ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Coloured peak algebras and Hopf algebras

Nantel Bergeron1 and Christophe Hohlweg2
1York University Department of Mathematics and Statistics Toronto Ontario M3J 1P3 Canada
2The Fields Institute 222 College Street Toronto Ontario Canada M5T 3J1

DOI: 10.1007/s10801-006-0009-4

Abstract

For G a finite abelian group, we study the properties of general equivalence relations on G n = G n \? \mathfrak S {\mathfrak S} n , the wreath product of G with the symmetric group \mathfrak S {\mathfrak S} n , also known as the G-coloured symmetric group. We show that under certain conditions, some equivalence relations give rise to subalgebras of \Bbbk {\Bbbk} G n as well as graded connected Hopf subalgebras of \? n\geq  o \Bbbk {\Bbbk} G n . In particular we construct a G-coloured peak subalgebra of the Mantaci-Reutenauer algebra (or G-coloured descent algebra). We show that the direct sum of the G-coloured peak algebras is a Hopf algebra. We also have similar results for a G-colouring of the Loday-Ronco Hopf algebras of planar binary trees. For many of the equivalence relations under study, we obtain a functor from the category of finite abelian groups to the category of graded connected Hopf algebras. We end our investigation by describing a Hopf endomorphism of the G-coloured descent Hopf algebra whose image is the G-coloured peak Hopf algebra. We outline a theory of combinatorial G-coloured Hopf algebra for which the G-coloured quasi-symmetric Hopf algebra and the graded dual to the G-coloured peak Hopf algebra are central objects.

Pages: 299–330

Keywords: keywords bialgebra; combinatorial Hopf algebra; wreath product; Coxeter group; symmetric group; hyperoctahedral group; peak algebra; planar binary tree; descent algebra

Full Text: PDF

References

1. M. Aguiar, N. Bergeron, and K. Nyman, “The peak algebra and the descent algebras of type B and D,” Trans. of the A.M.S. 356(7) (2004), 2781-2824.
2. M. Aguiar, N. Bergeron, and F. Sottile, “Combinatorial Hopf algebras and generalized DehnSommerville relations,” Compositio Mathematica 142(1) (2006), 1-30.
3. M. Aguiar, K. Nyman, and R. Orellana, “New results on the peak algebra,” J. Algebraic Comb. 23 (2006), 149-188. DOI: 10.1007/s10801-006-6922-8
4. M. Aguiar and H. Thomas, private communications (2004).
5. M.D. Atkinson, “A new proof of a theorem of Solomon,” Bull. London Math. Soc. 18 (1986), 351-354.
6. P. Baumann and C. Hohlweg, A Solomon Theory for the Wreath Products G Sn, preprint (2005), To appear in Trans. of the AMS.
7. F. Bergeron, N. Bergeron, R.B. Howlett, and D.E. Taylor, “A decomposition of the descent algebra of a finite Coxeter group,” J. Alg. Combin. 1 (1992), 23-44.
8. N. Bergeron, F. Hivert, and J.Y. Thibon, “The peak algebra and the Hecke-Clifford algebras at q = 0,” J. Combin. Theory, Ser. A 107(1) (2004), 1-19.
9. N. Bergeron, S. Mykytiuk, F. Sottile, and S. van Willigenburg, “Pieri operations on posets,” J. Combin. Theory, Ser. A 91 (2000), 84-110.
10. A. Bj\ddot orner and M. Wachs, “Generalized quotients in Coxeter groups,” Trans. Amer. Math. Soc. 308 (1988), 1-37.
11. V.V. Deodhar, “Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative M\ddot obius function,” Inv. Math. 39 (1977), 187-198.
12. F. Hivert, J.-C. Novelli, and J.-Y. Thibon, “Un analogue du mono\ddot ıde plaxique pour les arbres binaires de recherche,” C. R. Acad. Sci. Paris Sér I Math. 332 (2002), 577-580.
13. F. Hivert, J.-C. Novelli, and J.-Y. Thibon, “Sur quelques propriétés de l'alg`ebre des arbres binaires,” C. R. Acad. Sci. Paris Sér I Math. 337 (2003), 565-568.
14. F. Hivert, J.C. Novelli, and J.Y. Thibon, The Algebra of Binary Search Trees, ArXiv preprint math. CO/0401089, to appear in Theoretical Computer Science (2004).
15. F. Hivert, J.-C. Novelli, and J.-Y. Thibon, “Representation theory of the 0-Ariki-Koike-Shoji algebras,” preprint arXiv:math.CO/0407218.
16. J.E. Humphreys, Reflection Groups and Coxeter Groups, vol. 29, Cambridge University Press, 1990.
17. J.-L. Loday and M. Ronco, “Hopf algebra of the planar binary trees,” Adv. Math. 139 (1998), 293-309.
18. C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and Solomon descent algebra,” J. Algebra 177 (1995), 967-982.
19. I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, 1995.
20. R. Mantaci and C. Reutenauer, “A generalization of Solomon's algebra for hyperoctahedral groups and other wreath products,” Comm. in Algebra 23(1) (1995), 27-56.
21. K. Nyman, “The peak algebra of the symmetric group,” J. Alg. Combin. 17 (2003), 309-322.
22. J.-C. Novelli and J.-Y. Thibon, “Free quasi-symmetric functions of arbitrary level,” preprint arXiv:math.CO/0405597 (2004).
23. S. Poirier and C. Reutenauer, “Alg`ebres de Hopf de tableaux,” Ann. Sci. Math. Québec 19 (1995), 79-90.
24. N. Reading, Cambrian Lattices, Adv. in Math. CO/0402086 (2004).
25. V. Reiner, “Equivariant fiber polytopes,” Doc. Math. 7 (2002), 113-132 (electronic).
26. M. Schocker, “The peak algebra of the symmetric group revisited,” Advances in Math. (to appear).
27. L. Solomon, “A Mackey formula in the group ring of a Coxeter group,” J. Algebra 41 (1976), 255-268.
28. J.R. Stembridge, “Enriched P-partitions,” Trans. Amer. Math. Soc. 349 (1997), 763-788.
29. J.-Y. Thibon, “Lectures on noncommutative symmetric functions,” in Interaction of Combinatorics and Representation Theory, pp. 39-94. Math. Soc. Japan Memoirs 11, Tokyo: Math. Soc. Japan, 2001.
30. J. Tits, “Buildings of spherical type and finite BN-pairs,” Lecture Notes in Mathematics 386 (1974).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition