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Abstract We show that for Bruhat intervals starting from the identity in Coxeter
groups the conjecture of Lusztig and Dyer holds, that is, the R-polynomials and the
Kazhdan-Lusztig polynomials defined on [e, u] only depend on the isomorphism type
of [e, u]. To achieve this we use the purely poset-theoretic notion of special matching.
Our approach is essentially a synthesis of the explicit formula for special matchings
discovered by Brenti and the general special matching machinery developed by Du
Cloux.
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1. Introduction

Let (W, S) be a Coxeter system, and denote ≤ the Bruhat ordering on W . The question
asked independently by Dyer [8] and Lusztig, whether the Kazhdan-Lusztig polyno-
mial Pu,v defined on a Bruhat interval only depends on the isomorphism class of
[u, v], remains open today (see [9] for all the definitions concerning the Bruhat or-
dering and P− and R− polynomials). The problem can be reformulated thus: is it
true that for any poset isomorphism ψ between two Bruhat intervals [u, v] and [u′, v′]
in possibly distinct Coxeter groups W, W ′ preserves Kazhdan-Lusztig polynomials
i.e.

∀x, y ∈ [u, v], Px,y = Pψ(x),ψ(y) (1.1)
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Brenti [1] has shown this to be true when [u, v] is adihedral (i.e. when [u, v] does
not have a subinterval isomorphic to the full Coxeter group S3). We show in this paper
that (1.1) is true when u = u′ = e:

∀x, y ∈ [e, v], Px,y = Pψ(x),ψ(y) (1.2)

Subcases of this particular case have already been dealt with; Reference [6]
treats the case in which all the connected components of the Coxeter graph of W
are trees or of type Ãn while [2] treats the case in which W and W ′ are both of type An .

It is well-known that the P-polynomials may be obtained in a purely poset-theoretic
way from a more elementary family of polynomials, the R-polynomials. cf. for exam-
ple [2], Theorem 2.6.iv)), so that (1.2) follows from

∀x, y ∈ [e, v], Rx,y = Rψ(x),ψ(y) (1.3)

In order show an invariance-by-isomorphism result, we naturally seek a purely
combinatorial definition of the R-polynomials; this led Du Cloux and Brenti to intro-
duce the notion of a “special matching” (or simply “matching” in this paper, as we do
not use other types of matchings), which we will explain later on. If s is a generator
of the Coxeter group, right and left multiplication by s are fundamental examples of
special matchings; we call them multiplication matchings and denote them by ρa and
λa . A reasoning used in both [4, Definition 6.5] and [2, Corollary 5.3] shows that in
order to prove (1.3) it suffices to check the following rules for any special matching φ

on a Bruhat interval starting from the origin [e, v] (which are well-known when φ is
a multiplication matching):

∀x, y ∈ [e, v], such that x < φ(x), y < φ(y),{
Rφ(x),φ(y) = Rx,y

Rx,φ(y) = (q − 1)Rx,y + q Rφ(x),y

(1.4)

This result is the final aim of the present work (Corollary 7.3).

The basic idea, already contained in [2], is as follows: let (x, y) be as in (1.4),
and let s ∈ S be a (left, say) descent generator for y such that φ commutes with
(left) multiplication by s. Then we may deduce formula (1.4) for (x, y) from all the
occurrences of formula (1.4) corresponding to the (x ′, y′) with l(y′) < l(y), which
provides us with an induction argument on l(y) (Proposition 3.5). In general it is not
true that any y ∈ W has such a compatible descent generator. However it will be true
for all “sufficiently large” y. We make this precise in 3.1 when we make the definition
that y ∈ W is full if [e, y] contains all the dihedral elements of W . Then we show in
fine that if W is not a dihedral Coxeter group, any full element in W admits a reduction
as above.

For non-full elements w ∈ W , it was already shown in [6] that the interval [e, w]
is isomorphic to an interval [e, w′] in a “smaller” (in an appropriate sense) Coxeter
group W ′, the isomorphism preserves R-polynomials, and w′ is full, so that we may
argue by induction on the “size” of the Coxeter group.
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In all our proofs the dihedral elements play a crucial role. In Section 2 we show
that a matching is completely determined by its behaviour on dihedral elements; it is
even determined by its restriction to the set P of principal dihedral elements (Theorem
2.8). Conversely any matching φ defined on P can be extended in an unique way to
a matching whose domain is maximal. Similarly, we shall see in 4 that commutation
between a matching and multiplication by a generator is something that can be read
off from their restriction to P (Proposition 4.1).

If dom(φ) contains a full element, on each principal dihedral subgroup (which is
always stable by φ) φ cannot “differ too much” from a multiplication matching: we
shall see in Section 7 that there is at most one principal dihedral subgroup D such that
the restriction of φ to D is not a multiplication matching, and even on this D, φ must
still share some regularity conditions with multiplication matchings.

Technically, a central idea consists in identifying “obstructions” (minimal elements
in the complement set of dom(φ)) whenever φ is not a multiplication matching. For
example, if a = φ(e) and x0 ∈ P is a minimal element such that φ(x0) �= x0a, we get
obstructions by inserting a well-chosen character in a reduced expression for x0( this
is illustrated in Lemmas 6.3.1 and 6.4.2). As dom(φ) is a decreasing subset of W , any
new obstruction erases out a substantial part of W , so that eventually when φ is too
different from a special matching its domain cannot contain a full element any more.

It is quite remarkable that all the obstructions we need come from rank three sub-
groups. In Section 5 we describe the simplest types of obstructions and the correspond-
ing restriction on the domain of the matching, appearing in the so-called “mixed” case,
which already suffices to treat the case of simply laced Coxeter groups (cf Corollary
5.3). In Section 6 we gather slightly more complicated obstructions that show up in
rank three; they are the tools to tackle the general case. The identification of those rank
three obstructions was largely guided by computations carried out with a specialized
version of the program Coxeter [5].

After this paper was first submitted we learned that our result was also found
independently by Marietti in his Ph.D. thesis [11], and soon after put into the joint
paper [3] by Brenti, Caselli and Marietti, along with other results. The method of
proof in [3] is quite close to ours; the main differences are that (1) Brenti, Caselli and
Marietti focus on a given interval [e, w], while we try to understand each maximal
matching globally; in particular in many cases we are able to determine the domain of
a matching, to a large extent (compare Lemma 5.2 and Proposition 7.1) and deduce
that it is often rather small; and (2) the “K3,2-avoidance” result (Theorem 3.2 of [3]),
which is very interesting by itself and was unknown to us when we wrote this paper,
allows Brenti, Marietti and Caselli to circumvent some of the lengthy obstruction
computations in our Section 6.

Contents of the rest of the paper:

2. General results
3. Descent formulas for R-polynomials
4. Regularity criteria
5. Restriction of the domain in the mixed case
6. Some results on rank three groups
7. General case
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2. General results

Let (P, <) be a poset. We write x � y when we mean that x < y and there is no z
such that x < z < y. In this case x is a coatom of y; we denote by coat(y) the set
of all coatoms of an element y ∈ P . All the posets considered here are graded, i.e.
they have a function l : P → N such that l(y) = l(x) + 1 whenever x � y. Actually,
the first half of this section contains results that hold for completely general graded
posets, while in the rest of the paper we only consider, given a fixed Coxeter system
(W, S), the graded poset arising when we equip W with the Bruhat ordering and the
usual length function.

Let φ : P → P be a map. We say that φ is a special matching when the following
conditions are fullfilled for any u ∈ P:

(i) φ is involutive (φ(φ(u)) = u)
(ii) u � φ(u) or φ(u) � u

(iii) (u � φ(u)) ⇒ (coat(φ(u)) = {u} ∪ {φ(v); v � u, v � φ(v)}).
Condition (iii) is the most significant, the other two only define the setting. We use

the abbreviation

Z (φ, u) = {u} ∪ {φ(v); v � u, v � φ(v)}

If the terminology is due to Brenti [2], the choice of the definition (among a certain
number of equivalent ones) rather comes from du Cloux [4]. Parts (i) and (ii) are
common to [2] and [4], while (iii) is expressed explicitly in neither of those two
papers, but is easily seen to be equivalent to the versions given in each.

The following easy consequence of (iii) will be used often in the sequel:

Remark 2.1. Let w ∈ P . If w has at least a coatom u such that φ(u) �= w, u � φ(u),
then w � φ(w).

The following fact is elementary (for a proof we refer the reader to Proposition 2.6
of [4] or Lemma 2.1 of [3]).

Remark 2.2. Let φ be a special matching on a graded poset P, and let x, y ∈ P such
that x ≤ y, x � φ(x), φ(y) � y. Then φ restricts to a special matching of the interval
[x, y].

If Q is a decreasing subset of P (i.e. (x ≤ q) ⇒ (x ∈ Q) for any q ∈ Q, x ∈ P),
the notion can be relativized as follows: we say that a pair (Q, φ) is a partial special
matching if Q is decreasing and φ is a map Q → Q which gives a special matching
on Q. We use the notation Q = dom(φ) (so that we often write just φ instead of (Q, φ)
to name the partial matching).

Let I(P) be the set of all partial matchings of P; there is a natural partial ordering
≤I on I(P), namely (Q1, φ1)≤I (Q2, φ2) if and only if Q1 ⊆ Q2 and φ2 extends
φ1. The maximal elements of ≤I are called maximal matchings. One can introduce
the even more specialized notion of a Q-maximal matching of P: this is a partial
matching φ of P such that ∀φ′ extending φ, dom(φ) ∩ Q = dom(φ′) ∩ Q.
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If Q is finite, any finite chain φ1, φ2, . . . φr satisfying for each i between 1 and
r − 1 the condition

φi+1 extends φi , dom(φi ) ∩ dom(φ) ⊂ dom(φi+1) ∩ Q

(where ⊂ denotes strict inclusion) necessarily has length ≤ |dom(φ)|, and if this chain
has maximum length its last element must be a Q-maximal matching; therefore:

Remark 2.3. Let P be a graded poset, Q a finite decreasing subset of P. Then any
partial matching of P can be extended into a Q-maximal matching.

We then have a “local-to-global”-type result:

Theorem 2.4. Let P be a locally finite graded poset (i.e. {x ∈ P; l(x) = k} is finite
for each k). If A is a decreasing subset of P, then any partial matching φ defined on
A can be extended into a maximal matching on P. If in addition the coat function is
injective on P\ A, then this extension is unique.

Proof: Existence. �

For each k we put Bk = {x ∈ P; l(x) ≤ k}. By Remark 2.3, φ has an extension
φ0 which is B0-maximal. Repeteadly using this Remark 2.3, we construct a sequence
(φn)n≥0 of partial matchings on P such that

∀n ≥ 1, φn extends φn−1, φn is Bn − maximal.

Now we set Q = ⋃
dom(φn)n≥0, and defineψ : Q → Q by∀x ∈ Q, ψ(x) = φn(x)

if x ∈ dom(φn). Then φ is well defined and is a maximal matching extending φ, as
required.

Uniqueness (when coat is injective on P\ A).
By contradiction, suppose we have two distinct maximal matchings μ1 and μ2

extending φ. Take w of minimal length such that μ1 differs from μ2 at point w, i.e.
(interchanging μ1 and μ2 if necessary)

Case 1 : w ∈ dom(μ1), w ∈ dom(μ2), μ1(w) �= μ2(w), or else
Case 2 : w ∈ dom(μ1), w �∈ dom(μ2).

Consider case 1. We certainly have w �∈ A; by minimality of w we necessarily have
w � μ1(w), w � μ2(w), and hence μ1(w) �∈ A, μ2(w) �∈ A. Then condition (iii) gives
coat(μ1(w)) = coat(μ2(w)) so that μ1(w) = μ2(w) which is a contradiction.

Now we treat case 2. As in the preceding case, we see that w �∈ A, w �
μ1(w), μ1(w) �∈ A. Also μ1(w) �∈ dom(μ2) (because dom(μ2) is decreasing and
w �∈ dom(μ2)). Let Q = dom(μ2) ∪ {w; μ1(w)} and φ : Q → Q be defined by
φ(x) = μ2(x) if x ∈ dom(μ2) and φ(x) = μ1(x) if x ∈ {w; μ1(w)}. The mapping φ

thus constructed is a partial matching and a nontrivial extension of μ2, contradicting
maximality.
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We now leave the realm of abstract graded posets to stay till the end of this paper
within the smaller world of posets P arising from Coxeter systems (W, S) as follows:
P = W with the Bruhat-Chevalley ordering, and the usual (non-weighted) length
function.

In this particular case, Theorem 2.4 can be enunciated in a stronger form. Given
a Coxeter system (W, S), a dihedral subgroup of W is simply a subgroup of W
generated by two generators s �= t in S. We say that w ∈ W is a dihedral element
when w belongs to some dihedral subgroup, which amounts to saying that w can be
written

w = sts . . .︸ ︷︷ ︸
m terms

for some integer m and some s �= t in S. Because dihedral elements are omnipresent
in this work, we introduce at once the following notations: for any pair {s; t} ⊆ S we
set (here mst is the Coxeter matrix coefficient)

[s, t, n〉 = stst . . .︸ ︷︷ ︸
n terms

(2.1.1)

〈n, t, s] = . . . tsts︸ ︷︷ ︸
n terms

(2.1.2)

Mst = [s, t, mst 〉 = 〈mst , t, s] if mst < ∞. (2.1.3)

Recall two results proved by Dyer and Waterhouse respectively:

Proposition 2.5. Let (W, S) be a Coxeter system.

(1) For w ∈ W , w is dihedral if and only if |coat(w)| ≤ 2.
(2) If x and y in W have the same coatom set and are not both dihedral, then x = y.

Proof: See [8, Proposition 7.25] for the first assertion and [12, Proposition 7] for the
second. �

This proposition gives a first hint at the importance of dihedral elements. We must
also introduce the notion of a principal dihedral element: if φ is a partial matching
with dom(φ) �= ∅ (so that e ∈ dom(φ)) then by rule (ii) a = φ(e) is a generator: a ∈ S.
We say that a dihedral subgroup of W is a principal dihedral subgroup when it
contains a, i.e. when it is of the form Ps =< s, a > for s ∈ S\{a}; also a principal
dihedral element is defined as an element of

P =
⋃

s∈S\{a}
Ps .

Let us start by describing how a special matching acts on a dihedral subgroup:

Proposition 2.6. Let (W, S) be a Coxeter system, φ a maximal matching on W , and
D a dihedral subgroup of W .
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(i) If D is principal, then φ is defined on the whole of D and D is invariant by φ.
(ii) If D is nonprincipal, then for any w ∈ dom(φ) ∩ D such that l(w) > 1, we have

w � φ(w), and φ(w) is not dihedral.

Proof: Let s ∈ S\{a} et m = mas (integer or infinite coefficient in the Coxeter matrix).
Recall that Ps has a unique element in length 0, one element or no element at all in
length m (depending on whether m is finite or not) and two elements in length j when
0 < j < m. For w ∈ Ps with 0 < l(w) < m, we denote by w̄ the unique element �= w

in Ps that has the same length as w.
Let us show (i). We already have φ(e) = a and Z (φ, s) = {s; a} so s ∈

dom(φ), φ(s) ∈ {as; as}. If m = 2 this reduces to φ(s) = as and we are done. Other-
wise set u2 = φ(s), v2 = ū2. We have Z (φ, v2) = {as; sa} so v2 ∈ dom(φ), φ(v2) ∈
{asa; sas}. If m = 3 this reduces to φ(v2) = asa and we are done. Otherwise set
u3 = φ(v2), v3 = ū3. Continuing this way, it is clear that we eventually get the re-
quired result.

Let w ∈ D with l(w) > 1. We show (ii) by induction on l(w). Call v and v̄ the
coatoms of w. We have v � φ(v), v̄ � φ(v̄) (indeed, if l(w) = 2 this comes from
φ(s) ∈ {as; sa} for s ∈ S, and otherwise this is the induction hypothesis). Then
Z (φ, w) = {φ(v); φ(v̄); w}. This set has cardinality three (indeed, if l(w) = 2 this
set is {φ(s); φ(t); st} where we write w = st , and otherwise w is dihedral while φ(v)
and φ(v̄) are not). So φ(w) is either nondihedral or undefined and this completes the
proof. �

Proposition 2.7. Let (W, S) be a Coxeter system, φ and ψ be two maximal matchings
on W , and w ∈ W . Suppose that φ(e) = ψ(e) and that φ coincides with ψ on [e, w] ∩
P.

Then

φ(w) = ψ(w)
(or φ(w) and ψ(w) are both undefined).

Proof: By contradiction, take a minimal counterexample w. Reasoning as in the
“uniqueness” part of Theorem 2.4, we see that w � φ(w), w � ψ(w) and φ(w) �=
ψ(w), coat(φ(w)) = coat(ψ(w)). By Proposition 2.5, this implies that w, φ(w) and
ψ(w) are all elements of some dihedral subgroup D. This D cannot be principal
because φ and ψ coincide on P ∩ [e, w]. But then 2.6.(ii) says that φ(w) is nondihedral
which is a contradiction. �

Putting together the two preceding propositions we get:

Theorem 2.8. Let (W, S) be a Coxeter system.

(i) For any special matching φ on W , each principal dihedral subgroup Ps is stable
by φ, hence an induced matching φs on Ps.
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(ii) Conversely, for any family (φs)s �=a such that φs is a matching on Ps with φs(e) = a,
there is a unique maximal matching φ that extends the union of the φs : φ|Ps = φs

for all s ∈ S.

Proof: Of course (i) is just a repetition of 2.6. (i).
Let us now demonstrate the unique extension result. First, since Ps ∩ Pt = {e; a}

when s �= t , the various mappings φs may be glued together in a mapping ψ : P → P
and ψ will be a partial matching because

⋃
Ps is decreasing; this already gives the

existence of φ by the “existence” part of Theorem 2.4. The uniqueness of φ follows
from Proposition 2.7. �

3. Descent formulas for R-polynomials

As said in the introduction, here we freely use the elementary properties of the R-
polynomials, referring to [9] for further explanations.

For s in S we set Ls = {w ∈ W ; l(sw) > l(w)}. The following formulas, which
give a method to compute the polynomials Ru,v , are well-known: if x and y belong to
Ls ,

Rsx,sy = Rx,y (3.1.1)

Rx,sy = (q − 1)Rx,y + q Rsx,y (3.1.2)

The basic idea here is to show that these formulas, that hold for left (or right) multi-
plication by s, also hold for any special matching. We make the following fundamental
definition (recall the definition of Mst from formula 2.1.3)

Definition 3.1. Let (W, S) be a Coxeter system and w ∈ W , J ⊆ S. We say that w is
J -full if for any s, t ∈ J , we have mst < ∞, Mst ≤ w. We say that w is full if it is
S-full.

Lemma 3.2. Let (W, S) be a Coxeter system, J ⊆ S, and w ∈ W a J-full element.
Then there is a J -full element v ∈< J > such that v ≤ w.

Proof: We know that [e, w]∩ < J > has a largest element v (see for example [6],
Proposition 2.5); this v will do. Plainly, v ≤ w. Furthermore, if s and t are two distinct
elements in J and μ = Mst is the corresponding maximal dihedral element, we have
μ ∈ [e, w]∩ < J > so μ ≤ v. As this holds for any s and t , v is J -full. �

Now we need to introduce the (left and right) descent sets of an element w ∈ W :
those are respectively {s ∈ S; sw � w} et {s ∈ S; ws � w}. We denote them by Dl(w)
and Dr (w).
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Definition 3.3. If s ∈ S and φ is a matching, we say that s is φ(left)-regular or that
φ is s-(left)-regular if

(i) dom(φ) is stable by (x �→ sx), and
(ii) φ(sx) = sφ(x) f or all x ∈ dom(φ).

Right-regularity is defined similarly. We shall denote by ρs and λs respectively the
multiplication mappings x �→ xs and x �→ sx . By an abuse of notation, for a partial
mapping f we will write f = ρs (or λs) when f is a restriction of ρs and f �= ρs

when f is not.

Definition 3.4. Let (W, S) be a Coxeter system and φ a maximal matching on W; let
o be an orbit in dom(φ) for the action of the involution φ. Then o can be written
o = {m, M} with m � M, φ(m) = M. The orbit o is said to be full if M is full. We say
that o is a left-reducible orbit if there is a φ-left-regular generator in the left descent
set of m. Similarly, we say that o is a right-reducible orbit if there is a φ-right-regular
generator in the right descent set of m. The orbit o is called a reducible orbit if it is
either left- or right-reducible.

Finally, φ is called a reducible matching if |S| ≤ 2 or if any full orbit is reducible.

The usual addition operation and the usual ordering on N = {0; 1; 2; . . .} can be
extended to N ∪ {∞} by putting x ≤ ∞ and x + ∞ = ∞ for x ∈ N ∪ {∞}. The main
result of this section is the following:

Proposition 3.5. Let (W, S) be a Coxeter system with the following property: for any
Coxeter system (W ′, S) associated to a Coxeter matrix M ′ such that m ′

st ≤ mst for
any two generators s �= t , we have that any maximal matching on W ′ is reducible.
Let φ be a partial matching on W. Put Lφ = {w ∈ dom(φ); w � φ(w)}. Then, for
(x, y) ∈ Lφ

2, x < y, we have

Rφ(x),φ(y) = Rx,y (3.5.1)

Rx,φ(y) = (q − 1)Rx,y + q Rφ(x),y (3.5.2)

Proof of the proposition. First, notice that when |S| ≤ 2, we have the equiva-
lence (u < v) ⇔ (l(u) < l(v)), whence we deduce easily that Ru,v only depends
on l(v) − l(u) (for example define the sequence of polynomials (Li (q)) by L0 =
1, L1 = q, ∀n ≥ 2 Ln = (q − 1)Ln−1 + q Ln−2; by induction on l(v) using 3.5.2 we
get Ru,v = Ll(v)−l(u)(q) for u < v). Thus we get the desired result very quickly when
|S| ≤ 2.

In the remaining cases, we argue by induction both on y and on the size of the
Coxeter group: formally, we keep the set S fixed and we show a property of the pair
(M, y) by ordinary induction on the quantity q(M, y) = l(y) + ‖M‖, where we set
‖M‖ = ∑

s,t∈S mst (a priori this works only when q(M, y) is finite; however, it is
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easily seen that once we are done with the case q(M, y) < ∞ the case q(M, y) = ∞
easily follows, arguing as in the “reduction to the full case” below).

We show that we may suppose that w = φ(y) is full without loss of generality.
Indeed, consider the Coxeter matrix M ′ defined by m ′

st = the length of the largest
element in [e, w]∩ < s, t > for s, t ∈ S, and consider the Coxeter system (S, W ′)
associated to matrix M ′. By Proposition 3.5. of [6], the following mapping (where the
s1 . . . sr are reduced words)

α : [e, w] → W ′

{s1 . . . sr }W �→ {s1 . . . sr }W ′

is well defined, strictly increasing with respect to the Bruhat orderings and satisfies

∀x ∈ [e, w], ∀s ∈ S, (xs ∈ [e, w]) ⇒ (α({xs}W ) = {α(x)s}W ′ )

From which we easily deduce that α gives an isomorphism of graded posets from
[e, w] onto [e, α(w)] and that

∀u, v ∈ [e, w], RW
u,v = RW ′

α(u),α(v)

(reason by induction on l(v), using 3.5.1 and 3.5.2 for the right multiplication
matchings). So that all the data of the problem on [e, w] ⊆ W are carried isomorphi-
cally onto [e, α(w)] ⊆ W ′ and α(w) is indeed full in that new Coxeter group. If w is
not full we have ‖M ′‖ < ‖M‖ and q(M ′, α(y)) < q(M, y) so that everything reduces
to the case where w is full, by induction.

So we may assume that w is full. Then, by definition of a reducible matching, there
is a λs or a ρs that stabilizes [e, w] and that commutes with φ on [e, y]. We may then
carry out a straightforward induction on l(y) as in the proof of [3, Theorem 7.8]. �

Now our aim will be to show that all matchings are reducible.

Definition 3.6. Let (W, S) be a Coxeter system and φ a partial matching on W. We say
that φ is full if dom(φ) contains a full element.

Note that a non-full matching is trivially reducible. This will be quite a useful fact
in the following sections.

4. Regularity criteria

Proposition 4.1. Let (W, S) be a Coxeter system, φ a maximal matching on W, a =
φ(e). Let w ∈ dom(φ) and s ∈ S. (recall that for s �= a we put Ps =<s, a> and P =⋃

s �=a Ps)
If s �= a, and φ commutes with λs on [e, w] ∩ Ps, then sw ∈ dom(φ), and φ(sw) =
sφ(w). If s = a, and φ commutes with λa on [e, w] ∩ P, then sw ∈ dom(φ), and
φ(sw) = sφ(w).

Of course, left may be replaced with right in this proposition.
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Note: this result is immediately implied by the much stronger statement in [3,
Lemma 4.3 about two special matchings on a K3,2-avoiding poset.

Proof: As the proofs of the two assertions are similar we will only expound the proof
of the first here.

We argue by induction on the length of w. The case l(w) = 0 (or even w ∈ Ps) is
trivial. Thus we take w �∈ Ps . If one of sw or φ(w) (call it v) is �w, then the result
is clear by applying the induction hypothesis to v, so we may assume w � sw, w �
φ(w), φ(w) � sφ(w). We compute Z (φ, sw) (using w < sw on the second line and
the induction hypothesis on the fourth line)

Z (φ, sw) = {sw} ∪ {φ(z); z � sw, z � φ(z)}
= {sw} ∪ {φ(z); (z = w or z = su, u � w, u � su), z � φ(z)}
= {sw; φ(w)} ∪ {φ(su); u � w, u � su, su � φ(su)}
= {sw; φ(w)} ∪ {sφ(u); u � w, u � su, su � sφ(u)}

Now for any u the assertions (u � w, u � su, su � sφ(u)) and (u � w, u �
φ(u), φ(u) � sφ(u)) are equivalent (for example if u satisfies the first then l(φ(u)) =
l(u) + 1 so u satisfies the second) and so

Z (φ, sw) = {sw; φ(w)} ∪ {sφ(u); u � w, u � φ(u), φ(u) � sφ(u)}
= {φ(w)} ∪ {sz; (z = w ou z = φ(u), u � w, u � φ(u)), z � sz}
= {φ(w)} ∪ {sz; z � φ(w), z � sz}
= coat(sφ(w))

Now, if φ were not defined at sw, the formula above shows that we could extend φ by
putting φ(sw) = sφ(w), contradicting the maximality of φ. So sw ∈ dom(φ), and x =
φ(sw) satisfies coat(x) = coat(sφ(w)). Moreover, sφ(w) is not dihedral (else there is
a dihedral subgroup D such that sφ(w) ∈ D, so w ∈ D and φ(w) ∈ D. Proposition
2.6 shows that D is principal: for some t ∈ S\{a} we have D = Pt . Then s ∈ Pt , so
s = t and we get w ∈ Ps which is impossible) so that Proposition 2.5 gives x = sφ(w)
as required. �

Recalling Proposition 2.8, we deduce that

Corollary 4.2. Let (W, S) be a Coxeter system, φ a maximal matching on W, a = φ(e).
Let s ∈ S.
If s �= a, (φ is s-left-regular) ⇔ (φ|Ps is s-left-regular)
If s = a, (φ is a-left-regular) ⇔ (φ|P is a-left-regular)

Of course, we may replace left with right in this corollary.

Corollary 4.3. Let (W, S) be a Coxeter system. Let φ be a maximal matching on W ,
a = φ(e), X and Y two subsets of S such that:

(i) φ|Px = ρa, for any x ∈ X \{a}
(ii) φ|Py is a-left-regular, for any y ∈ Y \{a}
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Then < X > (< Y > ∩dom(φ)) ⊆ dom(φ) and for x ∈< X >, y ∈< Y > ∩dom(φ)
we have

φ(xy) = xφ(y).

Of course, we may replace left with right in this corollary.

Proof: Let Q =< X > (< Y > ∩dom(φ)). What we must show is that the restriction
of φ to Q is x-left-regular for all x ∈ X . This is clear from (i) (and the preceding
corollary) if x �= a. And since

P ∩ Q =
⋃

t∈X∪Y\{a}
Pt

it also follows immediately from (i) and (ii) when x = a. �

Finally we give a practical regularity criterion:

Remark 4.4. Letφ be a special matching defined on a dihedral Coxeter group< s, t >.
For i ≤ mst put

di = [t, s, i〉

Then the following are equivalent:

(1) φ is not s-left-regular
(2) ∃i ≤ mst − 3, φ(di ) = di+1, φ(sdi ) �= sdi+1(so φ(sdi ) = di+2).

Proof: Put Z = {z ∈< s, t >; φ(sz) �= sφ(z)}. As φ and w �→ sw are involutive, Z
is stabilized by those two mappings. So any minimal element z0 of Z (if there are
any) satisfies z0 � sz0 and z0 � φ(z0) (which implies (2) with z0 = di ), and the result
follows. �

5. Restrictions on the domain in the mixed case

Before proceeding further we indicate some tools that we will use without mention
in the sequel. We will often use the set I constisting of the elements of W that have
a unique reduced expression. The only property of I that we are interested in is the
following one:

If w ∈ I and gw is the unique reduced word representing w, then for any w′ ≥ w

and for any reduced word gw′ representing w′, gw is a subexpression of gw′ .

The following facts enunciated by Tits are well-known for a Coxeter group element
w:
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(1) We can reach any reduced expression of w from any other using only braid relations
as rewriting rules, through a sequence of expressions of constant length.

(2) We can reach any reduced expression of w from any expression of w using only
braid relations and the relations s2 = e for s ∈ S as rewriting rules, through a
sequence of expressions of decreasing length.

Fact (1) will implicitly justify all assertions of the form “this element has a unique
reduced expression”: if g is a reduced expression for w, g ∈ I if and only if no braid
relation can be applied to g i.e. if and only if g does not contain dihedral subwords
that represent maximal dihedral elements. Similarly, we use (2) without mention any
time we need to know that a certain word is reduced. Note that the words encountered
will never be very complex (they will differ from a dihedral word by one character
only), which justifies our brievity on that issue.

Given a maximal matching φ on a Coxeter group W , it is easily seen that for each
s ∈ S we have s ∈ dom(φ), φ(s) ∈ {as; sa} (where a = φ(e)). When the restriction of
φ to the generators does not coincide with a left or right multiplication, which amounts
to saying that there are some s, t ∈ S with mas > 2, mat > 2, φ(s) = sa, φ(t) = at ,
we say that φ is mixed.

Define subsets L and R of S by

L = {l ∈ S; φ(l) = al}
R = {r ∈ S; φ(r ) = ra}

and let < L > and < R > be the associated parabolic subgroups. We show that the
following inclusion holds:

Theorem 5.1. dom(φ) ⊆< R >< L >.

Proof: Suppose by contradiction that there is a w in dom(φ)\< R >< L >; take w

minimal, so that [e, w[⊆< R >< L >. First we note that Dl(w) cannot contain an
element of R (otherwise we could write w = rv with r ∈ R, v < w and then v ∈<

R >< L > yields rv ∈< R >< L >, a contradiction), and because of S = L ∪ R,
we deduce Dl(w) ⊆ L\R. Similarly, Dr (w) ⊆ R\L .

Let w1 . . . wm be a reduced expression for w. Thus we have w1 ∈ L\R, wm ∈ R\L .
Let x = w1 . . . wm−1. Then Dl(x) ⊆ Dl(w), so Dl(x) ∩ R = ∅. As x ∈< R >< L >,
this imposes x ∈< L >. Thus we have ∀i ≤ m − 1, wi ∈ L . Symmetrically, ∀i ≥
2, wi ∈ R. So by renaming the wi ,

w = lb1 . . . bnr, with⎛⎝ l ∈ L\R,

∀i bi ∈ L ∩ R,

r ∈ R\L

⎞⎠ (†)

On the one hand Dl(w) ⊆ {l; b1; . . . ; bn; r} and on the other Dl(w) ⊆ L\R, so we
deduce that Dl(w) = {l}, and similarly Dr (w) = {r}. Thus, in any reduced expression
for w the characters l and r appear exactly once, at the beginning and at the end
respectively.

Springer



450 J Algebr Comb (2006) 24:437–463

Now we will show that

(1) If lr �= rl, lr �∈ dom(φ)
(2) In any case, lar �∈ dom(φ).

For both items we argue by contradiction: if rl �= lr, lr ∈ dom(φ), by remark 2.1
lr � φ(lr ), so that coat(φ(lr )) = {lr ; al; ra}; now no element of W has this for a coatom
set (if coat(w) = {rl; al; ra}, as rl ∈ I and rl � w we have w = arl, ral or rla, but
then ar and la cannot both be coatoms of w), hence (1). Now we proceed with the
proof of (2), and suppose lar ∈ dom(φ). By (1) and because dom(φ) is decreasing, we
have lr = rl. Then φ(la) ∈ {ala, lal}, φ(ar ) ∈ {ara, rar}, φ(lr ) = ral. By Remark
2.1 lar � φ(lar ); put w = φ(lar ). Then ral = φ(lr ) � φ(lar ) = w; as ral belongs to
I, if g is a reduced expression for w, there is a generator s such that

g ∈ {sral, rsal, rasl, rals}

As al ≤ w, and al ∈ I, this forces s ∈ {a; l}. Similarly, ra ≤ w forces s ∈ {a; r}.
Thus s = a, and hence

g ∈ {aral, rala}

but then φ(ar ) and φ(la) cannot both be coatoms of w; hence (2) holds.
Going back to our initial reasoning, (1) and (2) give lr = rl, and all the bi are distinct

from a (otherwise lar ≤ w, which is impossible because dom(φ) is decreasing). Thus
a �≤ w, so by Remark 2.2 w � φ(w), and if g is a reduced expression for φ(w) and g′ is
the word obtained by supressing the unique ocurrence of a in g , then w = g′ holds in
W . So the three generators a, l and r occur exactly once in g. Now ar ≤ φ(ar ) ≤ φ(w)
and similarly la ≤ φ(w), so lar ≤ w which is impossible by (2). �

The inclusion we have just shown becomes an equality for an important class of
matchings which contains almost all matchings on finite or affine Coxeter groups:

Corollary 5.2 (Middle multiplication matchings). Suppose that φ is a maximal
matching such that φ = ρa on each Pr and φ = λa on each Pl . Then dom(φ) =<

R >< L >, and for x ∈< R >, y ∈< L > we have the middle multiplication for-
mula

φ(xy) = xay.

and φ is reducible.

Proof: The key remark is that under those hypotheses, the elements of R are left-
regular and that the elements of L are right-regular. Then Corollary 4.3 makes the
inclusion become an equality and yields the middle multiplication formula. Moreover,
because of dom(φ) =< R >< L >, all the orbits (except for the orbit {e, a}) are
reducible, not just the full ones, so that φ is a fortiori reducible. �
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Middle-multiplication matchings first appeared in Brenti’s study [2] of special
matchings in type A: he found, in fact, that all matchings in type A are right, left, or
middle multiplications. This may be generalized as follows:

Corollary 5.3. Any matching defined on a simply laced Coxeter group is reducible
(indeed, it is a middle multiplication matching).

Proof: Because of the small sizes of the dihedral subgroups we necessarily have
φ = ρa for all r ∈ R and φ = λa for all l ∈ L . Then the above corollary applies. �

6. Some results on rank three groups

In all of this section, we consider a Coxeter system (W, S) of rank 3: S = {a; b; b′}
and φ is a maximal matching on W with φ(e) = a. We denote by β the restriction of
φ to < a, b >.

6.1. Preliminaries

Lemma 6.1.1. Let G =< a, b′ >< a, b >. Then:

(i) If (mbb′ > 2 or mab = ∞ or mab′ = ∞), then G does not contain any full element.
(ii) If (mbb′ = 2, mab < ∞, mab′ < ∞), then G contains exactly two full elements,

namely

Mb′,a,b = 〈mab′ − 1, a, b′][b, a, mab − 1〉, and
M ′

b′,a,b = 〈mab′ − 1, a, b′]a[b, a, mab − 1〉.

Proof: Recall that the existence of a full element implies that all the entries of the
Coxeter matrix are finite. Moreover, G is decreasing and we have G∩ < b, b′ > =
{e; b; b′; b′b}. This already proves (i).

Let G satisfy the hypotheses of (ii). Any element g in G can be written xy with x ∈<

a, b′ >, y ∈< a, b >. Putting x ′ = min(x, xa) and y′ = min(y, ay) we see that g can
be uniquely rewritten x ′εy′ with ε ∈ {e; a}. As x ′ � x ′a, there is a j ≤ mab′ − 1 such
that x ′ = 〈 j, a, b′]. Similarly, there is a k ≤ mab − 1 such that y′ = [b, a, k〉. If g
is full, g ≥ Mab′ so j = mab′ − 1. By symmetry k = mab − 1, which completes the
proof of (ii). �

Lemma 6.1.2. Suppose that mab′ ≥ 3, that φ = ρa on [e, ab′a], and that β is not
a-left-regular. By Remark 4.4 this forces mab > 4, and there is a minimal i such
that φ([b, a, i〉) = [b, a, i + 1〉, φ([a, b, i + 1〉) = [b, a, i + 2〉, i ≤ mab − 3. Then
ab′[b, a, i〉 is a minimal element in W \dom(φ).

Proof: Put w = ab′[b, a, i〉. Proposition 4.1 yields:

∀x < [b, a, i〉, φ(b′x) = b′φ(x), φ(ab′x) = ab′φ(x).
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Fig. 1 Mixed case

In particular φ(b′[b, a, i〉) = b′[b, a, i + 1〉.
Suppose by contradiction that w ∈ dom(φ). Then by Remark 2.1 we have w � φ(w)

so coat(φ(w)) = Z (φ, w). Let g be a reduced expression for φ(w). As φ([a, b, i +
1〉) = [b, a, i + 2〉 ∈ I and b′ ≤ φ(w), we obtain g by inserting the generator b′ some-
where in the word [b, a, i + 2〉. Now, b′[b, a, i + 1〉 � φ(w) forces b′ to occur before
the leftmost a appearing in [b, a, i + 2〉, so that φ(w) = b′[b, a, i + 2〉. But w has
exactly two reduced expressions, namely ab′[b, a, i〉 and abb′[a, b, i − 1〉, neither of
which is a subexpression of b′[b, a, i + 2〉, and this is a contradiction. �

Lemma 6.1.3. Suppose that mbb′ ≥ 3, that φ = ρa on [e, b′a], and that β is not
b-left-regular. By Remark 4.4, this forces mab > 3 and there is a minimal i such
that φ([a, b, i〉) = [a, b, i + 1〉, φ([b, a, i + 1〉) = [a, b, i + 2〉, i ≤ mab − 3. Then
bb′[a, b, i〉 is a minimal element in W \dom(φ).

Proof: Put w = bb′[a, b, i〉. Proposition 4.1. yields:

∀x < [a, b, i〉, φ(b′x) = b′φ(x), φ(bb′x) = bb′φ(x).

In particular φ(b′[b, a, i〉) = b′[b, a, i + 1〉.
Suppose by contradiction that w ∈ dom(φ). Then by Remark 2.1 we have w � φ(w)

so coat(φ(w)) = Z (φ, w). Let g be a reduced expression for φ(w). As [a, b, i + 2〉 ∈ I
and b′ ≤ φ(w), we obtain g by inserting character b′ somewhere in the word [a, b, i +
2〉. Now, w � φ(w) imposes φ(w) = abb′[a, b, i〉 = abb′a[b, a, i − 1〉. This is incom-
patible with b′[b, a, i + 1〉 � φ(w). �

6.2. Mixed matchings in rank three

In this subsection, we take S = {a; b; b′}, mab ≥ 3, mab′ ≥ 3, and φ(e) = a, φ(b) =
ab, φ(b′) = b′a (the “mixed” case; see Fig. 1). We denote by β (β

′
) the restriction of

φ to < a, b > (respectively < a, b′ >).
To give the reader an idea of where we are going to, we formulate at once the main

and last-to-be-proved result of this subsection:

Proposition 6.2.1. The matching φ is full if and only if

(∗)

{
β is a-left-regular and β ′ = ρa, or

β
′
is a-right-regular and β ′ = λa .
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By Theorem 5.1 we have dom(φ) ⊆< a, b′ >< a, b >. Then, by lemma 6.1.1, the
matching can be full only if mbb′ = 2, mab < ∞, mab′ < ∞, which we assume for the
remainder of the section.

Whenever we find an obstruction h �∈ dom(φ) with h ≤ Mb′,a,b we may conclude
that φ is not full. This is the gist of the next three lemmas.

Lemma 6.2.2. Suppose that φ(ab′) = ab′a (this always holds if mab′ = 3) and that
β is not a-left-regular. By Remark 4.4 there is a minimal i such that φ([b, a, i〉) =
[b, a, i + 1〉, φ([a, b, i + 1〉) = [b, a, i + 2〉, i ≤ mab − 3. Then ab′[b, a, i〉 is a min-
imal element in W \dom(φ), so φ is not full.

Proof: This is Lemma 6.1.2. �

Lemma 6.2.3. Suppose that mab′ ≥ 4, φ(ab′) = b′ab′, φ(ab′a) = b′ab′a (this al-
ways holds if mab′ = 4) and that β �= λa, so that there is a minimal i such that
φ([b, a, i〉) = [b, a, i + 1〉, i ≤ mab − 2. Then ab′[b, a, i〉 is a minimal element in
W \dom(φ), so φ is not full.

Proof: Put w = ab′[b, a, i〉. If w ∈ dom(φ), then w � φ(w) by Remark 2.1. As
φ([a, b, i + 1〉) is in I, if g is a reduced expression for φ(w) then g can be ob-
tained from φ([a, b, i + 1〉) by inserting a b′ somewhere. But then we contradict
b′ab′[b, a, i − 1〉 ≤ φ(w) (remember ma,b′ ≥ 4). �

Lemma 6.2.4. Suppose ma,b′ ≥ 5, φ(ab′) = b′ab′, φ(ab′a) = ab′ab′. Then ab′ba is
a minimal element in W \dom(φ), so φ is not full.

Proof: Put w = ab′ba. We have:

coat(w) = {b′ba; aba; ab′a; ab′b}
φ(b′ba) = b′φ(ba)

φ(ab′a) = ab′ab′ (by hypothesis)

φ(ab′b) = φ(ab′)b = b′ab′b

By Remark 2.1, if w ∈ dom(φ) then w � φ(w). If g is a reduced expression for φ(w),
as ab′ab′ ∈ I we see that g can be obtained by inserting the generator b somewhere
in we have ab′ab′ (because ma,b′ ≥ 5). So φ(w) ∈ {bab′ab′; abb′ab′; ab′abb′}. Since
w � φ(w) and w has exactly two reduced expressions, ab′ba and abb′a, we deduce
φ(w) = abb′ab′. Since w′ = b′ab′b is ≤ φ(w) and w′ has exactly two reduced expres-
sions, b′ab′b and b′abb′, we deduce φ(w) = ab′abb′. But then abb′ab = ab′abb′, i.e.
ab′(bab) = ab′(abb′) hence bab = abb′ which is a contradiction. �

Lemma 6.2.5. If φ is full, then β is a-left-regular and β
′
is a-right-regular .

Proof: If we put together Lemmas 6.2.2, 6.2.3, and 6.2.4, we see that we have proved
that if φ is full, then β is a-left-regular. By symmetry, β

′
in turn is a-right-regular.

�
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Next we show that in fact one of β, β ′ must be a multiplication matching:

Lemma 6.2.6. Suppose that β is a-left-regular, β ′ is a-right-regular, that β �= λa and
that β ′ �= ρa, so that there are minimal i and i ′ such that φ(〈i ′, a, b′]) = 〈i ′ + 1, a, b′]
and φ([b, a, i〉) = [b, a, i + 1〉. Then 〈i ′, a, b′][b, a, i〉 is a minimal element in W \
dom(φ), so φ is not full.

Proof: Put w = 〈i ′, a, b′][b, a, i〉 (note that i, i ′ ≥ 2). We have (repeatedly using
Proposition 4.1 in the last four lines)

coat(w) = {〈i ′ − 1, a, b′][b, a, i〉; 〈i ′ − 1, b′, a][b, a, i〉; 〈i ′, a, b′][b, a, i − 1〉;
〈i ′, a, b′][a, b, i − 1〉}

φ(〈i ′ − 1, a, b′][b, a, i〉) = 〈i ′ − 1, a, b′]φ([b, a, i〉) = 〈i ′ − 1, a, b′][b, a, i + 1〉,
φ(〈i ′ − 1, b′, a][b, a, i〉) = 〈i ′ − 1, b′, a]φ([b, a, i〉) = 〈i ′ − 1, b′, a][b, a, i + 1〉,
φ(〈i ′, a, b′][b, a, i − 1〉) = φ(〈i ′, a, b′])[b, a, i − 1〉 = 〈i ′ + 1, a, b′][b, a, i − 1〉,
φ(〈i ′, a, b′][a, b, i − 1〉) = φ(〈i ′a, b′])[a, b, i − 1〉 = 〈i ′ + 1, a, b′][a, b, i − 1〉.

Suppose by contradiction that w ∈ dom(φ). Then, by Remark 2.1, w � φ(w) so
coat(φ(w)) = Z (φ, w). Notice that i ′ ≤ mab′ − 2 because φ(〈i ′, a, b′]) �= 〈i ′, a, b′]a
and similarly i ≤ mab − 2. Notice also that w has exactly two reduced expressions,
namely 〈i ′, a, b′][b, a, i〉 and 〈i ′ − 1, b′, a]bb′[a, b, i − 1〉. Let g be a reduced expres-
sion for φ(w); we obtain g by inserting a certain generator s into a reduced expression
for w. Thus, g is of one of the three forms x[b, a, i〉 (where x is obtained by in-
serting s somewhere in 〈i ′, a, b′]), 〈i ′, a, b′]y (where y is obtained by inserting s
somewhere in [b, a, i〉), or 〈i ′ − 1, b′, a]bsb′[a, b, i − 1〉. In the first case we do not
have φ(w) ≥ [b, a, i + 1〉, in the second we do not have φ(w) ≥ 〈i ′ + 1, a, b′], and
in the third we have neither. So this is a contradiction. �

Proof of Proposition 6.2.1: Putting together Lemmas 6.2.5 and 6.2.6 we see that if
φ is full then (*) holds. Conversely, in the (first, say) alternative of (*), Corollary 4.3
(with X = {a; b′}, Y = {a; b}) yields for any x ∈< a, b′ >, y ∈< a, b >,

xy ∈ dom(φ), φ(xy) = xφ(y)

In particular, we see that dom(φ) contains the element Mb′,a,b (see Lemma 6.1.1)
which is full. �

6.3. Nondegenerate case in rank three

In this subsection, we suppose S = {a; b; b′}, mab ≥ 3, mab′ ≥ 3 (the “nondegenerate”
case; see Fig. 2). As the mixed case has been taken care of in the preceding subsection,
here we take φ(b) = ba, φ(b′) = b′a. As before, the case mbb′ > 2 is simpler.

Lemma 6.3.1. Suppose that β �= ρa. Then there is a minimal i such that φ(〈i, a, b]) =
〈i + 1, a, b] (with mab ≥ i + 2). Let H = {w ∈ W ; l(w) = i + 1, b′ ≤ w, 〈i, a, b] ≤
w, w �= b′〈i, a, b]}, and M, M ′ be the elements defined in Lemma 6.1.1. Then we have:
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Fig. 2 Nondegenerate, nonmixed case

(1) If φ(ab′) = ab′a, then for any w ∈ H, w �∈ dom(φ).
(2) If φ(ab′) �= ab′a, then abb′ �∈ dom(φ), ab′b �∈ dom(φ).
(3) The set dom(φ) does not contain any full element, except (possibly) when φ(ab′) =

ab′a, mbb′ = 2, and i is odd. In that case, any full element in dom(φ) is necessarily
equal to M or M ′.

Proof: Statement (1) follows immediately from Lemma 6.2 of [3].
Let us show (2). The hypotheses imply φ(ab′) = b′ab′, mab′ ≥ 4. Let w1 = abb′;

we have (using Proposition 2.7. with the special matching ρa for the last equality)

coat(abb′) = {ab; ab′; bb′}
φ(ab) ∈ {aba; bab}, φ(ab′) = b′ab′, φ(bb′) = bb′a.

So if w1 ∈ dom(φ), we must have w1 � φ(w1) and if g1 is a reduced expression for
φ(w1), g1 can be obtained by inserting the generator b somewhere in b′ab′(∈ I). Then
g1 has exactly two characters in {a; b}. This is not consistent with φ(ab) � φ(w1).
Therefore abb′ �∈ dom(φ). The proof of ab′b �∈ dom(φ) is similar.

Now let us proceed with the proof of (3). Suppose that there is a full element
w ∈ dom(φ).

Case φ(ab′) = ab′a:
Intuitively, the setting is clear: the elements of H tell us that in a reduced expression

g of w we cannot have a b′ “inside” a long dihedral subword in a and b (such subwords
will exist because w is full) so that indeed the < a, b >-part and the < a, b′ >-part
are (up to a few generators) separated in g. By Lemma 6.1.1, we will be done.

Let w be a full element in dom(φ); set v = min(w, b′w). Then v ≥ Mab and v ≥
b′. Consider a reduced expression v1 . . . vn for v; for any subset K = {k1 < k2 <

· · · < kr } of {1; . . . ; n} we put vK = vk1
vk2

. . . vkr . Thus there is a D ⊆ {1; . . . ; n} with
cardinality mab such that vD = Mab and an index j such that v j = b′. By construction
v < b′v, so v1 ∈ {a; b} and hence we may assume 1 ∈ D.

If i is even or mbb′ > 2, then v′ = vD∪{ j} belongs to H and v′ ≤ v which is a
contradiction because dom(φ) is decreasing. So i is odd, and mbb′ = 2.

Define a two-periodic sequence (ti ) by t1 = a, t2 = b. Considering the occurrences
of a or b in a reduced expression of w, we can find a decomposition of the form

w = (u0)a(u1)b(u2)a(u3)b(u4) . . . tn(un), with
u0 �≥ a, u0 �≥ b, (so u0 ∈ {e; b′})
u j �≥ t j+1(so u j ∈< t j , b′ >) for each j ≥ 2
l(w) = n + ∑

j l(u j )
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(we could also start with a b: w = (u0)b(u1)a(u2)b(u3)a(u4) . . . tn(un) but this case
is similar and simpler). Because w is full, w ≥ Mab so n ≥ mab ≥ i + 2. If there
is a j ≥ 3 such that u j ≥ b′ then w′ = aba(t3t4 . . . t j−1t j )b′(t j+1t j+2 . . . ti−1ti ) (or
w′ = (t1t2 . . . ti−1ti )b′ if j ≥ i) belongs to H and w′ ≤ w which is a contradiction
because dom(φ) is decreasing. Therefore for those j ≥ 3 we have u j ∈ {e; t j } whence
u j = e. So

w = u0au1bu2a[b, a, n − 3〉
u0 ∈ {e; b′}, u1 ∈< a, b′ >, u2 ∈< b, b′ >,

l(w) = n + l(u0) + l(u1) + l(u2)

Because of mbb′ = 2 we deduce u2 ∈ {e; b′}. Replacing (u1, u2) with (u1b′, b′u2)
if necessary, we may assume u2 = e. Then, putting x = u0au1, y = [b, a, n − 1〉 we
have w = xy, x ∈< a, b′ >, y ∈< a, b >. By Lemma 6.1.1 we are done with the case
when φ(ab′) = ab′a.

Case φ(ab′) �= ab′a:

As w is full we have w ≥ a. Hence a decomposition w = uav, with u ∈< b, b′ >

, l(w) = l(u) + 1 + l(v). Necessarily v �= e because w is full. So the first character
q of v is in {b; b′}; let q̄ be the element defined by {b; b′} = {q; q̄}. We can write
v = qw with l(v) = 1 + l(w). Then, as w �≥ aqq̄ we deduce w �≥ q̄ and so w ∈<

a, q >. Hence w = u(aqw) ∈< b, b′ >< a, q > = < q, q̄ >< a, q >; as ma,q̄ ≥ 3,
w cannot be full with respect to {a; q̄}. �

Using the above lemma twice (interchanging the roles of b′ and b the second time)
we see that when mbb′ > 2, φ can be full only if β and β

′
are both restrictions of ρa ;

by Theorem 2.8 we then obtain:

Lemma 6.3.2. If mbb′ > 2, φ is full if and only if φ = ρa.

We assume mbb′ = 2 in the rest of this section.

Lemma 6.3.3. If β �= ρa and β
′ �= ρa, then φ is not full.

Proof: Suppose to the contrary that φ is full. By Lemma 6.3.1, dom(φ) contains
a unique full element in length mab + mab′ − 2 namely M = Mb′,a,b. Interchanging
b and b′, dom(φ) contains a unique full element in length mab + mab′ − 2 namely
M ′ = Mb,a,b′ . As M �= M ′, (notice for example that bM ′ � M ′ but M � bM) this is a
contradiction. �

Lemma 6.3.4. Suppose that β
′ = ρa and that β is not a-left-regular. Then φ is not

full.
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Proof: The condition “β is not a-left-regular” technically means that mab ≥ 4, and
that

∃i ≤ mab − 3, β([b, a, i〉) = [b, a, i + 1〉, β([a, b, i + 1〉) = [b, a, i + 2〉

Take a minimal such i . Lemma 6.3.1 says that if φ is full, then dom(φ) contains Mb′,a,b.
In addition, Lemma 6.1.2. shows that ab′[b, a, i〉 �∈ dom(φ); as ab′[b, a, i〉 ≤

Mb′,a,b, this is impossible because dom(φ) is decreasing. �

Proposition 6.3.5. Suppose mbb′ = 2, and φ �= ρa. Then φ is full if and only if up
to interchange of b and b′, φ|<a,b′> = ρa and φ|<a,b> is a-left-regular. Then dom(φ)
contains exactly two full elements, namely Mb′,a,b and M ′

b′,a,b.

Proof: Corollary 4.3 gives one half of the equivalence. Conversely, suppose that φ is
full. By Lemma 6.3.3, β

′
(say) coincides with ρa . Lemma 6.3.4 ensures then that β is

a-left-regular, as required. Eventually, if φ is full, as φ �= ρa , we must have β �= ρa ,
and thus we can use Lemma 6.3.1. to see that the only full elements in dom(φ) are (if
they exist) M and M ′. To see that indeed they are in dom(φ), we invoke < a, b′ ><

a, b >⊆ dom(φ), which comes from Corollary 4.3. (with X = {a; b′}, Y = {a; b})�

Now we are left with the degenerate case, when a commutes with one of b, b′.
Interchanging b and b′ if needed, we may take mab′ = 2.

6.4. Degenerate case in rank three

The degenerate case (see Fig. 3) involves a more complicated family of obstructions
than in the former cases. In this subsection we simply gather some of those obstruc-
tions that are needed in the general case (Section 7) and do not attempt to make an
exhaustive study of the degenerate case in itself, although a simple characterization
of full matchings in the vein of Propositions 6.2.1 and 6.3.5 is perfectly feasible.

The case when mbb′ = 2 is quickly taken care of by the following obvious remark:

Remark 6.4.1. Suppose mab′ = mbb′ = 2. Then W =< a, b > �b′ < a, b >, and any
special matching is b′-left-regular, and so is defined everywhere and full.

Thus we suppose mbb′ ≥ 3 in the remainder of this section.

Lemma 6.4.2. Suppose that β �= ρa. Then there is a minimal i ≥ 2 such that
φ(〈i, a, b]) = 〈i + 1, a, b] (so mab ≥ i + 2). Let H = {w ∈ W ; l(w) = i + 1, b′ ≤
w, 〈i, a, b] ≤ w, w �∈ {b′〈i, a, b]; 〈i, a, b]b′}}. Then for any h ∈ H, we have h �∈
dom(φ).

As in Lemma 6.3.1 (1), this result follows immediately from Lemma 6.2 of [3].

Lemma 6.4.3. Suppose mbb′ ≥ 4 and φ(ab) = bab, mab ≥ 4. Then abb′b is a (min-
imal) element in W \dom(φ).
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Fig. 3 Degenerate case

Proof: Put w = abb′b. We have:

coat(w) = {bb′b; abb′; ab′b}
φ(bb′b) = bb′bφ(e) = bb′ba
φ(abb′) = φ(ab)b′ = babb′

φ(ab′b) = φ(b′ab) = b′φ(ab) = b′bab

so if w ∈ dom(φ) we must have

coat(φ(w)) = {b′bab; abb′b; bb′ba; babb′}

which is impossible (for example, using the fact that bb′ab ∈ I, abb′b ∈ I it is easy
to see that there is no y such that b′bab � y and abb′b � y both hold). �

Lemma 6.4.4. Suppose mbb′ = 3 and φ(ab) = bab, mab ≥ 4. Then abb′ab is a (min-
imal) element in W \dom(φ).

Proof: Put w = abb′ab. We have:

coat(w) = {bb′ab; abab; abb′b; abb′a}
φ(bb′ab) = bb′φ(ab) = bb′bab
φ(abb′b) = φ(b′abb′) = b′φ(ab)b′ = b′babb′

φ(abb′a) = φ(abab′) = φ(aba)b′

so if w ∈ dom(φ) we must have w � φ(w) = y and b′babb′ � y, bb′bab � y.
As b′babb′ ∈ I, and bb′bab has exactly three reduced expressions (namely
bb′bab, b′bb′ab and b′bab′b), we deduce y = b′bab′bb′ which is not consistent with
φ(aba)b′ � y. �

7. General case

Now we consider a maximal matching φ on a general Coxeter system (W, S). Little
by little, we will show that φ is reducible in all cases. Naturally we suppose that φ is
full (by definition any non-full matching is reducible). By Lemma 3.2, if < J > is a
parabolic subgroup stable by φ, then φ|<J>∩dom(φ) is full again, which allows us to
use the results we obtained in rank three. Put a = φ(e),

E = {s ∈ S \{a}; sa = as}
L = {s ∈ S; φ(s) = as}, L ′ = L\(E ∪ {a})
R = {s ∈ S; φ(s) = sa}, R′ = R\(E ∪ {a})
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We start by treating the so-called “mixed” case:

Proposition 7.1. Suppose that φ is a mixed matching (i.e. such that L ′ �= ∅, R′ �=
∅). Then φ is reducible. More precisely, up to interchange of left and right, we
have:

dom(φ) =< R > (< L > ∩dom(φ))
∀(x, y) ∈< R > ×(< L > ∩dom(φ)), φ(xy) = xφ(y).

Note that the last line above follows from Theorem 7.6 of [3].

Proof: We may assume that there is a r ∈ R such that φ �= ρa on Pr or that there
is a l ∈ L such that φ �= λa on Pl (otherwise we have a “middle multiplication”
matching, cf. Corollary 5.2). By symmetry we may assume that φ �= λa on Pl0

for
some l0 ∈ L\{a} (then necessarily l0 ∈ L ′). By Lemma 6.2.6, (used on the restriction
of φ to < {a; l0; r} >) we see that φ = ρa on Pr for each r ∈ R. By Lemma 6.2.6,
(used on the restriction of φ to < {a; l; r} >) we see that φ is a-left-regular on Pl for
each l ∈ L .

Then Corollary 4.3 and Theorem 5.1 give an equality for dom(φ) by double inclu-
sion: Theorem 5.1 gives dom(φ) ⊆< R >< L >, hence dom(φ) ⊆< R > (< L >

∩dom(φ)) because dom(φ) is decreasing, and Corollary 4.3 gives < R > (< L >

∩dom(φ)) ⊆ dom(φ).
Let us explain why this implies that φ is reducible: let o be a full orbit, o = {m; M}

with M = φ(m) and M full. Then there is a (x, y) ∈< R > × < L ∩ dom(φ) > such
that m = xy, M = xφ(y). We may assume l(m) = l(x) + l(y) by the cancellation
rule. It is easily seen that for any subset J of S containing a, < J > ∩dom(φ) is stable
by φ. In particular φ(y) ∈< L ∩ dom(φ) >. As R �= ∅ and M is full, we deduce x �= e.
Let x1 ∈ Dl(x); then x1 is left-regular (because x1 ∈ R) and x1 is in the left descent
set of m, so the orbit o is reducible. �

So we may assume that for example L ′ = ∅, i.e. φ(s) = sa for any s ∈ S.
Using Lemma 6.3.3, we can even assume that for any s ∈ S\{a} except at most

one element, φ|<s,a> = ρa .
Of course, the non-trivial case arises when there is indeed an element (which we

will denote b) such that φ<b,a> does not coincide with right multiplication by a.
Now we slightly change the notations in order to work with disjoint subsets of S: we
put

A = S\(E ∪ {a; b})
B = {b′ ∈ E ; mbb′ ≥ 3}
C = E\B = {s ∈ S; sa = as, sb = bs}

Using Lemma 6.3.2, we see that a′b = ba′ for any a′ ∈ A. The commutations are
summarized by figure 4:
And we have the following regularity data, by Corollary 4.2:
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Fig. 4

x Is x left-regular ? Is x right-regular ?
a Yes if A �= ∅ (Proposition 6.3.5) Unknown
b Unknown Unknown

a′ ∈ A Yes No
b′ ∈ B Yes Yes
c ∈ C Yes Yes

Define d j = 〈 j, a, b] for each integer j . As φ �= ρa there is a minimal i such that
φ(di ) �= di a, so i ≤ mab − 2 and φ(di ) = di+1. Define, for x ∈ A ∪ B,

Hx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{w; di � w, u ≤ w, w �= a′di } if x = a′ ∈ A

{w; di � w, b′ ≤ w, w �∈ {b′di ; di b′}} if x = b′ ∈ B, i > 2,

{abb′b} if x = b′ ∈ B, i = 2, mbc > 3

{abb′ab} if x = b′ ∈ B, i = 2, mbc = 3.

Then, by Lemmas 6.3.1, 6.4.2, 6.4.3 and 6.4.4:

Hx ∩ dom(φ) = ∅ for any x ∈ A ∪ B (1)

Denote by H the union of the Hx . Suppose by contradiction that φ is not reducible.
Then |S| > 2 and there is a nonreducible full orbit, i.e. there is a w ∈ dom(φ) with
w � φ(w), φ(w) full such that w is irreducible, i.e. such that Dl(w) does not contain
any left-regular element, and Dr (w) does not contain any right-regular element. Then
we claim that w ≥ 〈mab − 2, a, b]. Indeed, φ(w) is full, so φ(w) ≥ Mab and hence
w ≥ φ(Mab) ≥ 〈mab − 2, a, b].

Note that the subgroup G = < {a, b} ∪ C >of W is isomorphic to the direct product
of < a, b > and < C >, and that in addition we have φ(xy) = φ(x)y for all (x, y) ∈<

a, b > ×C so the restriction of φ to G is reducible. In particular w �∈ G, so that there
is a generator s �∈ {a, b} ∪ C such that w ≥ s. Thus

w ≥ 〈mab − 2, a, b], w irreducible, w ≥ s, s ∈ S\({a; b} ∪ C) (3)

Let g = w1w2 . . . wm be a reduced expression for w. For any subset K = {k1 <

k2 < · · · < kr } of {1; . . . ; n} we put wK = wk1
wk2

. . . wkr . Thus there is a J = { j1 <

j2 < · · · < jmab−1} ⊆ {1; . . . ; n} with cardinality mab − 1 such that wJ is dihedral
in a and b and an index j ′ such that w j ′ = s. Because of Dl(w) ⊆ {a; b} we have
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w1 ∈ {a; b}, and also w2 ∈ {a; b} (else either w1 = a, w2 ∈ A or w1 = b, w2 ∈ B;
in the first case a is a left-regular element in Dl(w) which is excluded, and in the
second b is not left-regular so that there is a minimal k with φ([a, b, k〉) = [a, b, k +
1〉, φ([b, a, k + 1〉) = [a, b, k + 2〉, and then w ≥ bw2[a, b, k〉 contradicts Lemma
6.1.3). Thus we may assume 1 ∈ J, 2 ∈ J .

Suppose s ∈ A. Then a is left-regular, and hence Dl(w) = {b}, so w1 = b, w2 = a.
Putting h = baw{ j3; j4;...; ji }∪{ j ′} if i is odd and h = aw{ j3; j4;...; ji ; ji+1}∪{ j ′} if i is even, we
get w ≥ h ∈ H which contradicts (1). So s �∈ A, i.e. s ∈ B; the above reasoning clearly
also implies that supp(w) ∩ A = ∅. By reasoning on the right as we did on the left,
we see that wm−1 ∈ {a; b}, wm ∈ {a; b}.

Suppose that i > 2 and that we are not in the case (i even, w1 = b). Put

u =

⎧⎪⎨⎪⎩
ab if i is even and w1 = a

b if i is odd and w1 = a

ba if i is odd and w1 = b

(so that u is a subword of w1w2 that contains b, that has the same leftmost character
as 〈i, a, b] and is maximal for this property). Similarly, define v = b if wm = a and
v = ab if wm = b; then v is a subword of wm−1wm that contains b, that has the
same rightmost character as 〈i, a, b] and is maximal for this property. Let Jint =
J ∩ {3; 4; . . . m − 3; m − 2}. We claim that

|Jint | ≥ i − l(u) − l(v) (*)

Indeed, we always have |Jint | ≥ |J | − 4 ≥ mab − 5 and i − l(u) − l(v) ≤ i − 2 ≤
mab − 4. If J does not contain all of {1; 2; m − 1; m}, then the first inequality may
be improved to |Jint | ≥ mab − 4, and if l(u) = 2 or l(v) = 2 or i �= mab − 2, then the
second inequality may be improved to i − l(u) − l(v) ≤ mab − 5. Thus (*) holds in
any of those cases, and the only case left is {1; 2; m − 1; m} ⊆ J, l(u) = l(v) = 1, i =
mab − 2. From l(v) = 1 we deduce that wm = a, and from l(u) = 1 we deduce that
w1 = a, and that i (and hence mab) is odd. Then wJ is a dihedral word of even length
with identical rightmost and leftmost generators, which is a contradiction.

Let J ′ be the set of the first i − l(u) − l(v) elements in Jint .Then, if h = uwJ ′∪{ j ′}v
we have w ≥ h ∈ H which contradicts (1).

Suppose that i > 2 and that (i is even, w1 = b). Then b is not left-regular (indeed b ∈
Dl(w)) so that there is a minimal j such that φ([a, b, j〉) = [a, b, j + 1〉, φ([b, a, j +
1〉) = [a, b, j + 2〉 If w3 = b′ ∈ B, then then w ≥ bb′w{ j3; j4;... ji−1} contradicts Lemma
6.1.3. Therefore w3 = b, and the reasoning above may be readjusted (taking a subword
u of w1w2w3 instead of w1w2) so that we get a contradiction in this case also.

Suppose i = 2 and w1 = a. If wm = b, then w ≥ w{1;2; j ′;m−1;m} = absab ∈ H con-
tradicts (1). So we have wm = a. Thus a is not right-regular, so there is a k ≤ mab − 3
such that φ(〈k, a, b]) = 〈k + 1, a, b] and φ(〈k + 1, b, a]) = 〈k + 2, a, b]. Necessar-
ily k ≥ 2, so mab ≥ 5, hence |J | ≥ 4. In particular, j3 exists and satisfies 2 < j3 <

m − 1. Then w ≥ w{1;2; j3;m−1}∪{ j ′} = abasb ∈ H contradicts (1).
Finally, suppose i = 2 and w1 = b. Then b is not left-regular, so that there is a

minimal k such that φ([a, b, k〉) = [a, b, k + 1〉 and φ([b, a, k + 1〉) = [a, b, k + 2〉.
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If w3 ∈ B, then w ≥ w{2;3; j3;... jk+2}∪{ j ′} = bw3[a, b, k〉 contradicts Lemma 6.1.3. Thus
w3 = b, and the reasoning above may be readjusted (using (w2, w3) = (a, b) instead
of (w1, w2) = (a, b)) to get a similar contradiction. This concludes the proof.

So we have finally shown the following:

Theorem 7.2. For any Coxeter system (W, S), any special matching on W is reducible.

Combining this with Proposition 3.5, we immediately obtain the following:

Corollary 7.3. Let (W, S) be a Coxeter system, φ a special matching of W , x, y ∈ W
such that x � φ(x), y � φ(y). Then

Rφ(x),φ(y) = Rx,y (7.3.1)

Rx,φ(y) = (q − 1)Rx,y + q Rφ(x),y (7.3.2)

Note that this is exactly Theorem 7.8 of [3].
Although we did not need this here, it is interesting to make the following remark

(we denote by M(W ) the set of all maximal matchings of a Coxeter group W and for
a ∈ S, Ma(W ) = {φ ∈ M(W ); φ(e) = a}):

Proposition 7.4. Let (W, S) be a Coxeter system and a ∈ S. Then the only elements of
Ma(W ) that are defined on the whole of W are the left- and right- multiplication-by-a
matchings, except in the degenerate case

S = {a; b} � C, ∀c ∈ C, mac = mbc = 2.

In this case, W is isomorphic to the direct product of the Coxeter groups < C >

and < a, b >, all the elements of Ma(W ) are < C >-regular (i.e. satisfy cx ∈
dom(φ), φ(cx) = cφ(x) for any c ∈< C >, x ∈ dom(φ)) and hence defined on the
whole of W . In addition, the restriction- to-< a, b > operation provides a bijection
between Ma(W ) and Ma(< a, b >).

Proof: Let φ ∈ Ma(W ), φ �∈ {λa ; ρa} be everywhere defined. Put E = {s ∈ S; sa =
as, s �= a}, R = {s ∈ S; φ(s) = sa}, L = {s ∈ S; φ(s) = as}, R′ = R\(E ∪ {a}),
L ′ = L\(E ∪ {a}). By Theorem 5.1, we have W =< R >< L > and hence L ′ = ∅
or R′ = ∅ (otherwise for l ∈ L ′, r ∈ R′ we have lar �∈< R >< L >). Suppose for ex-
ample that L ′ = ∅, i.e. φ(s) = sa for all s ∈ S. By Theorem 2.8, there is a generator b
such that φ|Pb �= ρa , thus ∃i ≤ mab − 2, φ(〈i, a, b]) = 〈i + 1, a, b]). Then if R′ �= ∅,
we have for any r ∈ R′, 〈i, a, b]r �∈ dom(φ) by Lemma 6.3.1. Thus we may assume
R′ = ∅. Then S ⊆ {a; b} ∪ E .

Assume that there is a c ∈ E that does not commute with b. If i > 2, we have
〈i − 1, b, a]cb �∈ dom(φ) by Lemma 6.4.2. If i = 2 and mbc > 3 we have abcb �∈
dom(φ) by Lemma 6.4.3. If i = 2 and mbc = 3 we have abcab �∈ dom(φ) by Lemma
6.4.4. So in all cases, dom(φ) �= W .
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Thus we may assume that any c ∈ E commutes with b, which means that we are in
the degenerate case defined in the Theorem (with C = E). The rest of the proposition
is clear. �
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