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Abstract We give a short, direct proof that given any finite group G there exist positive
integers k and l and partitions α1 and α2 of {1, . . . , kl} into l subsets of size k such
that (Skl)α1,α2

∼= G.
The method used will also show that given any finite group G there exists a regular

bipartite graph whose automorphism group is isomorphic to G.
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1. Introduction

Let k and l be positive integers such that k, l ≥ 2 and let �k,l be the set of all partitions
of {1, . . . , kl} into l distinct subsets of size k. In a previous paper [1] the author
showed that there exist α1, α2 ∈ �k,l such that (Skl)α1,α2

= 1 if and only if k ≥ 3
and l ≥ max{8, k + 3}. In light of this result it is natural to ask which finite groups
can occur as two-point stabilisers of a symmetric group acting on partitions. This is
answered by the following theorem.

Theorem 1.1. Let G be a finite group. There exist positive integers k, l and partitions
α1, α2 ∈ �k,l such that (Skl)α1,α2

∼= G.

In fact Theorem 1.1 is a corollary of a result of Kantor [3] who proved that given a
finite group G there exists a symmetric design with automorphism group isomorphic
to G. For a given G, the proof gives values of k and l which are both exponential in
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|G|2. The aim of this paper is to give a simple direct proof of Theorem 1.1 in which
far smaller values of k and l are necessary. We will prove the following result

Theorem 1.2. Let G be a non-trivial finite group. Set k = 4 and l = 2(r + 1)|G|
where r is the minimum number of elements needed to generate G. There exist α1,
α2 ∈ �k,l such that (Skl)α1,α2

∼= G.

1.1. Fences

In [1] the author defined fences. We recall the definition (in a slightly more general
form) and the most important result.

Definition 1.3. Let�be a finite set and let k be a positive integer such that 2 ≤ k < |�|.
A (k, �)-fence is a collection � of |�| distinct k-subsets of � such that each member
of � occurs in precisely k members of �.

Remark 1.4. In design theory terminology a (k, �)-fence is the blocks of a 1-(|�|, k, k)
design.

Lemma 1.5. Let � be a finite set and set l = |�|. Let k be a positive integer such
that 2 ≤ k < l and � be a (k, �)-fence. There exist partitions α� , β� ∈ �k,l such that
(Skl)α�,β�

∼= Sym(�)� .

Proof: See Lemma 2.3 and Lemma 3.3 in [1]. �

So to prove Theorem 1.2 it is enough, given G which can be generated by r elements,
to construct a (4, �)-fence �G , where � is a set of size 2(r + 1)|G|, with stabiliser
isomorphic to G.

Remark 1.6. The proof of Lemma 1.5 in [1] shows that given a (k, �)-fence we can
construct a k-regular bipartite graph G such that Autb(G) ∼= Sym(�)� where Autb(G)
is the group of automorphisms of G fixing the bipartite blocks of G. Some more work
shows that there exists a regular bipartite graph such that Aut(G) ∼= Sym(�)� . See [2]
for details.

2. Cyclic groups

The Main Construction (detailed in Section 3) requires at least two distinct elements
that generate the group. So we deal with cyclic groups separately.

2.1. The group of size two

Set �C2
= �1 ∪ �2 where

�1 = {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}, {4, 5, 6, 7}, {5, 6, 7, 8}}
�2 = {{6, 2, 8, 1}, {2, 8, 1, 7}, {8, 1, 7, 3}}.
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We observe that �C2
is a (4, {1, . . . , 8})-fence.

Lemma 2.1. The stabiliser of �C2
in S8 has size two.

Proof: Consider a graph KC2
with vertex set �C2

in which two sets are joined by
an edge if they intersect in three points. Elements of (S8)�C2

act as automorphisms
of KC2

. The connected components of KC2
are a line of length five and a line of

length three corresponding to �1 and �2. So if g ∈ (S8)�C2
then g either fixes or

reflects the line corresponding to �1 hence g is either the identity or the involution
(1, 8)(2, 7)(3, 6)(4, 5). �

2.2. Other cyclic groups

Let n be an integer such that n ≥ 3. Set �Cn = {0, . . . , 4n − 1} and �Cn = ⋃n−1
i=0 �i

where

�i = {{4i, . . . , 4i + 3}, {4i + 1, . . . , 4i + 4}, {4i + 2, . . . , 4i + 5},
{4i + 3, . . . , 4i + 10}}

with addition modulo 4n. We observe that �Cn is a (4, �Cn )-fence.

Lemma 2.2. The stabiliser of �Cn in Sym(�Cn ) is isomorphic to Cn.

Proof: As above Sym(�Cn )�Cn
≤ Aut(KCn ) where KCn is a graph with vertices �Cn in

which two sets are joined if they intersect in three points. The connected components
of KCn are n lines of length four corresponding to the sets �0, . . . , �n−1. So g ∈
Sym(�Cn )�Cn

permutes the sets �0, . . . , �n−1.
We observe that the permutation σ ∈ Sym(�Cn ) given by iσ = i + 4 mod 4n sta-

bilises �Cn and sends � j to � j+1 where j ∈ [0, n − 1] and addition is modulo n.
So Sym(�Cn )�Cn

is transitive on the connected components of K�Cn
and contains a

subgroup isomorphic to Cn . To show that Sym(�Cn )�Cn
∼= Cn it is enough to show that

the stabiliser of �0 in (Sym(�Cn )�Cn
) is trivial.

Let i ∈ [0, n − 1] and suppose g ∈ Sym(�Cn )�Cn
such that �i g = �i . So g either

fixes or reflects the corresponding connected component. Hence g acts on supp(�i ) =
{4i, . . . , 4i + 5} ∪ {4i + 10} either as the identity or the involution (4i, 4i + 10)(4i +
1, 4i + 5)(4i + 2, 4i + 4) where all addition is modulo 4n. We observe that� the elements 4i and 4i + 1 are only contained in members of �i and �i−1;� the element 4i + 5 is only contained in members of �i and �i+1;� the element 4i + 10 is only contained in members of �i and �i+2

where addition in indices is modulo n and all other addition is modulo 4n. Hence g
can not act as an involution on supp(�i ) otherwise it must send �i−1 to both �i+1

and �i+2 simultaneously. Therefore g is the identity on supp(�i ) and must stabilise
�i+1. So the stabiliser of �0 in (Sym(�Cn )�Cn

) is trivial by induction. �
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3. The main construction

Let G be a finite group which is not cyclic and r be the minimal number of elements
required to generate G. Since G is not cyclic r ≥ 2. Pick distinct f (1), . . . , f (r ) ∈
G \ {1} such that G = 〈 f (i) | 1 ≤ i ≤ r〉. Set f (0) = f (1).

3.1. Definitions

In order to define a fence �G with stabiliser G we require a G-space. Let G0,
G1, . . . , Gr , Ĝ0, Ĝ1, . . . , Ĝr be disjoint copies of G and set

�G =
r⋃

i=0

(Gi ∪ Ĝi ).

We will write gi (respectively ĝi ) for the element of Gi (respectively Ĝi ) corresponding
to g ∈ G. The group G acts on �G by right multiplication:

gi h = (gh)i

ĝi h = (̂gh)i for g, h ∈ G and i ∈ [0, r ]

For each i ∈ [0, r ] we define

Ri = Ri G with Ri = {1i , 1̂i , 1i+1, 1̂i+1}
Ti = Ti G with Ti = {1̂i , 1i+1, 1̂i+1, f (i)i+2}

where all addition is modulo (r + 1). We define

�G =
r⋃

i=0

(Ri ∪ Ti ).

and observe that �G is a (4, �G)-fence and a union of G-orbits, so G ≤ Sym(�G)�G .

3.2. Intersections

The proofs in the next section rely on the following detailed analysis of intersections
between members of �G .

Lemma 3.1. Let g ∈ G and i ∈ [0, r ]. If U ∈ �G then

|Ri g ∩ U | =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4 if U = Ri g
3 if U = Ti g
2 if U ∈ {Ti−1g, Ri+1g, Ri−1g}
1 if U ∈ {Ti−1 f (i − 1)−1g, Ti+1g, Ti−2 f (i − 2)−1g}
0 otherwise
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|Ti g ∩ U | =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4 if U = Ti g
3 if U = Ri g
2 if U = Ri+1g
1 if U ∈ {Ri+1 f (i)g, Ti−1g, Ti−1 f (i − 1)−1g,

Ti+1g, Ti+1 f (i)g, Ri−1g, Ri+2 f (i)g}
0 otherwise

Proof: Each ω ∈ �G is contained in exactly 4 members of �G and |U | = 4
so

∑
V ∈�G

|U ∩ V | = 16. Hence if there exists a positive integer s and distinct
V1, . . . , Vs ∈ �G such that

∑s
i=1 |U ∩ Vi | = 16 then U ∩ V = ∅ for all V ∈ �G \

{V1, . . . , Vs}. �

Corollary 3.2. Let g ∈ G and i ∈ [0, r ]. If h ∈ Sym(�G)�G then there exist g′ ∈ G
and an integer i ′ such that 0 ≤ i ′ ≤ r and (Ri g)h = Ri ′ g′.

Proof: By Lemma 3.1, if k ∈ G and j ∈ [0, r ] then exactly three members of �G

intersect R j k in two points whereas only one member of �G intersects Tj k in two
points. �

Corollary 3.3. Let g, g′ ∈ G and i, i ′ ∈ [0, r ].
1. If h ∈ Sym(�G)�G such that (Ri g)h = Ri ′ g′ then (Ti g)h = Ti ′ g′.
2. If h ∈ Sym(�G)�G such that (Ti g)h = Ti ′ g′ then (Ri+1g)h = Ri ′+1g′.

Proof: By Lemma 3.1, if k ∈ G and j ∈ [0, r ] then Tj k is the unique member of �G

which shares exactly three points with R j k and R j+1k is the unique member of �G

which shares two points with Tj k. �

3.3. The proof

We set S = {Ri , Ti | 0 ≤ i ≤ r} and observe that SG is a partition of �G into |G| sets
of size 2(r + 1).

Lemma 3.4. Let g ∈ G. If h ∈ Sym(�G)�G then there exist an integer j and g′ ∈ G
such that (Ri g)h = Ri+ j g′ and (Ti g)h = Ti+ j g′ for all integers i ∈ [0, r ]. In partic-
ular, if h ∈ Sym(�G)�G then there exists g′ ∈ G such that (Sg)h = Sg′.

Proof: Corollary 3.2 shows that there exists an integer j and g′ ∈ G such that
(R0g)h = R j g′. The rest follows by induction using Corollary 3.3. �

Lemma 3.5. Let g ∈ G. If h ∈ Sym(�G)�G such that (Sg)h = Sg then
1. (Ri g)h = Ri g;
2. (Ti g)h = Ti g;
3. (S( f (i)g))h = S( f (i)g)

for all i ∈ [0, r ].
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Proof: By Lemma 3.4 there exists an integer j such that (Ri g)h = Ri+ j g and
(Ti g)h = Ti+ j g for all integers i ∈ [0, r ]. The element ( f (s)g)s+2 is the unique mem-
ber of Ts g \ Rs g for all s ∈ [0, r ] so ( f (i)g)i+2h = ( f (i + j)g)i+ j+2 for all i such
that 0 ≤ i ≤ r . Given s such that 0 ≤ s ≤ r the three members of �G \ {Ts g} which
contain ( f (s)g)s+2 are all contained in S( f (s)g) hence (S( f (i)g))h = S( f (i + j)g)
by Lemma 3.4. So

S( f ( j)g) = (S( f (0)g))h = (S( f (1)g))h = S( f ( j + 1)g),

therefore j = 0. �

Lemma 3.6. Let g ∈ G and i ∈ [0, r ]. The element gi is the unique member of Ri g ∩
Ti−2 f (i − 2)−1g and ĝi is the unique member of Ti−1g ∩ Ti g.

Theorem 3.7. Sym(�G)�G
∼= G.

Proof: By Lemma 3.4 the orbit of S under Sym(�G)�G is the same as the orbit under
G. Hence

|Sym(�G)�G | = |G| · |(Sym(�G)�G )S |

and since G ≤ Sym(�G)�G it is enough to show that (Sym(�G)�G )S = 1.
Let h ∈ Sym(�G)�G such that Sh = S. For g ∈ G we will write |g| for the length

of the shortest word in { f (1), . . . , f (r )} which is equal to g. Induction on |g| using
Lemma 3.5 shows that (Sg)h = Sg for all g ∈ G. Hence Uh = U for all U ∈ �G

by Lemma 3.5. So ωh = ω for all ω ∈ �G since there exists V , W ∈ �G such that
V ∩ W = {ω} by Lemma 3.6. �

Theorem 3.7 completes the proof of Theorem 1.2.

Remark 3.8. The stabilser of the partitions α�G , β�G ∈ �k,l constructed from �G by
Lemma 1.5 can be shown to lie in Akl . Hence (Akl)α�G ,β�G

∼= G. See [2] for details.
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