ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Structure and automorphism groups of Hadamard designs

Eric Merchant
On Time Systems Inc. 1850 Millrace Dr., Suite 1 Eugene OR 97403 USA 1850 Millrace Dr., Suite 1 Eugene OR 97403 USA

DOI: 10.1007/s10801-006-0012-9

Abstract

Let n be the order of a Hadamard design, and G any finite group. Then there exists many non-isomorphic Hadamard designs of order 2 12|G| + 13 n with automorphism group isomorphic to G.

Pages: 137–155

Keywords: keywords Hadamard designs; automorphisms of designs

Full Text: PDF

References

1. L. Babai, “On the abstract group of automorphisms,” in Combinatorics, Proc. Eighth British Comb. Conf. H.N.V. Temperley (Ed.), Cambridge U. Press, Cambridge, 1981 pp. 1-40.
2. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1999.
3. U. Dempwolff and W.M. Kantor, Distorting symmetric designs. in preparation
4. D. Jungnickel, “The number of designs with classical parameters grows exponentially,” Geometriae Dedicata 16 (1984), 167-178.
5. W.M. Kantor, “Characterizations of finite projective and affine spaces,” Can. J. Math. 21 (1969), 64-75.
6. W.M. Kantor, “Automorphism Groups of Hadamard Matrices,” J. Comb. Theory 6 (1969), 279-281.
7. W.M. Kantor, “Automorphisms and isomorphisms of symmetric and affine designs,” J. Alg. Comb. 3 (1994), 301-338.
8. W.M. Kantor, “Note on GMW designs,” Europ. J. Comb. (22) (2001), 63-69.
9. W.M. Kantor, unpublished manuscript.
10. M.E. Kimberley, “On the construction of certain Hadamard designs,” Math Z. 119 (1971), 41-59.
11. C. Lam, S. Lam, and V.D. Tonchev, “Bounds on the number of Hadamard designs of even order,” J. Comb. Designs 9 (2001), 363-378.
12. E. Merchant, “Exponentially many Hadamard designs,” Des. Codes. and Cryptogr. 38(2) (2006), 297- 308.
13. C.W. Norman, “Hadamard designs with no non-trivial automorphisms,” Geom. Ded. 2 (1976), 201-204.
14. C.W. Norman, “Non-isomorphic Hadamard designs,” J. Combin. Theory (A) 21 (1976), 336-344.
15. R.E.A.C. Paley, “On Orthogonal Matrices,” J. Math. Phys. 12 (1933), 311-320.
16. O. Pfaff, “The classification of doubly transitive affine designs,” Des., Codes, Cryptogr. 1 (1991), 207-217.
17. D.E. Taylor, The Geometry of the Classical Groups, Heldermann Verlag, Berlin, 1992.
18. J.A. Todd, “A combinatorial problem,” J. Math. Phys. 12 (1933), 321-333.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition