .

For each subtableau, we define the following products of cyclic permutations:(
1 2 3 4 5 6
4 5 6 1 2 3

)
,

(
7 8 9 10
9 10 7 8

)
,

(
11 12 13 14
13 14 11 12

)
.

Then a is defined to be the product of these permutations:

a =
(

1 2 3 4 5 6
4 5 6 1 2 3

) (
7 8 9 10
9 10 7 8

) (
11 12 13 14
13 14 11 12

)
.

If we regard the partition μ = (2, 2, 2, 2, 2, 2) as a 3-partition, then the correspond-
ing element a is defined to be the following product of cyclic permutations:

a =
(

1 2 3 4 5 6
3 4 5 6 1 2

) (
7 8 9 10 11 12
9 10 11 12 7 8

)
.

�
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Define the subgroup Hμ(l) by

Hμ(l) = Sμ � 〈aμ(l)〉 ∼= Sμ � Cl .

Hμ(l)-modules Zμ(k; l) (k = 0, 1, . . . , l − 1) are defined to be the irreducible modules
of 〈a〉 ∼= Cl , on which the Young subgroup Sμ acts trivially (hence all one dimensional).

Example 12. Let μ = (3, 3, 2, 2) and l = 2. Then μ1/ l = (3, 2) and a = aμ(l) =
(1, 4)(2, 5)
(3, 6)(7, 9)(8, 10). The subgroup Hμ(l) is defined to be the semi-direct product

(
S{1,2,3} × S{4,5,6} × S{7,8} × S{9,10}

)
� 〈a〉 ∼= Sμ � C2,

where S{i, j,...,k} denotes the symmetric group of the letters {i, j, . . . , k}. The one-
dimensional Hμ(l)-modulesZμ(k; l) (k = 0, 1) are by definition the irreducible C2-
modules on which the Young subgroup Sμ acts trivially.

The aim of this section is to show the following theorem:

Theorem 13. Let l be a positive integer and μ an l-partition. With the notation above,
we have

Rμ(k; l) ∼=Sn IndSn
Hμ(l) Zμ(k; l)

for each k = 0, 1, . . . , l − 1.

We first show the equivalence of Theorem 13 and existence of a certain Sn × Cl-
isomorphism, which is originally suggested by T. Shoji for the case of coinvariant
algebras. Let l be a positive integer, and μ an l-partition. Consider the induced module
IndSn

Sμ
1, where 1 stands for the trivial representation of the Young subgroup Sμ. As

an Sn-module, this induced module is equivalent to Rμ. We remark here that Rμ and

IndSn
Sμ

1 admit Sn × Cl-module structures as follows. The Sn-module structures are
natural ones. We define Cl-module structures in the sequel. Define the action of Cl on
Rμ by

a j .x := ζ
d j
l x,

for x ∈ Rd
μ. To define the Cl-module structure on IndSn

Sμ
1, recall the following identi-

fication

IndSn
Sμ

1 =
⊕

σ∈Sn/Sμ

σ ⊗ C,
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where C denotes the trivial representation of Sμ. Then we can define Cl-module

structure on IndSn
Sμ

1 by

a j .(σ ⊗ 1) := σa− j ⊗ 1,

for each σ ∈ Sn/Sμ and j . It is clear from the definition that the Sn-action and the
Cl-action commute with each other.

Proposition 14. Let l ≥ 2 be a positive integer, and μ an l-partition. Then there exists
Sn-isomorphisms

Rμ(k; l) ∼=Sn IndSn
H Zμ(k; l), k = 0, 1, . . . , l − 1

if and only if the Sn × Cl-modules Rμ and IndSn
Sμ

1 are equivalent:

Rμ
∼=Sn×Cl IndSn

Sμ
1.

Proof: Suppose that there exists an Sn × Cl-isomorphism Rμ
∼= IndSn

Sμ
1. If we remark

that IndSn
Sμ

1 = ⊕
σ∈Sn/Sμ

σ ⊗ C = ⊕
σ∈Sn/Sμ�Cl

⊕l−1
j=1 σa j ⊗ C, then it is easy to see

that the eigenspace decompositions of both sides with respect to the action of a give
the isomorphisms Rμ(k; l) ∼=Sn IndSn

H Z (k; l), k = 0, 1, . . . , l − 1. The other direction
of the proof is obtained by tracking back this argument. �

The rest of this section is devoted to the proof of the isomorphism

Rμ
∼=Sn×Cl IndSn

Sμ
1.

Since we are working on a field of characteristic zero, it is enough to show the character
values of both sides coincide, i.e.,

charRμ(w, a j ) = char IndSn
Sμ

1(w, a j )

for each (w, a j ) ∈ Sn × Cl . Since the case j = 0 is exactly the Sn-isomorphism
Rμ

∼=Sn IndSn
Sμ

1, we may assume j ≥ 1. Noticing that the action of the element a
on the homogeneous spaces Rd

μ is a scalar multiple, a slight consideration shows that
the character value charRμ(w, a j ) coincides with the value of the Green polynomial
Qμ

λ(w)(q) at q = ζ
j

l . Thus, we have to show

Qμ
ρ

(
ζ

j
l

) = char IndSn
Sμ

1(w, a j )

for each j = 1, 2, . . . , l − 1. If we suppose that the lth root of unity ζ
j

l is a primitive
mth root of unity, the order of the element a j coincides with m. Therefore, replacing
m with l again, it is enough to show that

Qμ
ρ (ζl) = char IndSn

Sμ
1(w, a).
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By Theorem 5, it suffices to show the following two conditions:

1. The condition char IndSn
Sμ

1(w, a) 
= 0 holds if and only if the cycle type ρ of w is
a partition of the form lκ for some κ � μ1/ l .

2. For an element w ∈ Sn whose cycle type is of the form ρ = lκ , κ � μ1/ l , we have

char IndSn
Sμ

1(w, a) =

⎛⎜⎜⎝ ∑
τ�μ1/ l

lτ=ρ

mτ

⎞⎟⎟⎠ ll(ρ),

where l(ρ) denotes the length of ρ.

The ‘only if’ part of the first condition holds as follows. Recall the induced
representation IndSn

Sμ
1 has the realization IndSn

Sμ
= ⊕

σ∈Sn/Sμ
σ ⊗ C. Hence if

char IndSn
Sμ

1(w, a) 
= 0, then there should exist an element σ ∈ Sn/Sμ such that
char(σ ⊗ C)(w, a) 
= 0. Since we have (w, a)(σ ⊗ 1) = wσa−1 ⊗ 1, this forces that
wσa−1 ≡ σ mod Sμ. Therefore, if char IndSn

Sμ
1(w, a) 
= 0, then w is conjugate to

an element τa ∈ Hμ(l). Since cycle types of elements of Hμ(l) are of the form lκ ,
κ � μ1/ l , then we have the ‘only if’ part of the condition 1.

Suppose that an element w satisfies the condition char IndSn
Sμ

1(w, a) 
= 0. It follows
from the assumption that w is conjugate to an element of the subgroup Hμ(l). Since the
argument depends only on the cycle type of w, we may assume that w = τa ∈ Hμ(l),
where τ ∈ Sμ. Let the cycle type ρ of w be ρ = lκ , where κ � μ1/ l . By the assumption,
we have

char IndSn
Sμ

1(w, a) =
∑

σ∈Sn/Sμ

wσa−1≡σ mod Sμ

char (σ ⊗ C) (w, a).

Consider σ ∈ Sn/Sμ such that wσa−1 ≡ σ modulo Sμ. For such σ ’s, it is clear from
the definition of the Sn × Cl-module structure on σ ⊗ C that char (σ ⊗ C) (w, a) = 1.
Therefore we have

char IndSn
Sμ

1(w, a) = �{σ ∈ Sn/Sμ|wσa−1 ≡ σ mod Sμ}.

It is possible to see that the number of representatives σ ∈ Sn/Sμ satisfying the con-
dition wσa−1 ≡ σ mod Sμ coincides with⎛⎜⎜⎝ ∑

π�μ1/ l

lπ=ρ

mπ

⎞⎟⎟⎠ ll(ρ),

which proves 2. (For details, see the following example.) Finally, it is immediately
follows from the condition 2 that the ‘if’ part of the condition 1 holds. �
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Example 15. Let μ = (3, 3, 2, 2) and l = 2. If char IndSn
Sμ

1(w, a) 
= 0, then w is con-
jugate to an element of Hμ(l), and the cycle type ρ of w is of the form ρ = lκ ,
κ � μ1/ l = (3, 2). Suppose that w = (1, 2)a = (1, 4, 2, 5)(3, 6)(7, 9)(8, 10). Then
representatives σ ∈ Sn/Sμ satisfying wσa−1 ≡ σ modulo Sμ are for example σ =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [1, 2, 6, 4, 5, 3, 7, 8, 9, 10], [1, 2, 7, 4, 5, 9, 3, 6, 9, 10],
[4, 5, 3, 1, 2, 6, 7, 8, 9, 10] etc. On the other hand, the following type of representa-
tives are also appropriate:σ = [3, 7, 8,6, 9, 10, 1, 2, 4, 5], [6, 7, 8, 3, 9, 10, 1, 2, 4, 5],
[3, 7, 8, 6, 9, 10, 4, 5, 1, 2] etc. The number of representatives of the first type is
m((2,1,1),(1,1))2

4 = (
4

2,2

)(
1

1,0

)
24. That of the second type is m((1,1,1,1),(2))2

4 = (
4

4,0

)(
1

0,1

)
24.

5. Final Remark

A problem of the type we consider in the previous section was first explicitly noticed
by W. Kraśkiewicz and J. Weyman [7] for coinvariant algebras RW of Weyl groups W
of type A, B, D. They consider the problem for the case where l is the Coxeter number,
the order of Coxeter elements [6, p.74] of W . They show that each submodule RW (k; l),
similarly defined as in the previous section for Rμ, is induced from the corresponding
irreducible representation of the cyclic subgroup generated by a Coxeter element of W .
As a consequence, we can see that these submodules RW (k; l) are of equal dimension.
In fact, T. A. Springer [18] had obtained implicitly these result for a wider setting.
Let W be a finite complex reflection group, RW the coinvariant algebra of W , and l
a regular number [18, Section 4] of W . Then it is possible to see from results in [18]
that a similar statement holds and, as a consequence, those submodules RW (k; l) are
of equal dimension (see also [16]). The underlying subgroup is the cyclic subgroup
generated by a regular element [18, Section 4] of order l. (Remark that the Coxeter
number is a regular number.) Moreover, for a finite complex reflection group W , it is
not difficult to see that if l is a degree [6, p.59] of W , then the submodules RW (k; l)
are of equal dimension. (Remark that the regular numbers are degrees of W .)

Then, conversely, a new problem arises which asks a representation theoretical
interpretation of the coincidence of dimensions. In [14], the authors consider this
problem for the coinvariant of the symmetric group. The first answer to the problem
was made for the coinvariant algebra for the symmetric group [14]. This result was
generalized by C. Bonnafé, G. Lehrer, and J. Michel [1] for finite complex reflection
groups. The problem considered in the present paper is another generalization of [14].
We make clear here the relation between the study of Green polynomials at roots
of unity, which amounts to the study of Hall-Littlewood functions at roots of unity,
and the problem for the algebra Rμ for special μ’s and special l’s (see also [12]). In
[13], we consider the problem for general μ’s and general possible l’s. (Recently, the
author was informed by T. Shoji that the problem considered in this article is given an
affirmative answer in a largely generalized setting [17]. He considers the problem for
the Springer representation of a connected reductive group over C.)
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