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Abstract We give a combinatorial description (including explicit differential-form
bases) for the cohomology groups of the space of n distinct nonzero complex numbers,
with coefficients in rank-one local systems which are of finite monodromy around
the coordinate hyperplanes and trivial monodromy around all other hyperplanes. In
the case where the local system is equivariant for the symmetric group, we write the
cohomology groups as direct sums of inductions of one-dimensional characters of
subgroups. This relies on an equivariant description of the Orlik-Solomon algebras
of full monomial reflection groups (wreath products of the symmetric group with a
cyclic group). The combinatorial models involved are certain representations of these
wreath products which possess bases indexed by labelled trees.

Keywords Hyperplane complement . Cohomology . Representation . Symmetric
group

1. Introduction

Fix a positive integer n. This paper concerns the cohomology of the complex hyper-
plane complement

T (1, n) := {(z1, z2, . . . , zn) ∈ Cn | zi �= 0, ∀i, zi �= z j , ∀i �= j}.

Let (�•(T (1, n)), d) be the differential graded algebra of regular differential forms on
T (1, n). The Orlik-Solomon algebra A•(T (1, n)) is defined to be the C-subalgebra of
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�•(T (1, n)) generated by the following closed 1-forms corresponding to the hyper-
planes:

ωi := dzi

zi
, ∀i, and ωi, j := dzi − dz j

zi − z j
, ∀i < j.

A famous result of Brieskorn (valid for all hyperplane complements) states that
the inclusion (A•(T (1, n)), 0) ↪→ (�•(T (1, n)), d) is a quasi-isomorphism of cochain
complexes, so Ap(T (1, n)) ∼= H p(T (1, n), C) for all p. Moreover, results of Arnold
(in this case) and Orlik and Solomon (for general hyperplane complements) give a
combinatorial description of A•(T (1, n)), including the following explicit basis. We
say that a rooted forest with vertex set {1, . . . , n} is rectified if the root of each
tree is its largest vertex, and the path from each other vertex to the root is an in-
creasing sequence. Let F(1, n)◦ be the set of such rectified forests equipped with
a partition of the set of roots into two subsets, called open and closed. To each
F ∈ F(1, n)◦ associate the form α(F) ∈ A•(T (1, n)) which is the wedge product
of all ωi, j for edges i— j of F and all ωi for closed roots i of F . (For now, we
leave the order of factors in the wedge product unspecified, so α(F) is defined only
up to sign.) Then {α(F) | F ∈ F(1, n)◦} is a basis of A•(T (1, n)) (see Theorem 3.2
below).

Now suppose we replace the complex coefficients in this cohomology by a gen-
eral rank-one local system on T (1, n). Any element ω = ∑

i aiωi + ∑
i< j ai, jωi, j

of A1(T (1, n)) determines such a local system Lω, whose local sections are the so-
lutions of the differential equation d f + f ω = 0. We have obvious isomorphisms
Lω ⊗ Lω′ ∼= Lω+ω′ for allω, ω′ ∈ A1(T (1, n)), andLω

∼= L0 = C forω ∈ Z{ωi , ωi, j }.
If �ω : �•(T (1, n)) → �•(T (1, n)) denotes the map α �→ ω ∧ α, then we have a nat-
ural isomorphism

H p(T (1, n),Lω) ∼= ker(d + �ω : �p(T (1, n)) → �p+1(T (1, n)))

im (d + �ω : �p−1(T (1, n)) → �p(T (1, n)))
. (1.1)

For most values of ω, this cohomology too can be described in terms of the Orlik-
Solomon algebra, by a general result of Esnault, Schechtman, and Viehweg, sharpened
by Schechtman, Terao, and Varchenko. We say that ω = ∑

i aiωi + ∑
i< j ai, jωi, j is

resonant if any of the following holds:� ∑
i ai + ∑

i< j ai, j is a nonzero integer; or� ∑
i< j, i, j∈I ai, j is a positive integer, for some subset I ⊆ {1, . . . , n}; or� ∑
i∈I ai + ∑

i< j, i, j∈I ai, j is a positive integer, for some proper subset I ⊂
{1, . . . , n}.

The following result is a special case of [14, Theorem 9] (see also the survey articles
[12] and [15]).
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Theorem 1.1. If ω is not resonant, the inclusion (A•(T (1, n)), �ω) ↪→
(�•(T (1, n)), d + �ω) is a quasi-isomorphism of cochain complexes, so

ker(�ω : Ap(T (1, n)) → Ap+1(T (1, n)))

im (�ω : Ap−1(T (1, n)) → Ap(T (1, n)))
∼= H p(T (1, n),Lω).

(Note that Brieskorn’s result is the special case ω = 0.) Even if ω itself is resonant,
it is often possible to replace it with a non-resonant element of ω + Z{ωi , ωi, j }, giv-
ing an isomorphic local system. However, there exist ω such that all elements of
ω + Z{ωi , ωi, j } are resonant: for instance, it is easy to see that s

n

∑
i ωi has this prop-

erty when s ∈ Z and 1 < gcd(s, n) < n. The corresponding local systems cannot be
handled by Theorem 1.1.

One result of this paper is an explicit basis of H •(T (1, n),L∑
ai ωi ) where all ai ∈ Q

(note that the coefficients of all ωi, j ’s here are zero). This basis is given by differential
forms attached to the subset of F(1, n)◦ consisting of forests which satisfy∑

i∈T

ai ∈ Z, for all trees T . (1.2)

(Note that if
∑n

i=1 ai �∈ Z, this subset is empty.) The associated differential form
β(F) ∈ �•(T (1, n)) is usually not in A•(T (1, n)), because there are two changes from
the above definition of α(F). Firstly, any edge i— j which is unbreakable, in the
sense that deleting it results in a forest which no longer satisfies (1.2), contributes to
the wedge product not ωi, j but rather z j dzi −zi dz j

zi z j (zi −z j )
. Secondly, the wedge product must be

multiplied by a certain monomial in the zi ’s, to be defined in Section 4. The result (see
Theorem 4.5 and Corollary 4.6) is that each such β(F) lies in ker(d + �∑

ai ωi ), and
their images in H •(T (1, n),L∑

ai ωi ) form a basis. A consequence (Corollary 4.10)
is that the H •(T (1, n), C)-module H •(T (1, n),L∑

ai ωi ) is generated by those β(F)’s
which correspond to forests in which all roots are open and all edges are unbreakable.
See Example 4.8 for the special case where all ai = s

n and gcd(s, n) = 1, which can
also be handled by a result of Kawahara.

The special property of the local systems L∑
ai ωi , ai ∈ Q, which makes such results

possible (indeed, easy) is that they become trivial on pulling back to a covering space
of T (1, n) which is also a hyperplane complement. Namely, let r be a positive integer
such that rai ∈ Z for all i , and define

T (r, n) := {(z1, z2, . . . , zn) ∈ Cn | zi �= 0, ∀i, zr
i �= zr

j , ∀i �= j}.

The map ϕ : T (r, n) → T (1, n) : (z1, . . . , zn) �→ (zr
1, . . . , zr

n) is an unramified Ga-
lois covering with group μn

r , where μr is the cyclic group consisting of all com-
plex r th roots of 1. The local system L∑

ai ωi is the direct summand of the push-
forward ϕ∗(C) corresponding to the character (ζ1, . . . , ζn) �→ ζ

−ra1
1 . . . ζ−ran

n of μn
r , so

H p(T (1, n),L∑
ai ωi ) is isomorphic via the pull-back ϕ∗ to the corresponding isotypic

component of H p(T (r, n), C) (for more details on this isomorphism, see Proposition
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4.1). The Orlik-Solomon results on A•(T (r, n)) lead easily to a basis {β(F)} of this
isotypic component, and a short calculation shows that this is the pull-back of {β(F)}.

In fact I knew the basis {β(F)} on T (r, n) first, and was surprised to find a rel-
atively nice formula for the corresponding basis on T (1, n). However, one of the
referees has suggested an alternative approach which avoids (explicitly) passing to
the covering space, and thus removes some of the surprise. Namely, since the local
system L∑

ai ωi has trivial monodromy around the hyperplanes zi = z j , one could suc-
cessively delete these using the deletion-restriction result of Cohen ([2, Theorem 4]),
and relate H •(T (1, n),L∑

ai ωi ) to H •(T (1, m),L∑
ai ω f (i) ) for various m < n and maps

f : {1, . . . , n} → {1, . . . , m}; the rectified forests and the integrality condition (1.2)
would reappear. Essentially, what this means is that one can mimic on the base space
the steps of the proof of the Orlik-Solomon results on the covering space.

If this basis result had been the only goal in view, this paper would have been much
shorter. But after the paper [11] of Lehrer and Solomon, one has a right to expect of
such Orlik-Solomon-style descriptions that they take into account the action of the
relevant symmetry group. In the present case, the symmetric group Sn acts on T (1, n)
by permuting coordinates, and each cohomology group H p(T (1, n),L∑

ai ωi ) is thus
a representation for the subgroup of Sn which fixes

∑
aiωi , namely

Z(ai ) := {w ∈ Sn | aw(i) = ai , ∀i}.

On the model of [11, (4.5)], one should aim to write this representation as a direct
sum of inductions of one-dimensional characters of subgroups. Corollary 4.16 below
accomplishes this in the case where all ai are equal, so Z(ai ) = Sn; having understood
this case, the interested reader will have no trouble imagining the general result. The
reason for concentrating on this case (apart from simplifying the notation) is that it
arose in [6], and the motivation for all this work was to give a better explanation
for the following isomorphism of representations of Sn , which I originally proved by
computing characters:

H p
(
T (1, n),L s

r

∑
ωi

) ∼= εn ⊗ IndSn
W (r,n/r )(detn/r ⊗ H p−n+n/r (T (r, n/r ), C)). (1.3)

Here gcd(s, r ) = 1 (so the fraction s
r is in lowest terms), εn is the sign character of

Sn , W (r, m) is the wreath product μr � Sm , and detm is the determinant of the natural
representation of W (r, m) on Cm . For the new explanation, see Corollary 4.17.

In order to study these representations of Sn , we need a sufficiently equivariant
description of A•(T (r, n)), one which takes into account the action of W (r, n). Section
3 is devoted to such a description; in Corollary 3.12 we write A•(T (r, n)) as a direct
sum of inductions of one-dimensional characters of subgroups of W (r, n), generalizing
a result of Douglass ([3, (1.1)]) in the r = 2 case. Since the Orlik-Solomon basis is
not stable under W (r, n), our approach is to consider the collection of all W (r, n)-
translates of basis elements and the linear dependence relations they satisfy. Being
suitably careful with the signs, we will find that these relations can be described in
a uniform combinatorial way, using rooted forests which are now not necessarily
rectified. This motivates the preparatory Section 2, where we study a representation
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of W (r, n) defined abstractly by certain relations between labelled trees, inspired by
[11] and [1].

2. Representations of wreath products on trees

Fix positive integers r and n. As in the introduction, let μr denote the group of r th
complex roots of 1, Sn the group of permutations of {1, . . . , n}, and W (r, n) the
wreath product μr � Sn , of cardinality rnn!. In other words, W (r, n) is the semidirect
product μn

r � Sn , where Sn acts on μn
r by permuting the factors; we will usually write

its elements in the form (ζ1, . . . , ζn)w, where ζi ∈ μr and w ∈ Sn . Often we will
abbreviate (ζ1, . . . , ζn) as ζ . We need some one-dimensional characters of W (r, n):� εn defined by εn(ζw) = εn(w), the extension of the sign character of Sn;� prodn defined by prodn(ζw) = ζ1 · · · ζn; and� detn := εnprodn .

The last is so named because it is the determinant arising from the standard represen-
tation of W (r, n) on Cn , in which w is represented by the usual permutation matrix
and ζ by the diagonal matrix with entries (ζ1, . . . , ζn). The image of W (r, n) under
this representation is the monomial reflection group G(r, 1, n).

In this section we study a representation of W (r, n) which has a basis indexed by
certain labelled trees. Here are our conventions.

Definition 2.1. A directed tree on a nonempty finite set I is a directed graph T with
vertex set I , containing no loops or cycles, such that there is exactly one vertex, the
root, with out-degree 0, and every other vertex has out-degree 1.

It is clear that these conditions force the underlying graph of T to be a tree, and that
all edges are directed ‘towards the root’. So by a well known result, the total number
of directed trees on I is |I ||I |−1.

Definition 2.2. We define a μr -labelled directed tree on I to be a directed tree on I
equipped with a labelling of each edge by an element of μr . (If r = 1, the labels are
all 1 and may be neglected.) If T is a μr -labelled directed tree, we write i

η→ j (with
a subscript T when necessary) to mean that i, j ∈ I and there is an edge from i to j
in T whose label is η ∈ μr . Let T (r, I ) be the set of μr -labelled directed trees on I ,
and write T (r, n) for T (r, {1, . . . , n}).

Clearly the cardinality of T (r, n) is (rn)n−1. We have a natural action of W (r, n) on
T (r, n), in which Sn acts by permuting the vertex set and ζ ∈ μn

r acts by multiplying
the label of an edge from i to j by ζiζ

−1
j . More formally, the following equivalences

hold:

i
η−→ j ⇐⇒ i

ηζi ζ
−1
j−→ j ⇐⇒ w(i)

η−→ w( j)
T ζ .T w.T

(2.1)
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for all ζ ∈ μn
r and w ∈ Sn . Linearizing, we obtain a representation of W (r, n) on the

vector space CT (r, n) with T (r, n) as basis.
Now we want to define a quotient V(r, n) of CT (r, n) by imposing some linear

relations which the images [T ] of T ∈ T (r, n) must satisfy. (The motivation for these
relations will become clear when we consider differential forms in the next section.)
The relations are of the following two kinds:

[T1] + [T2] = [T3], (2.2)

if T1, T2, T3 ∈ T (r, n) are identical except for the edges between three vertices i , j ,
and k, where we have

i

j

k

�
�

�
�

���
ηθ−1

θ

T1

i

j

k

�
�

�
�

���θη−1

η

T2

i

j

k

�
�

�
���

�
�

�
���

θ

η

T3

for some η, θ ∈ μr ; and

[T ] + [T ′] = 0, (2.3)

if T, T ′ ∈ T (r, n) are identical except for the edge between two vertices i and j , where
we have:

� 	i j i j
η η−1

T T ′

for some η ∈ μr . (Note that this implies that j is the root of T and i is the root of
T ′.) It is clear that W (r, n) permutes these relations, so we obtain a representation of
W (r, n) on V(r, n).

One feature of these relations is that they allow us to express any tree as a linear
combination of those where the edges are always directed towards the greater vertex,
a process of ‘rectification’ which is implicit in [11] and [1]. This is encapsulated in
the next definition and result.

Definition 2.3. A tree T ∈ T (r, n) is rectified if i
η→ j implies i < j . Let T (r, n)◦ be

the set of rectified trees.
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Note that T (r, n)◦ has exactly rn−1(n − 1)! elements: the root must be n, and for i < n,
there are n − i possibilities for the end of the edge which starts at i , with r possible
labels for the edge.

Lemma 2.4. V(r, n) is spanned by {[T ] | T ∈ T (r, n)◦}.

Proof: By using relations of type (2.3) repeatedly to shift the root, we can express
any [T ] for T ∈ T (r, n) as ±[T ′] where T ′ has root n. Now suppose that T ∈ T (r, n)
has root n and is unrectified. Let a(T ) ≤ n − 1 be the maximal i such that T has an
edge i

η→ j where i > j , and let b(T ) be the length of the path from a(T ) to n in
T . It suffices to show that [T ] can be written as a linear combination of those [T ′]
where T ′ has root n and is either rectified or has a pair (a(T ′), b(T ′)) which precedes
(a(T ), b(T )) in lexicographic order. For this, define T2, T3 ∈ T (r, n) so that T, T2, T3

form a triple as in (2.2), where i = a(T ), j is the end of the edge starting at i in T , and
k is the end of the edge starting at j in T ( j cannot be the root n, since by assumption it
is less than i). Since T2 and T3 clearly have the same root as T , it suffices to show that
they are either rectified or have an (a, b) pair preceding that of T . Now if k > a(T ) = i ,
then the edge starting with i in both T2 and T3 is directed towards the greater vertex, so
they are either rectified or have an a-value strictly less than a(T ). On the other hand,
if k < a(T ), then a(T2) = a(T3) = a(T ), but b(T2) = b(T3) = b(T ) − 1, since k is a
step closer to the root than j is in T . So in either case we are done. �

Now the representation V(1, n) of Sn has a convenient ‘concrete’ realization. For
T ∈ T (1, n), define the polynomial pT ∈ C[z1, . . . , zn] by pT := ∏

i→ j
T

(zi − z j ). Let
Sn act on C[z1, . . . , zn] and its quotient field C(z1, . . . , zn) in the obvious way, so
that w.zi = zw(i).

Proposition 2.5.

(1) There is a linear map  : V(1, n) → C(z1, . . . , zn) such that ([T ]) = 1
pT

, ∀T ∈
T (1, n).

(2) The map  is injective and Sn-equivariant.
(3) V(1, n) has basis {[T ] | T ∈ T (1, n)◦}.

Proof: To prove (1), it suffices to show that 1
pT1

+ 1
pT2

= 1
pT3

for T1, T2, T3 a triple as
in (2.2), and 1

pT
+ 1

pT ′ = 0 for T, T ′ as in (2.3); these are both trivial. The equivariance
part of (2) is also obvious. Now by Lemma 2.4, the set in (3) is a spanning set, so
(2) and (3) will both follow from the statement that { 1

pT
| T ∈ T (1, n)◦} is a linearly

independent subset of C(z1, . . . , zn). We could deduce this from Orlik-Solomon theory
using (2.8) below, but there is also a pleasant direct proof by induction on n. The claim
is vacuously true when n = 1, so suppose that n ≥ 2 and that∑

T ∈T (1,n)◦

cT

pT
= 0, (2.4)

for some cT ∈ C. Any T ∈ T (1, n)◦ contains the edge n − 1 → n, and hence deter-
mines a partition {1, . . . , n} = AT � BT , where AT consists of all the vertices of T
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closer to n − 1 than to n, and BT consists of all the vertices closer to n. Fix a partition
{1, . . . , n} = A � B, where n − 1 ∈ A and n ∈ B, and define

T (1, n)◦A,B = {T ∈ T (1, n)◦ | AT = A, BT = B}.

It suffices to show that cT = 0 for all T ∈ T (1, n)◦A,B . Now we can rewrite (2.4) as

∑
T ∈T (1,n)◦A,B

cT

∏
i→ j

T
i≤n−2

(zi − z j )
−1 +

∑
T ∈T (1,n)◦

T �∈T (1,n)◦A,B

cT

∏
i→ j

T
i≤n−2

(zi − z j )
−1 = 0, (2.5)

where we have multiplied through by the common factor zn−1 − zn . The terms in the
first sum contain only factors (zi − z j )−1 where i, j are both in A or both in B, whereas
each of the terms in the second sum contains at least one factor (zi − z j )−1 where one
of i, j is in A and the other is in B. Therefore the first sum is itself zero: one way to see
this is to make a substitution of variables za �→ za + s for all a ∈ A and zb �→ zb + t
for all b ∈ B, and then send |s − t | → ∞, killing all terms in the second sum while
leaving the first unchanged. We are now reduced to showing that the set⎧⎪⎪⎪⎨⎪⎪⎪⎩

∏
i→ j

T
i≤n−2

(zi − z j )
−1

∣∣∣∣∣ T ∈ T (1, n)◦A,B

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.6)

is linearly independent. But a tree T ∈ T (1, n)◦A,B is constructed from uniquely defined
smaller trees T |A ∈ T (1, A)◦ and T |B ∈ T (1, B)◦, by adding the edge from n − 1 to
n: so the set (2.6) is exactly{

1

pT ′ pT ′′

∣∣∣∣∣ T ′ ∈ T (1, A)◦, T ′′ ∈ T (1, B)◦
}

.

By the induction hypothesis, { 1
pT ′ | T ′ ∈ T (1, A)◦} is a linearly independent set in

C(za | a ∈ A), and { 1
pT ′′ | T ′′ ∈ T (1, B)◦} is a linearly independent set in C(zb | b ∈ B),

so the claim follows. �

We can now deduce the analogous basis for V(r, n) for general r .

Proposition 2.6. Define Z := {ζ = (ζ1, . . . , ζn) ∈ μn
r | ζn = 1}.

(1) V(1, n) can be identified with the subspace of V(r, n) spanned by [T ] for T ∈
T (1, n).

(2) V(r, n) = ⊕
ζ∈Z ζ .V(1, n).

(3) V(r, n) has basis {[T ] | T ∈ T (r, n)◦}.
(4) dimV(r, n) = rn−1(n − 1)!.
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(5) Embed μr × Sn in W (r, n) by the map (ζ, w) �→ (ζ, . . . , ζ )w. As a representation
of W (r, n),

V(r, n) ∼= IndW (r,n)
μr ×Sn

(V(1, n)),

where μr acts trivially on V(1, n).

Proof: Identifying T (1, n) with the subset of T (r, n) where all the edge-labels are 1,
we have that for ζ ∈ Z ,

ζ .T (1, n) = {
T ∈ T (r, n) | i

η→ j =⇒ η = ζiζ
−1
j

}
. (2.7)

It is clear that for any tree T ∈ T (r, n), the edge labels satisfy this rule for a unique
ζ ∈ Z , so T (r, n) is the disjoint union of these subsets ζ .T (1, n). Moreover, the
relations involve only trees in the same subset, which proves (1) and (2). Parts (3) and
(4) follow from (2) and Proposition 2.5. Part (5) follows from (2) and the fact that Z
is a set of coset representatives for W (r, n)/(μr × Sn). �

There is another easy-to-describe basis of V(r, n). Let T0 ∈ T (1, n) be the tree (a
chain) in which i → i + 1 for all i ≤ n − 1. For T ∈ T (r, n), ζ ∈ Z and w ∈ Sn , we
say that (ζ , w) refines T if i

η→ j in T implies w−1(i) < w−1( j) and η = ζiζ
−1
j ; in

other words, T ∈ ζ .T (1, n) and the total order on {1, . . . , n} determined by the chain
w.T0 refines the partial order determined by T .

Proposition 2.7. For all T ∈ T (r, n), the equation

[T ] =
∑

(ζ ,w)∈Z×Sn

(ζ ,w) refines T

[ζw.T0]

holds in V(r, n).

Proof: Let f (T ) denote the right-hand side. If T1, T2, T3 ∈ T (r, n) are as in (2.2), it
is clear that the set of (ζ , w) which refine T3 is the disjoint union of the corresponding
sets for T1 and T2, and hence f (T3) = f (T1) + f (T2). Now certainly [T ] = f (T ) if T
is a chain, i.e. T = ζw.T0 for some (ζ , w). If T is not of this form, then it forms part of
a triple (T1, T2, T ) as in (2.2), where T1 and T2 strictly precede T in the lexicographic
ordering according to the n-tuple (v0, . . . , vn−1), where vd is the number of vertices
at distance d from the root. The result follows by induction.

�

Corollary 2.8. V(r, n) has basis {[ζw.T0] | ζ ∈ Z , w ∈ Sn−1}.

Proof: If T ∈ T (r, n)◦, the partial order corresponding to T has unique maximal
element n, so if (ζ , w) refines T , w must lie in Sn−1. So (3) of Proposition 2.6 and
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Proposition 2.7 imply that the stated set spans V(r, n); it must be a basis by (4) of
Proposition 2.6. �

These results offer an alternative way of definingV(r, n). Consider the quotient Ṽ(r, n)
of CT (r, n) obtained by imposing only the relations (2.2), and not (2.3). The above
arguments show that the images of the chains in T (r, n) form a basis of Ṽ(r, n). We can
then regard V(r, n) as the quotient of the formal span of these chains by the relations
(2.3), where [T ] and [T ′] are interpreted by means of Proposition 2.7. Another way
of saying this is that we can write explicit generators for the left ideal I of CW (r, n)
defined by I = {x ∈ CW (r, n) | x .[T0] = 0}: namely,

(ζ, . . . , ζ ) − 1, for ζ ∈ μr , and
∑

w∈(Sd×Sn−d )\Sn

w, for 1 ≤ d ≤ n − 1.

(Here (Sd × Sn−d ) \ Sn denotes the set of minimal-length left coset representa-
tives for the Young subgroup Sd × Sn−d .) Then x �→ x .[T0] gives an isomorphism
CW (r, n)/I

∼→ V(r, n) of representations of W (r, n). This point of view will not be
used in the remainder of the paper.

Lehrer and Solomon have effectively already studied the representation V(1, n).
Indeed, in [11, Section 3] they consider the top-degree component An−1(M(n)) of the
Orlik-Solomon algebra of the hyperplane complement

M(n) := {(z1, . . . , zn) ∈ Cn | zi �= z j , ∀i �= j}.

This component has a ‘no-broken-circuit’ basis {αT | T ∈ T (1, n)◦} where
αT := ∧

i→ j ( dzi −dz j

zi −z j
), with the factors of the wedge product ordered by increasing i .

But by an elementary calculation,

αT = 1

pT
α, where α :=

n∑
i=1

(−1)n−i dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn. (2.8)

(The hat denotes omission of that factor.) So we have a linear isomorphism V(1, n)
∼→

An−1(M(n)) : x �→ (x)α, and since w.α = εn(w)α for all w ∈ Sn , this gives an iso-
morphism

εn ⊗ V(1, n) ∼= An−1(M(n)) (2.9)

of representations of Sn . Under this isomorphism, the r = 1 case of Corollary 2.8
corresponds to [11, Proposition (3.3)], and the main result [11, Theorem (3.9)] be-
comes the following fact about V(1, n). Let ψn : μn ↪→ C× be the inclusion map, and
simultaneously identify μn with a subgroup of Sn , by sending a generator ζ0 ∈ μn to
the n-cycle (1, 2, . . . , n).

Theorem 2.9. As a representation of Sn, V(1, n) ∼= IndSn
μn

(ψn).

Springer



J Algebr Comb (2006) 24:361–390 371

Proof: To emphasize that Lehrer’s and Solomon’s proof is purely combinatorial,
we will sketch its translation into the context of V(1, n). Since dimV(1, n) = (n −
1)! = |Sn/μn|, it suffices to show that V(1, n) is generated as a CSn-module by some
x satisfying θ.x = ψn(θ )x for all θ ∈ μn . An element which indeed has the latter
property is x = (

∑n−1
p=0 ζ

−p
0 (1, 2, . . . , n)p).[T0]. The claim is that

x = (
1 − cn−1ζ

−1
0

) (
1 − cn−2ζ

−1
0

) · · · (1 − c2ζ
−1
0

) (
1 − c1ζ

−1
0

)
.[T0], (2.10)

where ci is the i-cycle (1, 2, . . . , i). Since each 1 − ciζ
−1
0 for i ≤ n − 1 is an invertible

element of CSn , and V(1, n) is certainly generated as a CSn-module by [T0] (by
Corollary 2.8), this finishes the proof. To prove the claim (2.10), we define elements
bn,p ∈ CSn−1 by the rule

(1 − cn−1t)(1 − cn−2t) · · · (1 − c2t)(1 − c1t) =
n−1∑
p=0

bn,pt p. (2.11)

It suffices to show that cp
n .[T0] = bn,p.[T0], for all 0 ≤ p ≤ n − 1. The p = 0 case is

trivial, and the p = n − 1 case is equivalent to w0.[T0] = (−1)n−1[T0] where w0 is
the permutation i �→ n + 1 − i , which is an immediate consequence of (2.3). For the
remaining cases 1 ≤ p ≤ n − 2 we use induction on n, and the obvious recurrence
bn,p = bn−1,p − cn−1bn−1,p−1. By the induction hypothesis, we have

bn−1,p.[1 → 2 → · · · → n − 1] = [p + 1 → · · · → n − 1 → 1 → · · · → p],

which, bearing in mind bn−1,p ∈ CSn−2, implies that

bn−1,p.[T0] = −bn−1,p.

⎡⎣ 1 → 2 → · · · → n − 1
↑
n

⎤⎦
= −

⎡⎣ p + 1 → · · · → n − 1 → 1 → · · · → p
↑
n

⎤⎦ .

Hence also

cn−1bn−1,p−1.[T0] = −
⎡⎣ p + 1 → · · · → n − 1 → 1 → · · · → p

↑
n

⎤⎦ .

The desired equation cp
n .[T0] = bn−1,p.[T0] − cn−1bn−1,p−1.[T0] is now a case of (2.2).

�

Combining our embeddings μn ↪→ Sn and μr × Sn ↪→ W (r, n), we can embed μr ×
μn in W (r, n).
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Corollary 2.10. As a representation of W (r, n),

V(r, n) ∼= IndW (r,n)
μr ×μn

(1 × ψn).

Proof: This follows from (5) of Proposition 2.6 and Theorem 2.9. �

We will need a generalization of Theorem 2.9. Suppose for the remainder of this
section that r | n, and embed W (r, n/r ) in Sn as the centralizer of the product of n/r
disjoint r -cycles. Hence μr × μn/r is also embedded in Sn .

Theorem 2.11. As a representation of Sn,

V(1, n) ∼= IndSn
μr ×μn/r

(
ψn/r

r × ψn/r
) ∼= IndSn

W (r,n/r )(prodn/r ⊗ V(r, n/r )).

Proof: The second isomorphism follows from Corollary 2.10. It would be good to
realize the first isomorphism explicitly, as we did in the r = 1 case (Theorem 2.9),
by finding a generator x for V(1, n) which satisfies ζ.x = ψr (ζ )n/r x for all ζ ∈ μr

and θ.x = ψn/r (θ ) for all θ ∈ μn/r . However, I have not been able to do this. We will
instead prove that the characters coincide:

χ
(
IndSn

μn
(ψn)

) = χ
(
IndSn

μr ×μn/r

(
ψn/r

r × ψn/r
))

. (2.12)

Both sides are clearly supported on the elements of cycle type (dn/d ) where d | n.
The value of the left-hand side at such an element, when multiplied by the index of
the centralizer, is

∑
ζ∈μ◦

d
ζ = μ(d), where μ◦

d denotes the set of primitive dth roots
of 1, and μ(d) is the Möbius μ-function. The value of the right-hand side at such an
element, when multiplied by the index of the centralizer, is∑

e|r
f |(n/r )

lcm(e, f )=d

∑
η∈μ◦

e
θ∈μ◦

f

ηn/rθ =
∑
e|r

f |(n/r )
lcm(e, f )=d

μ( f )
∑
η∈μ◦

e

ηn/r

=
∑
e|r

f |(n/r )
lcm(e, f )=d

μ( f )μ
(

e
gcd(n/r,e)

)
φ(e)

φ
(

e
gcd(n/r,e)

) ,

where φ is Euler’s function. Since both formulas are multiplicative, it suffices to prove
that they are equal when r = pa , n/r = pb, d = pc for some prime p and a, b, c ∈ N,
c ≤ a + b. That is, we must prove

μ(pc) =
∑

0≤x≤a
0≤y≤b

max{x,y}=c

μ(py)μ(px−min{b,x})φ(px )

φ(px−min{b,x})
. (2.13)
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If c = 0, both sides are clearly 1. If c = 1 and a = 0, the only term on the right-hand
side is x = 0, y = 1, and both sides are −1. If c = 1 and b = 0, the only term
on the right-hand side is x = 1, y = 0, and both sides are again −1. If c = 1 and
a, b ≥ 1, there are three terms on the right-hand side, those where x, y ∈ {0, 1} are
not both 0; their sum is once again −1. So we may assume that c ≥ 2, in which
case the left-hand side is 0. Because of the μ-function factors, the only nonzero
terms on the right-hand side are those where y ≤ 1 and x ≤ b + 1. The first of these
conditions forces x = c, so if c > b + 1 or c > a there are no nonzero terms at
all, and we are done. The only remaining case is that c ≥ 2, c ≤ a, c ≤ b + 1, in
which case the two nonzero terms x = c, y = 0 and x = c, y = 1 cancel each other out.

�

3. Cohomology of the hyperplane complement T (r, n)

As in the previous section, r and n denote positive integers. Define

T (r, n) := {(z1, z2, . . . , zn) ∈ Cn | zi �= 0, ∀i, zr
i �= zr

j , ∀i �= j}.

This is the complement of the hyperplanes zi = 0 for 1 ≤ i ≤ n and zi = ηz j for
1 ≤ i �= j ≤ n, η ∈ μr . The wreath product W (r, n) acts on T (r, n) by the restriction
of its standard representation on Cn . Indeed, if r ≥ 2, the hyperplanes we have removed
are exactly the reflecting hyperplanes for the image G(r, 1, n) of this representation;
if r = 1, we have also removed the hyperplanes zi = 0.

Let �•(T (r, n)) be the graded anti-commutative algebra of regular differential
forms on T (r, n). Thus �0(T (r, n)) = O(T (r, n)) is the algebra of regular functions
on T (r, n), or in other words the subring C[z±1

i , (zi − ηz j )−1] of C(z1, . . . , zn), and
for 1 ≤ p ≤ n, �p(T (r, n)) is the free �0(T (r, n))-module with basis dzi1 ∧ · · · ∧
dzi p , for 1 ≤ i1 < · · · < i p ≤ n. We have the usual differential d : �•(T (r, n)) →
�•(T (r, n)) raising degrees by 1. As with any nonsingular affine complex variety,
the cohomology of the cochain complex (�•(T (r, n)), d) is merely the cohomology
H p(T (r, n), C). The natural action of W (r, n) on �•(T (r, n)) preserves the grading,
the wedge product, and the differential. Explicitly, the action on �0(T (r, n)) is given
by the formulas:

ζ . f (z1, . . . , zn) = f
(
ζ−1

1 z1, . . . , ζ−1
n zn

)
,

w. f (z1, . . . , zn) = f
(
zw(1), . . . , zw(n)

)
, (3.1)

and the action on �p(T (r, n)) uses the additional rule w.dzi = dzw(i).
As mentioned in the introduction, the cohomology of a hyperplane complement

can be described quite explicitly by results of Brieskorn, Orlik and Solomon; in our
case, this description is as follows. Let A•(T (r, n)) be the subalgebra of �•(T (r, n))
generated by the following 1-forms:

ωi := dzi

zi
, ∀i, and ωi, j,η := dzi − ηdz j

zi − ηz j
, ∀i �= j, η ∈ μr .
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Since these generators are closed, dα = 0 for all α ∈ A•(T (r, n)).

Theorem 3.1. (Brieskorn, see [13, Theorem 5.89]). The inclusion (A•(T (r, n)), 0) ↪→
(�•(T (r, n)), d) of cochain complexes is a quasi-isomorphism. In other words,
Ap(T (r, n)) ∼= H p(T (r, n), C) via the map sending a form α to its cohomology class.

Theorem 3.2. (Orlik-Solomon, see [13, Theorems 3.43 and 3.126]). A•(T (r, n)) has
a basis consisting of all products α1 ∧ α2 ∧ · · · ∧ αn, where each αi is either 1, ωi , or
ωi, j,η for some j > i and η ∈ μr .

To obtain the basis given here as the ‘no-broken-circuit’ basis of [13, Theorem 3.43],
order the hyperplanes so that the hyperplanes {zi = ηz j } for j > i come first, in
lexicographic order of (i, j), and then the hyperplanes {zi = 0}, in order of i . If r = 1,
we recover the basis used by Lehrer in [8] (identify A•(T (1, n)) with the Orlik-Solomon
algebra of Sn+1 by rewriting ωi as ωi,n+1). If r = 2, we recover the basis used by Lehrer
in [9].

Of course, the basis in Theorem 3.2 is not W (r, n)-stable, so it is necessary to con-
sider the linear relations satisfied by the set of all W (r, n)-translates of basis elements.
This set can be parametrized by an enhanced version of the trees considered in the
previous section.

Definition 3.3. A directed forest on {1, . . . , n} is a directed graph with vertex set
{1, . . . , n} such that each connected component is a directed tree on the vertices
it contains. A decorated directed forest F on {1, . . . , n} is a directed forest on
{1, . . . , n} equipped with, firstly, a labelling of each edge by an element of μr , and,
secondly, a partition of the set of roots into open and closed roots. We write i

η→ j
(with a subscript F when necessary) to mean that there is an edge from i to j in F
whose label is η ∈ μr . We say that F is rectified if i

ζ→ j implies i < j . Let F(r, n)
be the set of decorated directed forests on {1, . . . , n}, and letF(r, n)k,l be the subset of
F(r, n) consisting of those forests with k edges and l closed roots (and hence n − k − l
open roots). Write F(r, n)◦ and F(r, n)◦,k,l for the rectified subsets of these.

We define an action of W (r, n) on F(r, n) by the same rules as for T (r, n). (As well
as permuting the vertices, Sn respects the openness of roots; in other words, i is an
open root of F if and only if w(i) is an open root of w.F .) Clearly each F(r, n)k,l is a
W (r, n)-stable subset.

We can now define a suitably signed version of the set of W (r, n)-translates of the
Orlik-Solomon basis elements.

Definition 3.4. For any decorated directed forest F ∈ F(r, n)k,l , and any i ∈
{1, . . . , n}, define the sign

εi (F) := (−1)i−1−|{open roots of F which are < i}|.
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Define α(F) ∈ Ak+l(T (r, n)) by α1(F) ∧ α2(F) ∧ · · · ∧ αn(F), where

αi (F) :=
⎧⎨⎩

εi (F), if i is an open root of F ,
ωi , if i is a closed root of F ,

ωi, j,η, if i
η→ j in F .

Note that if i is not an open root of F , εi (F) is exactly the sign incurred in moving the
αi (F) factor of the wedge product to the front.

Since the wedge products in Theorem 3.2 are, up to sign, those α(F) for F rectified,
we can rewrite that result as follows.

Theorem 3.5. Ap(T (r, n)) has basis {α(F) | F ∈ ⋃
k+l=p F(r, n)◦,k,l}.

Example 3.6. The twelve elements of F(2, 2), with the corresponding elements of
A•(2, 2), are as follows; asterisks indicate closed roots.

(Note that 2
±1−→ 1 and 2

±1−→ 1∗ are not rectified.)

1 2 1

1
±1−→ 2 −ω1,2,±1

2
±1−→ 1 ω2,1,±1

1 2∗ ω2
1∗ 2 −ω1

1
±1−→ 2∗ ω1,2,±1 ∧ ω2

2
±1−→ 1∗ ω1 ∧ ω2,1,±1

1∗ 2∗ ω1 ∧ ω2

The justification for the above definition of α(F) is the following result, in which the
sign ε(w, F) is defined by

ε(w, F) := (−1)|{(i, j) | i, j open roots of F, i< j, w(i)>w( j)}|.

Proposition 3.7. For ζ ∈ μn
r , w ∈ Sn and F ∈ F(r, n),

α(ζw.F) = εn(w) ε(w, F) ζw.α(F).

Proof: That ζ .α(F) = α(ζ .F) is obvious from the fact that ζ .ωi, j,η = ωi, j,ηζi ζ
−1
j

.
So we need only show that α(w.F) = εn(w)ε(w, F)w.α(F), which it suffices to
prove in the case that w is a simple transposition si = (i, i + 1), since ε(ww′, F) =
ε(w, w′F)ε(w′, F). It is clear that α j (si .F) = si .α j (F) for all j �= i, i + 1, so we are
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reduced to showing

αi (si .F) ∧ αi+1(si .F) =
⎧⎨⎩ si .αi (F) ∧ si .αi+1(F), if i , i + 1 are open

roots of F
−si .αi (F) ∧ si .αi+1(F), otherwise.

Now if i and i + 1 are open roots of F , both sides are clearly 1. If neither i nor
i + 1 is an open root of F , then αi (si .F) = si .αi+1(F) and αi+1(si .F) = si .αi (F),
both being 1-forms, so the claim holds. If i + 1 is an open root of F and i is not, then
αi+1(si .F) = si .αi (F) but

εi (si .F) = (−1)i−1−|{open roots of si .F which are < i}|

= (−1)i−1−|{open roots of F which are < i + 1}| = −εi+1(F),

so again the claim holds. The case where i is an open root of F and i + 1 is not is
similar. �

We now describe the linear relations satisfied by the elements α(F), when F is not
necessarily rectified; these were the motivation for the relations used in the previous
section.

Proposition 3.8. The following hold in A•(T (r, n)).

(1) α(F1) + α(F2) = α(F3), if F1, F2, F3 ∈ F(r, n) are identical except for the edges
between three vertices i , j , and k, where we have

i

j

k

�
�

�
�

���
ηθ−1

θ

F1

i

j

k

�
�

�
�

���θη−1

η

F2

i

j

k

�
�

�
���

�
�

�
���

θ

η

F3

for some η, θ ∈ μr . (The assertion that they are otherwise identical includes the
fact that if k is a root of any, hence all, of these forests, it is either open in all or
closed in all.)

(2) α(F) + α(F ′) = 0, if F, F ′ ∈ T (r, n) are identical except that j is an open root of
F, i is an open root of F ′, and we have i

η→ j in F, j
η−1

→ i in F ′ for some η ∈ μr .
(3) α(F) + α(F ′) = α(F ′′), if F, F ′, F ′′ ∈ F(r, n) are identical except that j is a

closed root of F, i is a closed root of F ′, both are closed roots of F ′′, and we have
i

η→ j in F, j
η−1

→ i in F ′ for some η ∈ μr (there is of course no edge between i
and j in F ′′).
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Proof: In (1) and (3), the factors in various positions of the wedge product are forms
of the same degrees in all three terms, so we may reorder the factors in the same way
in all three terms so as to bring the factors in which the terms differ to the front, and
then neglect the other factors. Therefore to prove these relations we need only check:

ωi, j,ηθ−1 ∧ ω j,k,θ + ωi,k,η ∧ ω j,i,θη−1 = ωi,k,η ∧ ω j,k,θ , and

ωi, j,η ∧ ω j + ωi ∧ ω j,i,η−1 = ωi ∧ ω j . (3.2)

These are known relations in A•(T (r, n)) (besides being trivial to verify directly).
In (2), reorder the factors of the wedge products so that the factor corresponding to
i comes first, that corresponding to j comes second, and the others (which are the
same in both terms) follow in order. In the case of α(F), the sign incurred by this
reordering is εi (F), and the reordered product is ωi, j,η ∧ ε j (F) ∧ · · · . In the case of
α(F ′), the sign incurred is ε j (F ′), and the reordered product is εi (F ′) ∧ ω j,i,η−1 ∧ · · · .
Since ωi, j,η = ω j,i,η−1 , we need only show that εi (F)ε j (F) + εi (F ′)ε j (F ′) = 0. But
if i < j , then εi (F ′) = εi (F) while ε j (F ′) = −ε j (F), because i is an open root of F ′

but not of F ; the j < i case is similar. �

From the viewpoint of the previous section, relation (3) of Proposition 3.8 appears
to be of the wrong form. However, we can make α(F) + α(F ′) zero as expected if we
work modulo forests with a greater number of closed roots (such as F ′′). So we define
for each p a W (r, n)-stable filtration

Ap(T (r, n)) = Ap(T (r, n))0 ⊇ Ap(T (r, n))1 ⊇ Ap(T (r, n))2 · · · ,

where

Ap(T (r, n))m := span

{
α(F)

∣∣∣∣∣ F ∈
⋃

k+l=p
l≥m

F(r, n)k,l

}
.

(In the r = 2 case, a similar filtration was used in [3].) Also define Ak,l(T (r, n)) :=
Ak+l(T (r, n))l/Ak+l(T (r, n))l+1, and for F ∈ F(r, n)k,l , let [F] denote the image of
α(F) in Ak,l(T (r, n)). We can now state the main result of this section.

Theorem 3.9. Let r, n, p, k, l be as above.

(1) Ap(T (r, n)) can be defined abstractly as the vector space spanned by {α(F) | F ∈⋃
k+l=p F(r, n)k,l} subject to the relations in Proposition 3.8.

(2) Ak,l(T (r, n)) can be defined abstractly as the vector space spanned by {[F] | F ∈
F(r, n)k,l} subject to the following relations:� [F1] + [F2] = [F3] whenever F1, F2, F3 ∈ F(r, n)k,l are as in (1) of Proposition
3.8;� [F] + [F ′] = 0 whenever F, F ′ ∈ F(r, n)k,l are as in (2) or (3) of Proposition
3.8.

(3) Ak,l(T (r, n)) has basis {[F] | F ∈ F(r, n)◦,k,l}.
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(4) For ζ ∈ μn
r , w ∈ Sn and F ∈ F(r, n)k,l ,

ζw.[F] = εn(w) ε(w, F) [ζw.F].

(5) As a representation of W (r, n),

Ap(T (r, n)) ∼=
⊕

k+l=p

Ak,l(T (r, n)).

Proof: The vector space defined abstractly as in (1) certainly maps to Ap(T (r, n)),
since the stated relations do hold. So to prove (1), it suffices to show that
the basis elements {α(F) | F ∈ ⋃

k+l=p F(r, n)◦,k,l} of Theorem 3.5 span the ab-
stract vector space also. This follows from the same sort of rectification proce-
dure as in Lemma 2.4: for F ∈ F(r, n)k,l , we use relations (2) and (3) of Propo-
sition 3.8 to shift the root of each tree to its largest vertex, and any forests
which arise from the right-hand side of relation (3) can be neglected, by down-
ward induction on the number of closed roots. Once the root of each tree is its
largest vertex, the rectification proceeds using relation (1) as in Lemma 2.4. So
part (1) of the present result is proved. Moreover, this procedure expresses each
α(F) as a linear combination of α(F ′)’s for F ′ rectified with at least as many
closed roots as F . Therefore Ap(T (r, n))m has basis {α(F) | F ∈ ⋃

k+l=p
l≥m

F(r, n)◦,k,l},
from which part (3) follows immediately. Part (2) follows from (3) by the
same argument as for (1). Part (4) clearly follows from Proposition 3.7,
and part (5) from complete reducibility of finite-dimensional representations of
W (r, n). �

We can now relate Ak,l(T (r, n)) to the representations considered in the previous
section. Recall that if λ = (λ1, . . . , λ�) is a partition in the usual combinatorial sense,
the stabilizer in S|λ| of a set partition of {1, . . . , |λ|} into parts of sizes λ1, . . . , λ� is
isomorphic to

(Sλ1 × · · · × Sλ�
) �

(
Sm1(λ) × Sm2(λ) × · · · ),

where Smi (λ) acts by permuting the Sλa factors where λa = i . The subgroups of W (r, n)
referred to in the following result are defined similarly.

Corollary 3.10. As a representation of W (r, n), εn ⊗ Ak,l(T (r, n)) is isomorphic to
the following direct sum:

⊕
λ1,λ2

|λ1|+|λ2|=n
�(λ1)=n−k−l

�(λ2)=l

IndW (r,n)
((W (r,λ1

1)×···×W (r,λ1
n−k−l ))

�(Sm1(λ1)×Sm2(λ1)×··· ))

×((W (r,λ2
1)×···×W (r,λ2

l ))
�(Sm1(λ2)×Sm2(λ2)×··· ))

(
ε ⊗ V

(
r, λ1

1

) ⊗ · · · ⊗ V
(
r, λ1

n−k−l

)
⊗ V

(
r, λ2

1

) ⊗ · · · ⊗ V
(
r, λ2

l

) )
,
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where W (r, λ j
a) acts on the V(r, λ j

a) factor, Smi (λ j ) acts by permuting the V(r, λ j
a)

factors where λ
j
a = i , and ε denotes the product of the sign characters of the Smi (λ1)

components.

Proof: For any partition of the set {1, . . . , n} into nonempty subsets B1, . . . , Bn−k−l ,
C1, . . . , Cl , let F(r, n)k,l

({Bi },{C j }) ⊂ F(r, n)k,l be the subset consisting of forests in
which the trees with open roots have vertex sets B1, . . . , Bn−k−l and the trees with
closed roots have vertex sets C1, . . . , Cl . Let Ak,l(T (r, n))({Bi },{C j }) be the subspace
of Ak,l(T (r, n)) spanned by the elements [F] for F ∈ F(r, n)k,l

({Bi },{C j }). Since every

relation in (2) of Theorem 3.9 involves forests in the same subset F(r, n)k,l
({Bi },{C j }), we

have a direct sum decomposition

Ak,l(T (r, n)) =
⊕

({Bi },{C j })
Ak,l(T (r, n))({Bi },{C j }). (3.3)

Comparing the relations in Theorem 3.9 to those in the definition of V(r, n), we see
that there is an isomorphism of vector spaces

Ak,l(T (r, n))({Bi },{C j })
∼→ V(r, B1) ⊗ · · · ⊗ V(r, Bn−k−l)

⊗V(r, C1) ⊗ · · · ⊗ V(r, Cl) (3.4)

sending [F] for F ∈ F(r, n)k,l
({Bi },{C j }) to

[F |B1 ] ⊗ · · · ⊗ [F |Bn−k−l ] ⊗ [F |C1 ] ⊗ · · · ⊗ [F |Cl ].

HereV(r, X ) is defined in the same way asV(r, n) but with vertex set X , and F |X means
the tree in the forest F whose vertex set is X . Now the stabilizer of ({Bi }, {C j }) in
W (r, n) is a subgroup of the type mentioned in the statement, where λ1 is formed from
the sizes of the Bi ’s and λ2 from the sizes of the C j ’s. Thanks to (4) of Theorem 3.9,
the action of this stabilizer on εn ⊗ Ak,l(T (r, n))({Bi },{C j }) corresponds to the obvious
action on the right-hand side of (3.4), together with a sign on the permutation of the
open-root factors. The result follows. �

Example 3.11. In the case r = n = 2, Corollary 3.10 gives the following isomor-
phisms of representations of W (2, 2):

A0,0(T (2, 2)) ∼= ε2 ⊗ IndW (2,2)
(W (2,1)×W (2,1))�S2

(ε ⊗ V(2, 1) ⊗ V(2, 1)) ∼= 1,

A1,0(T (2, 2)) ∼= ε2 ⊗ IndW (2,2)
W (2,2)(V(2, 2)) ∼= 1 ⊕ prod2,

A0,1(T (2, 2)) ∼= ε2 ⊗ IndW (2,2)
W (2,1)×W (2,1)(V(2, 1) ⊗ V(2, 1)) ∼= 1 ⊕ ε2,
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A1,1(T (2, 2)) ∼= ε2 ⊗ IndW (2,2)
W (2,2)(V(2, 2)) ∼= 1 ⊕ prod2,

A0,2(T (2, 2)) ∼= ε2 ⊗ IndW (2,2)
(W (2,1)×W (2,1))�S2

(V(2, 1) ⊗ V(2, 1)) ∼= ε2.

Here we have used the obvious fact V(2, 2) ∼= ε2 ⊕ det2.

In general, we can substitute Corollary 2.10 into Corollary 3.10 to obtain:

Corollary 3.12. As a representation of W (r, n), εn ⊗ Ak,l(T (r, n)) is isomorphic to
the following direct sum:

⊕
λ1,λ2

|λ1|+|λ2|=n
�(λ1)=n−k−l

�(λ2)=l

IndW (r,n)
(((μr ×μ

λ1
1
)×···×(μr ×μ

λ1
n−k−l

))�(Sm1(λ1)×Sm2(λ1)×··· ))

×(((μr ×μ
λ2

1
)×···×(μr ×μ

λ2
l

))�(Sm1(λ2)×Sm2(λ2)×··· ))

(εψ),

where ψ is the character which takes the product of the μ
λ

j
a

components, and ε is the
product of the sign characters of the Smi (λ1) components.

Summing over k and l, we get an expression for A•(T (r, n)) as a direct sum of in-
ductions of one-dimensional characters, which in the case r = 2 is the same as [3,
(1.1)].

Another consequence of Corollary 3.10 is a proof of the formula for the char-
acter of H •(T (r, n), C) used in [6]. Since there are already at least three proofs
of this character formula in the literature (Hanlon’s original proof of the equiv-
alent poset result in [4], Lehrer’s proof in [10], and the ‘equivariant inclusion-
exclusion’ argument of [5, Theorem 9.4]), I will leave this to the reader’s
imagination.

4. Cohomology of T(1,n) with coefficients in a local system

Now let a1, . . . , an ∈ Q, and define the local system L∑
ai ωi on T (1, n) as in

the introduction. Let r be a positive integer such that rai ∈ Z for all i . For any
representation V of W (r, n), define

V(ai ) := {
v ∈ V | ζ .v = ζ

−ra1
1 · · · ζ−ran

n v, ∀ζ ∈ μn
r

}
.

It is clear that V(ai ) is stable under Z(ai ), the subgroup of Sn which fixes (ai ).
If all ai equal s

r for some s ∈ Z, we write V(ai ) as V( s
r ); in this case Z(ai ) is Sn

itself.
We are interested in H •(T (r, n), C)(ai )

∼= A•(T (r, n))(ai ), which as mentioned in the
Introduction is isomorphic to H •(T (1, n),L∑

ai ωi ) via the mapϕ : T (r, n) → T (1, n) :
(z1, . . . , zn) �→ (zr

1, . . . , zr
n). To see this isomorphism explicitly, note that the pull-
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back ϕ∗ : �•(T (1, n)) → �•(T (r, n)) sends zi to zr
i , dzi to r zr−1

i dzi and hence ωi to
rωi for all i . Recall that we have an isomorphism

H p
(
T (1, n),L∑

ai ωi

) ∼= ker(d + �∑
ai ωi : �p(T (1, n)) → �p+1(T (1, n)))

im (d + �∑
ai ωi : �p−1(T (1, n)) → �p(T (1, n)))

,

which is clearly Z(ai )-equivariant.

Proposition 4.1. The map α �→ zra1
1 . . . zran

n ϕ∗(α) defines an isomorphism of com-
plexes (�•(T (1, n)), d + �∑

ai ωi )
∼→ (�•(T (r, n))(ai ), d), inducing Z(ai )-equivariant

isoms H p(T (1, n),L∑
ai ωi )

∼→ H p(T (r, n), C)(ai ).

Proof: Since the action of μn
r on �•(T (r, n)) respects d , the second statement fol-

lows automatically from the first. Now it is clear that ϕ∗ : �0(T (1, n)) → �0(T (r, n))
is an isomorphism onto the μn

r -invariant subspace �0(T (r, n))μ
n
r . It follows that

ϕ∗ : �p(T (1, n))
∼→ �p(T (r, n))μ

n
r for all p. Hence we have an isomorphism of

complexes

ϕ∗ :
(
�•(T (1, n)), d + �∑

ai ωi

) ∼→ (
�•(T (r, n))μ

n
r , d + �∑

rai ωi

)
. (4.1)

Now for any α ∈ �p(T (r, n)),

zra1
1 . . . zran

n

(
d + �∑

rai ωi

)
(α)

= zra1
1 . . . zran

n dα +
∑

i

zra1
1 . . . ẑrai

i . . . zran
n d

(
zrai

i

) ∧ α

= d
(
zra1

1 . . . zran
n α

)
.

Hence the map α �→ zra1
1 . . . zran

n α gives an isomorphism of complexes
(�•(T (r, n)), d+ �∑

rai ωi )
∼→ (�•(T (r, n)), d), which clearly restricts to an isomor-

phism (�•(T (r, n))μ
n
r , d+ �∑

rai ωi )
∼→ (�•(T (r, n))(ai ), d). Combining this with the

isomorphism (4.1), we have the result. �

In the previous section we saw that the structure of Ap(T (r, n)) ∼= H p(T (r, n), C)
was controlled by the forests in the set F(r, n). The main point of this section is that
the structure of Ap(T (r, n))(ai ) is controlled by the forests in the following subset of
F(1, n).

Definition 4.2. Let F(1, n; ai ) be the set of F ∈ F(1, n) such that

∑
i∈T

ai ∈ Z, for all trees T in F . (4.2)
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DefineF(1, n; ai )k,l = F(1, n; ai ) ∩ F(1, n)k,l , and similarlyF(1, n; ai )◦ andF(1, n;
ai )◦,k,l .

Note that F(1, n; ai ) is nonempty if and only if
∑

i ai ∈ Z. If all ai equal s
r , we write

F(1, n; ai ) asF(1, n; s
r ); it is then nonempty if and only if r | sn, i.e. r

gcd(s,r ) | n. More-

over, this being the case, F(1, n; s
r )k,l is nonempty if and only if l ≤ n − k ≤ n gcd(s,r )

r ,
since the number of vertices in each tree must be a multiple of r

gcd(s,r ) .

Now for any F ∈ F(1, n)k,l , we define an element of Ak+l(T (r, n))(ai ) in the most
obvious way:

β(F) :=
∑
ζ∈μn

r

ζ
ra1
1 . . . ζ ran

n ζ .α(F) =
∑
ζ∈μn

r

ζ
ra1
1 . . . ζ ran

n α(ζ .F). (4.3)

Proposition 4.3.

(1) β(F) �= 0 ⇐⇒ F ∈ F(1, n; ai ).
(2) A•(T (r, n))(ai ) has basis {β(F) | F ∈ F(1, n; ai )◦}.
(3) For w ∈ Z(ai ) and F ∈ F(1, n; ai ),

w.β(F) = εn(w)ε(w, F)β(w.F).

Proof: We know that the set {α(ζ .F) | ζ ∈ μn
r } is linearly independent, although each

element can correspond to many different ζ . (If F is rectified, this is part of the basis
in Theorem 3.5, and the linear independence in general follows by applying a suitable
element of Sn .) So it is clear that β(F) �= 0 if and only if∑

ζ∈μn
r

ζ .F=F

ζ
ra1
1 . . . ζ ran

n �= 0. (4.4)

But the subgroup of μn
r fixing F consists of the elements satisfying ζi = ζ j when-

ever i and j are vertices of the same tree in F . So the left-hand side of (4.4)
factorizes into the product over the trees T of

∑
ζ∈μr

ζ
∑

i∈T rai , which is nonzero
if and only if r | ∑

i∈T rai , i.e.
∑

i∈T ai ∈ Z. So (1) is proved. Now from The-
orem 3.5 and the fact that any F ′ ∈ F(r, n)◦ is of the form ζ .F for some F ∈
F(1, n)◦, it is evident that A•(T (r, n))(ai ) is spanned by {β(F) | F ∈ F(1, n)◦}. By
(1), this means that A•(T (r, n))(ai ) is spanned by the nonzero elements {β(F) | F ∈
F(1, n; ai )◦}. The latter elements are clearly linearly independent, as they involve
disjoint collections of α(F ′)’s, so (2) is proved. Part (3) is a consequence of
Proposition 3.7. �

As a corollary, we have

dim Ap(T (r, n))(ai ) =
∑

k+l=p

|F(1, n; ai )
◦,k,l |. (4.5)
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In particular, Ap(T (r, n))(ai ) = 0 unless
∑

i ai ∈ Z, and

Ap(T (r, n))( s
n ) �= 0 ⇐⇒ n − gcd(s, n) ≤ p ≤ n. (4.6)

As described in the Introduction, we can write down explicit differential
forms on T (1, n) (not in the Orlik-Solomon algebra) which give the basis of
H p(T (1, n),L∑

ai ωi ) corresponding under Proposition 4.1 to the basis {β(F) | F ∈⋃
k+l=p F(1, n; ai )◦,k,l} of Ap(T (r, n))(ai ). For this we need some more notation asso-

ciated with a forest F ∈ F(1, n; ai ). Let � be the equivalence relation on {1, . . . , n}
generated by →, so i � j means that i and j are vertices of the same tree. Let �
be the partial order generated by →, so i � j means that there is a path from i to j
traversing each edge in the chosen direction. Define

b j (F) = −
⌊∑

k� j

ak

⌋
+

∑
i→ j

⌈∑
k�i

ak

⌉

= −
∑
k� j

ak +
⌈ ∑

k� j
k �� j

ak

⌉
+

∑
i→ j

⌈ ∑
k�i

ak

⌉
.

(From the second expression it is clear that b j (F) is independent of the orientation of
edges in F .) Then define

β(F) :=
(

n∏
j=1

z
b j (F)
j

)
β1(F) ∧ · · · ∧ βn(F) ∈ �•(T (1, n)), where

β i (F) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εi (F)r, if i is an open root of F ,

ωi , if i is a closed root of F ,

ωi, j , if i → j in F and
∑

k�i ak ∈ Z,

(zi − z j )−1(ωi − ω j ), if i → j in F and
∑

k�i ak �∈ Z.

Note that (zi − z j )−1(ωi − ω j ) = z j dzi −zi dz j

zi z j (zi −z j )
, and that

∑
k�i ak ∈ Z if and only if the

edge i → j is breakable, in the sense that the new trees formed by deleting it still
satisfy (4.2).

Proposition 4.4. β(F) = zra1
1 . . . zran

n ϕ∗(β(F)), ∀F ∈ F(1, n; ai ).

Proof: It is easy to see that β(F) = β1(F) ∧ · · · ∧ βn(F), where

βi (F) =

⎧⎪⎨⎪⎩
εi (F)r, if i is an open root of F ,

rωi , if i is a closed root of F ,∑
η∈μr

η
∑

k�i rak ωi, j,η, if i → j in F .
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The following can be proved by multiplying both sides by zr − wr :

∑
η∈μr

ηa

z − ηw
= r za−1−r� a−1

r �wr−a+r� a−1
r �

zr − wr
, for all a ∈ Z. (4.7)

Using this we obtain:

∑
η∈μr

ηaωi, j,η =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r z

a−r� a
r �

i z
r−a+r� a

r �
j (ωi − ω j )

zr
i − zr

j

, if r � a,

r
(
zr−1

i dzi − zr−1
j dz j

)
zr

i − zr
j

, if r | a

=
{

z
a−r� a

r �
i z

−a+r� a
r !

j ϕ∗((zi − z j )−1(ωi − ω j )), if r � a,

ϕ∗(ωi, j ), if r | a.

So for any edge i → j in F ,

βi (F) = z
∑

k�i rak−r�∑k�i ak�
i z

− ∑
k�i rak+r�∑k�i ak!

j ϕ∗(β i (F)). (4.8)

If i is a root of F , we have

βi (F) = ϕ∗(β i (F)) = z
∑

k�i rak−r�∑k�i ak�
i ϕ∗(β i (F)), (4.9)

since in this case
∑

k�i ak ∈ Z by assumption. It only remains to note that for all
j ,

∑
k� j

rak − r

⌊ ∑
k� j

ak

⌋
−

∑
i→ j

∑
k�i

rak +
∑
i→ j

r

⌈ ∑
k�i

ak

⌉
= ra j + rb j (F),

as required. �

Combining Propositions 4.1, 4.3 and 4.4, we deduce the following.

Theorem 4.5. Let H p(1, n; ai ) be the span of the differential forms β(F) for
F ∈ ⋃

k+l=p F(1, n; ai )k,l .

(1) H p(1, n; ai ) ⊂ ker(d + �∑
ai ωi : �p(T (1, n)) → �p+1(T (1, n))).

(2) H p(1, n; ai )
∼→ H p(T (1, n),L∑

ai ωi ) via the map sending each form to its class
mod im (d + �∑

ai ωi : �p−1(T (1, n)) → �p(T (1, n))).
(3) H p(1, n; ai ) has basis {β(F) | F ∈ ⋃

k+l=p F(1, n; ai )◦,k,l}.
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(4) For w ∈ Z(ai ) and F ∈ F(1, n; ai )k,l ,

w.β(F) = εn(w)ε(w, F)β(w.F).

Corollary 4.6. We have

dim H p
(
T (1, n),L∑

ai ωi

) =
∑

k+l=p

|F(1, n; ai )
◦,k,l |.

In particular, H p(T (1, n),L∑
ai ωi ) = 0 unless

∑
i ai ∈ Z, and

H p
(
T (1, n),L s

n

∑
ωi

) �= 0 ⇐⇒ n − gcd(s, n) ≤ p ≤ n.

Example 4.7. If all ai ∈ Z and r = 1, β(F) = z−a1
1 · · · z−an

n α(F), and Theorem 4.5
is the obvious translation of the results for H •(T (1, n), C) through the isomorphism
L∑

ai ωi
∼= C.

Example 4.8. If all ai = s
n and gcd(s, n) = 1,F(1, n; s

n ) is the union ofF(1, n; s
n )n−1,0

and F(1, n; s
n )n−1,1. The former set consists of trees T ∈ T (1, n) with an open root;

the second consists of the elements T ∗, which are the trees T ∈ T (1, n) with a closed
root. An easy calculation shows that for T ∈ T (1, n)◦,

β(T ) = (−1)n−1n
∏n

j=1 z
b j (T )−1
j

pT

∑
i

(−1)n−i zi dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn,

whereas

β(T ∗) =
∏n

j=1 z
b j (T )−1
j

pT
dz1 ∧ · · · ∧ dzn.

If s = −1 we have b j (T ) = 1 for all j , so the factors
∏n

j=1 z
b j (T )−1
j disappear. (Com-

pare the basis of An−1(M(n)) given by (2.8).) Note that this example can be handled
by more general methods, since s

n

∑
ωi − sωn is not resonant (see Theorem 1.1).

Indeed, Kawahara’s result [7, Theorem 2.1] implies that H p(T (1, n),L s
n

∑
ωi ) = 0

for p < n − 1, and [7, Theorem 2.3] provides another basis of the non-vanishing
cohomologies.

Example 4.9. Take n = 4, all ai = − 1
2 , p = 4. The nine forests in⋃

k+l=4 F(1, 4; − 1
2 )◦,k,l are listed in the first column of the following table

(asterisks indicate closed roots). The corresponding differential forms β(F), giving
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the basis of H 4(1, 4; − 1
2 ), are in the second column.

1 → 2 → 3 → 4∗ z2

(z1 − z2)(z2 − z3)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 2 → 4∗ ← 3
z2

(z1 − z2)(z2 − z4)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 3 → 4∗ ← 2
z3

(z1 − z3)(z2 − z4)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 4∗ ← 3 ← 2
z3

(z1 − z4)(z2 − z3)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 3 → 4∗
↑
2

z3

(z1 − z3)(z2 − z3)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 4∗ ← 3

↑
2

z4

(z1 − z4)(z2 − z4)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 2∗ 3 → 4∗ 1

(z1 − z2)(z3 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 3∗ 2 → 4∗ 1

(z1 − z3)(z2 − z4)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

1 → 4∗ 2 → 3∗ 1

(z1 − z4)(z2 − z3)
dz1 ∧ dz2 ∧ dz3 ∧ dz4

The wedge product of differential forms endows H •(T (1, n), C) with a ring
structure, and H •(T (1, n),Lω) with the structure of H •(T (1, n), C)-module for any
ω ∈ A1(T (1, n)). A consequence of Theorem 4.5 is:

Corollary 4.10. The H •(T (1, n), C)-module H •(T (1, n),L∑
ai ωi ) is generated by the

images of those β(F)’s where F ∈ F(1, n; ai )◦ has no closed roots or breakable edges.
In particular, H •(T (1, n),L s

n

∑
ωi ) is generated by H n−gcd(s,n)(T (1, n),L s

n

∑
ωi ).

Proof: For general F ∈ F(1, n; ai )◦, let F̃ ∈ F(1, n; ai )◦ be the forest obtained by
deleting all breakable edges and opening all closed roots. It is easy to see that b j (F) =
b j (F̃) for all j , so β(F) is, up to scalar, the wedge product of β(F̃) with a collection
of 1-forms ωi and ωi, j . Since these 1-forms are closed, the first statement follows. In
the special case when all ai = s

n , it is clear that F̃ ∈ F(1, n; ai )◦,n−gcd(s,n),0, whence
the second statement. �
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It would be interesting to find more information about this module, such as a projective
resolution.

Our remaining goal is to describe H •(T (1, n),L∑
ai ωi ) as a graded representation

of Z(ai ). It is more convenient to describe the isomorphic representation A•(T (r, n))(ai );
all results can be translated easily using Propositions 4.1 and 4.4.

We start with the analogue of Proposition 3.8.

Proposition 4.11. The following hold in A•(T (r, n))(ai ).

(1) β(F1) + β(F2) = β(F3), whenever F1, F2, F3 ∈ F(1, n; ai ) are as in (1) of Propo-
sition 3.8.

(2) β(F) + β(F ′) = 0, whenever F, F ′ ∈ F(1, n; ai ) are as in (2) of Proposition 3.8.
(3) β(F) + β(F ′) = β(F ′′) whenever F, F ′, F ′′ ∈ F(1, n; ai ) are as in (3) of Propo-

sition 3.8.
(4) β(F) + β(F ′) = 0 whenever F, F ′ ∈ F(1, n; ai ) are as in (3) of Proposition 3.8

and the corresponding F ′′ is not in F(1, n; ai ).

Proof: In each case (1)–(3), the translates of the forests by a fixed ζ ∈ μn
r are still

a triple/pair of the right form, so these all follow instantly from Proposition 3.8. The
same applies in case (4), except that β(F ′′) = 0 by (1) of Proposition 4.3. �

The analogue of Theorem 3.9 follows, with an entirely analogous proof. For any
F ∈ F(1, n; ai )k,l , let 〈F〉 denote the image of β(F) in

Ak,l(T (r, n))(ai ) = (Ak+l(T (r, n))l)(ai )/(Ak+l(T (r, n))l+1)(ai ).

Theorem 4.12. With notation as above:

(1) Ap(T (r, n))(ai ) can be defined abstractly as the vector space spanned by
{β(F) | F ∈ ⋃

k+l=p F(1, n; ai )k,l} subject to the relations in Proposition 4.11.
(2) Ak,l(T (r, n))(ai ) can be defined abstractly as the vector space spanned by {〈F〉 | F ∈

F(1, n; ai )k,l} subject to the following relations:� 〈F1〉 + 〈F2〉 = 〈F3〉 whenever F1, F2, F3 ∈ F(1, n; ai )k,l are as in (1) of Propo-
sition 3.8;� 〈F〉 + 〈F ′〉 = 0 whenever F, F ′ ∈ F(1, n; ai )k,l are as in (2) or (3) of Proposi-
tion 3.8.

(3) Ak,l(T (r, n))(ai ) has basis {〈F〉 | F ∈ F(1, n; ai )◦,k,l}.
(4) For w ∈ Z(ai ) and F ∈ F(1, n; ai )k,l ,

w.〈F〉 = εn(w) ε(w, F) 〈w.F〉.

(5) As a representation of Z(ai ),

Ap(T (r, n))(ai )
∼=

⊕
k+l=p

Ak,l(T (r, n))(ai ).
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For the remaining results we restrict to the case where all ai = s
r , gcd(s, r ) = 1, and

r | n. We have an analogue of Corollary 3.10, proved in the same way (incorporating
the extra feature that all trees must have a number of vertices divisible by r ):

Corollary 4.13. As a representation of Sn, εn ⊗ Ak,l(T (r, n))( s
r ) is isomorphic to the

following direct sum:

⊕
λ1,λ2

|λ1|+|λ2|=n/r
�(λ1)=n−k−l

�(λ2)=l

IndSn
((Srλ1

1
×···×Srλ1

n−k−l
)

�(Sm1(λ1)×Sm2(λ1)×··· ))
×((Srλ2

1
×···×Srλ2

l
)

�(Sm1(λ2)×Sm2(λ2)×··· ))

(
ε ⊗ V

(
1, rλ1

1

) ⊗ · · · ⊗ V
(
1, rλ1

n−k−l

)
⊗ V

(
1, rλ2

1

) ⊗ · · · ⊗ V
(
1, rλ2

l

) )
,

where Srλ
j
a

acts on the V(1, rλ
j
a) factor, Smi (λ j ) acts by permuting the V(1, rλ

j
a) fac-

tors where λ
j
a = i , and ε denotes the product of the sign characters of the Smi (λ1)

components.

Example 4.14. If r = n, Corollary 4.13 says that εn ⊗ An−1,0(T (n, n))( s
n ) and εn ⊗

An−1,1(T (n, n))( s
n ) are isomorphic to V(1, n).

Example 4.15. In the case n = 4, r = 2, s = 1, Corollary 4.13 gives the following
isomorphisms of representations of S4:

A2,0(T (2, 4))( 1
2 )

∼= ε4 ⊗ IndS4
(S2×S2)�S2

(ε ⊗ V(1, 2) ⊗ V(1, 2)) ∼= V (31),

A3,0(T (2, 4))( 1
2 )

∼= ε4 ⊗ IndS4
S4

(V(1, 4)) ∼= V (31) ⊕ V (212),

A2,1(T (2, 4))( 1
2 )

∼= ε4 ⊗ IndS4
S2×S2

(V(1, 2) ⊗ V(1, 2)) ∼= V (4) ⊕ V (31) ⊕ V (22),

A3,1(T (2, 4))( 1
2 )

∼= ε4 ⊗ IndS4
S4

(V(1, 4)) ∼= V (31) ⊕ V (212),

A2,2(T (2, 4))( 1
2 )

∼= ε4 ⊗ IndS4
(S2×S2)�S2

(V(1, 2) ⊗ V(1, 2)) ∼= V (4) ⊕ V (22).

Here the irreducible representations of S4 are denoted V λ, where λ is a partition of 4;
the convention is the one where V (4) ∼= 1, V (14) ∼= ε4.

We can substitute Theorem 2.9 into Corollary 4.13, to obtain:

Corollary 4.16. As a representation of Sn, εn ⊗ Ak,l(T (r, n))( s
r ) is isomorphic to the

following direct sum:⊕
λ1,λ2

|λ1|+|λ2|=n/r
�(λ1)=n−k−l

�(λ2)=l

IndSn
((μrλ1

1
×···×μrλ1

n−k−l
)�(Sm1(λ1)×Sm2(λ1)×··· ))

×((μrλ2
1
×···×μrλ2

l
)�(Sm1(λ2)×Sm2(λ2)×··· ))

(εψ),
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where ψ is the character which takes the product of the μrλ
j
a

components, and ε is the
product of the sign characters of the Smi (λ1) components.

Summing over k and l, we get the desired expression for A•(T (r, n))( s
r )

∼=
H •(T (r, n), C)( s

r )
∼= H •(T (1, n),L s

r

∑
ωi ) as a direct sum of inductions of one-

dimensional characters.
Furthermore, there is an obvious relationship between Corollaries 3.10 and 4.13,

which gives the following explanation of (1.3).

Corollary 4.17. As a representation of Sn,

εn ⊗ Ak,l(T (r, n))( s
r )

∼= IndSn
W (r,n/r )(detn/r ⊗ Ak−n+n/r,l(T (r, n/r ))).

Proof: For the left-hand side, use the expression of Corollary 4.13, with the right-
hand expression of Theorem 2.11 substituted for each of the V(1, rλ

j
a) factors. For the

right-hand side, use the expression given by Corollary 3.10. Comparing, we get the
result. �
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