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Abstract In this paper, we confirm a conjecture of Alcántar by showing that graph
subrings always admit standard Noether normalizations.
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1. Introduction

Throughout this paper, n > 1 is a positive integer, and G is a simple graph with n
vertices which are labeled 1, 2, . . . , n. We write E(G) := {{i, j} | i incident to j}
for the set of edges of G, and m for the cardinality of E(G). We let k be a field of
characteristic zero, or large enough with respect to n, and we write R := k[x1, . . . , xn]
for the standard polynomial ring in n indeterminates over k. The monomial subring
or the edge subring of G (over k) is the subring

k[G] := k[{xi x j | {i, j} ∈ E(G)}] ⊂ R. (1.1)

The presentation ideal P(G) of k[G] is the kernel of the epimorphism of k-algebras

ψ : S = k[{te | e ∈ E(G)}] −→ k[G], (1.2)

induced by ψ(te) := xi x j for e = {i, j} ∈ E(G), where {te} is a new set of variables
in one to one correspondence with the edges of G. Notationally, we shall find it
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convenient to refer to the indeterminates te for e ∈ E(G) as ti j , for i �= j , with the
convention that ti j is defined precisely when i is incident to j , and in this case we do
not distinguish between ti j and t ji .

A Noether normalization of k[G], or, equivalently, of S/P(G), is an integral ex-
tension of the form

k[h1, . . . , hd ] −→ S/P(G), (1.3)

where h1, . . . , hd are homogeneous polynomials in the ti j ’s and d is the Krull dimen-
sion of k[G]. When all the h�’s for � = 1, . . . , d are linear forms in the indeterminates
ti j , then the above Noether normalization is called standard.

The subring k[G], its presentation ideal P(G), as well as the Noether normalizations
for k[G] have been studied in [1, 4], and [5] and Chapter 6 of [7].

In [1], Alcántar asked if a standard Noether normalization of k[G] of the form

hi :=
∑

j

ai j ti j with ai j ∈ k, for i = 1, . . . , n (1.4)

always exists provided that k[G] has Krull dimension n. Note that k[G] has Krull
dimension n − 1 when G is bipartite.

In this paper, we give an affirmative answer to the above question. We shall keep
the exposition at an elementary level, and as such we avoid getting into technical
issues such as Krull dimension, normality, or Cohen-Macaulay. We merely note that
when d = n, the above question becomes equivalent to the following:

Question 1.1 ([1]). Is it true that there exist 2m coefficients ai j ∈ k, for (i, j) ∈ E(G),
so that if we write

hi :=
∑
1≤ j≤n

{i, j}∈E(G)

ai j ti j , i = 1, . . . , n, (1.5)

then whenever P is a prime ideal in S containing P(G) and hi for i = 1, . . . , n, then
P contains all the indeterminates ti j ?

We note that since k is of characteristic zero, it follows that k contains the field of
rational numbers Q, and, in particular, it also contains the ring of integers Z.

Our result is:

Theorem 1.2. Let n and m ≤ n(n − 1)/2 be positive integers, and let p be either zero
or a sufficiently large prime with respect to n. Let G be any graph with n vertices and
m edges. Then there exist 2m positive integers ai j ≤ 2n+m for {i, j} ∈ E(G), such that
if k is any field of characteristic zero or p, and hi are the linear forms in S shown in
(1.5), then the only prime ideal in S containing P(G) and hi for i = 1, . . . , n is the
maximal ideal containing all the indeterminates ti j .

As one of the referees observed, the above Theorem 1.2 can be formulated in terms
of special semigroup rings over a field. Namely, let S be a semigroup ring of the
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polynomial ring R generated by squarefree monomials of degree 2, let Ei be the
generators of S which are divisible by xi , and let hi be a general linear combination
of the elements Ei for i = 1, . . . , n. Then Theorem 1.2 says (a little bit more than)
that the radical of (h1, . . . , hn) is the maximal homogeneous ideal of S. Formulated
in this way, the statement makes sense for any general (affine) semigroup rings. We
have neither investigated this problem in the above generality, nor do we know of
any counter-examples to the general statement, but would like to pose this as an open
problem.

Throughout the rest of this paper, we assume that G is a graph without isolated
vertices (i.e., degree zero vertices). Except for the last section, we also assume that
the characteristic of k is zero, and we prove Theorem 1.2 in this instance. In the last
section, we comment about the case when k has a large characteristic and sketch the
proof of Theorem 1.2 in this instance. We note that the restriction that G has no isolated
vertices imposes no restriction on our problem for if i0 ∈ V (G) is an isolated vertex of
G, then none of the degree two monomials xi x j for {i, j} ∈ E(G) generating k[G] as
a subring of R involves the indeterminate xi0

, and therefore k[G] lives in k[xi | i �= i0].
We shall also assume that the coefficients ai j for {i, j} ∈ E(G) appearing in (1.5) are
nonzero.

The rest of the paper is organized as follows. In Section 2, we associate to G
an n × n matrix AG with entries in k and whose entry (i, j) is nonzero if and only
if {i, j} ∈ E(G), and ask the nullspace of such a matrix to satisfy certain special
properties. In Section 3, we give necessary and sufficient conditions on the set of linear
forms {h1, . . . , hn} defined in (1.5) to be a standard Noether normalization in terms
of the matrices with special properties described in Section 2. In Section 4, we treat
the matrices from Section 2 as “generic”, i.e., with algebraically independent nonzero
entries, and we show that such matrices do fulfill the special properties described in
Section 2. In Section 5, we use the results from Sections 2 and 4, to prove that for
each graph G there exists a universal polynomial in 2m indeterminates of degree at
most 2n+m and with integer coefficients, such that if the vector of coefficients a :=
(ai j | {i, j} ∈ E(G)) ∈ Z2m is not a zero of such a polynomial, then the matrix defined
in Section 2 and whose nonzero (i, j) entry is precisely the component ai j of the above
vector a has the required special properties described in Section 2. In Section 6, we give
the proof of Theorem 1.2, which will by then be just a straightforward consequence of
the results from the previous sections. Section 7 contains some comments and remarks
as well as the proof of Theorem 1.2 when p is sufficiently large with respect to n.

2. Some matrices associated to graphs

Given a graph G with n vertices labeled 1, . . . , n, m edges, and without isolated
points, we write AG for an n × n matrix with entries in k such that ai j �= 0 if and
only if {i, j} ∈ E(G). Note that AG is not necessarily symmetric, although if i �= j ,
then ai j = 0 if and only if a ji = 0. Conversely, given a matrix A ∈ Mn(k), this matrix
equals AG for some graph G as above if and only if the set of its zero entries is a
relation RA on {1, . . . , n}2, which is reflexive, symmetric, has the property that for
every i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} such that (i, j) �∈ RA, andRA consists
of n2 − 2m elements. Note that changing the labeling of the vertices permutes the rows
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of the matrix AG . In what follows, whenever we refer to AG we mean that some labeling
of the vertices of G has been fixed.

Definition 2.1. A matrix A ∈ Mn(k) is called a zero component kernel matrix (or
ZC K , for short), if for all v := (v1, . . . , vn) ∈ ker(A) there exists i ∈ {1, . . . , n} such
that vi = 0.

Note that if A is a ZC K matrix in Mn(k), then there exists i ∈ {1, . . . , n} such that
the containment ker(A) ⊆ Vi := {v ∈ kn | vi = 0} holds, provided that either k is of
characteristic zero (hence, infinite), or k contains more than n elements.

Let G be a graph and let H be a subgraph of G without isolated points. If A := AG

is a matrix associated to G as above, we write A ↓G
H for the restriction of A to H , i.e.,

for the matrix associated to H and induced by A. Since H is obtained from G by first
removing a subset E ′ ⊂ E(G) of edges of G, and then removing the subset of vertices
V ′ ⊂ V (G) which have become isolated after removing E ′, it follows that A ↓G

H is
obtained from A by first replacing the (i, j) entry of A by 0 for all {i, j} ∈ E ′, and
then removing the i th row and column for all i ∈ V ′ since these rows and columns
have now become identically zero. Note also that given E ′, the subset V ′ of V (G) is
uniquely determined, and consists precisely of those vertices i ∈ V (G) such that all
edges adjacent to them are in E ′.

Definition 2.2. Let G be a graph without isolated vertices and let A := AG ∈ Mn(k)
be a matrix associated to G as above. We say that A is a hereditarily zero component
kernel matrix (or H ZC K , for short) if A ↓G

H is a ZC K matrix for all subgraphs
H ⊆ G of G without isolated vertices.

We recall that a subset V ′ ⊂ V (G) of vertices of G is called a vertex cover for G
if for all j ∈ V (G) there exists i ∈ V ′ such that (i, j) ∈ E(G).

Definition 2.3. Let G be a graph without isolated vertices and let A := AG ∈ Mn(k)
be a matrix associated to G as above. We say that A is a vertex cover zero component
kernel matrix (or V C ZC K , for short), if whenever v ∈ ker(A), the set V ′ := {i ∈
V (G) | vi = 0} is a vertex cover for G.

Given a graph G with n vertices none of which is isolated, and A := AG a matrix
associated to G as above, it is clear that if A is H ZC K , then it is ZC K as well. The
main result of this section is the following:

Proposition 2.4. Let A ∈ Mn(k) be a matrix associated to a graph G without isolated
vertices. If A is H ZC K , then it is V C ZC K as well.

Proof of Proposition 2.4. Let v ∈ ker(A). Since A is H ZC K (in particular, ZC K ), a
vertex i ∈ V (G) exists such that vi = 0. Let G ′ be the subgraph of G obtained by first
eliminating the vertex i and all edges adjacent to it, and then also removing all vertices
which have now become isolated. If G ′ is empty, then {i} is already a vertex cover for
G, and we are done. If not, write V ′ := V (G ′), n′ := |V ′| and A′ := A ↓G

G ′∈ Mn′ (k).
Note that V \V ′ consists of i and eventually some other vertices all of which are
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adjacent only to i . Let v′ := v ↓G
G ′ be the vector in kn′

which is the projection of v on
the subspace of those coordinates whose indexes are in V ′. The equation A · vT = 0
together with the fact that vi = 0 imply that A′ · v′T = 0, and therefore v′ ∈ ker(A′).
Since A is H ZC K , it follows that there exists i ′ ∈ V ′ such that v′

i ′ = 0. In particular,
vi ′ = 0. Proceeding in this way, after a finite number of steps we arrive at the conclusion
that there exists a subset I of V (G) such that vi = 0 for all i ∈ I , and such that I is a
vertex cover for G, which completes the proof of Proposition 2.4.

3. Matrices associated to graphs and standard Noether normalizations

In this section, we give necessary and sufficient conditions for the set of forms
{h1, . . . , hn} shown in (1.5) to be a standard Noether normalization, in the sense of ful-
filling the conditions from Question 1.1, in terms of the matrix A := AG(h1, . . . , hn)
whose rows are the normal vectors to the forms hi for i = 1, . . . , n.

Proposition 3.1. Let hi be the forms defined in (1.5) for i = 1, . . . , n. Assume that
ai j �= 0 for all {i, j} ∈ E(G). Let A be the matrix whose i th row is the normal vector
to the form hi for all i = 1, . . . , n. If A is not V C ZC K , then there exists a prime ideal
P in S containing P(G) and hi for all i = 1, . . . , n but which does not contain te for
all e ∈ E(G).

Proof of Proposition 3.1. We look at the system of linear equations A · vT = 0, where
the unknowns are the components of v := (v1, . . . , vn). Since A is not V C ZC K , it
follows, in particular, that A is degenerate. Thus, there exists a partition I ∪ J of
{1, . . . , n} into two nonempty disjoint subsets and Li : k|J | �−→ k for i ∈ I , that are
either linear forms, or constant zero maps, such that all solutions of the above system
have vi = Li (vJ ), where we write vJ := (v j | j ∈ J ). Let I1 ⊂ I be the set of indices i
in I such that Li ≡ 0. The condition that A is not V C ZC K together with the fact that
k is infinite (which guarantees that for every finite number of linear forms on some
finite dimensional vector space over k there exists a vector which lies outside the union
of the kernels of these forms) implies that there exist indices � and s in V (G)\I1 such
that (�, s) ∈ E(G), but neither � nor s is adjacent with any vertex in I1. Let I be the
ideal of R generated by the forms xi − Li (xJ ) for i ∈ I , where xJ := (x j | j ∈ J ).
We claim that there exists a minimal prime ideal Q of R containing I and such that
x�xs does not belong to Q. Indeed, assume that this is not the case. It then follows that
there exists a positive integer N such that the relation

(x�xs)N =
∑
i∈I

fi (xi − Li (xJ )) (3.1)

holds in R with some polynomials fi := fi (x1, . . . , xn) ∈ R. Consider the totality
of |I\I1| + |J | ≤ n linear forms on k|J | given by L ′

i (w) := Li (w) for i ∈ I\I1, and
L ′

j (w) := w j for j ∈ J , where w := (w j | j ∈ J ). Since k is infinite, a vector w(0) ∈
k|J | exists such that none of the above linear forms vanishes at w(0). We then specialize
relation (3.1) with xi := 0 for i ∈ I1, x j := w

(0)
j for j ∈ J , and xi := Li (w(0)) for i ∈

Springer



420 J Algebr Comb (2006) 24:415–436

I\I1, to obtain that (x�xs)N = 0 for this particular specialization, which is impossible
from the way we have constructed the point w(0) ∈ k|J |.

Thus, there does indeed exist an ideal Q of R containing I and not containing x�xs .
From the construction, it is clear that∑

1≤ j≤n
{i, j}∈E(G)

ai j x j ∈ I ⊂ Q

holds for all i ∈ {1, . . . , n}. Consider the ideal Q′ := Q ∩ k[G] of k[G]. This is a
prime ideal in k[G], which does not contain the monomial x�xs , but does contain the
linear forms in k[G] given by ∑

1≤ j≤n
{i, j}∈E(G)

ai j xi x j .

for all i ∈ {1, . . . , n}. Writing P := ψ−1(Q′), we have obtained a prime ideal P of S
containing P(G) and hi for all i = 1, . . . , n, and not containing t�s , which completes
the proof of Proposition 3.1.

Remark 3.2. We note that the above arguments remain valid when k is any field with
more than n elements.

Proposition 3.3. Let hi be the forms shown in (1.5), and let A ∈ Mn(k) be the matrix
whose i th row is the normal vector to hi for all i = 1, . . . , n. Assume that A is H ZC K .
Then every prime ideal P of S containing P(G) and hi for i = 1, . . . , n, contains te
for all e ∈ E(G).

Proof of Proposition 3.3: We use induction on the size n + m of the graph G. Suppose
first that G is a tree. Then there exist a vertex of degree 1 in V (G). Up to relabeling
the vertices, we may assume that this vertex is n. Then there exists a unique vertex
i ∈ {1, . . . , n − 1} such that n is adjacent to i . Since hn = ani tni , we get that if P is a
prime ideal of S containing P(G) and hi for i = 1, . . . n, then since ani �= 0, it follows
that tni ∈ P . Moreover, ∑

1≤ j≤n−1
{i, j}∈E(G)

ai j ti j .

belongs to P as well. Thus, we have reduced the problem to the subgraph G\{e}
of G, where e := {i, n}, which is also a tree with n − 1 vertices. Thus, the proof of
Proposition 3.3 for the case of trees follows by an easy induction on n, the case n = 2
proved by the above argument. Note that only the fact that ai j �= 0 for all {i, j} ∈ E(G)
is needed in the case when G is a tree (and that P(G) = 0 in this case). In particular,
the assertion of Proposition 3.3 follows for all graphs G without isolated vertices and
with n + m ≤ 5.

Assume now that G is some graph without isolated vertices and that the assertion
of Proposition 3.3 holds for all subgraphs of sizes smaller than the size of G. Assume,
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to the contrary, that the forms hi for i = 1, . . . , n are such that the matrix associated to
these forms is H ZC K , but that a prime ideal P of S exists which contains P(G) and
all the forms hi for i = 1, . . . , n, but which does not contain some of te for e ∈ E(G).
At this point, we claim that we can assume even more about P , namely that it does
not contain any of the edge indeterminates te for e ∈ E(G). Indeed, assume that P
contains te for some e := {�, s} ∈ E(G). Let G1 be the graph obtained from G\{e}
by removing the isolated vertices (which can only be �, or s, or both). Let V1 be the
set of vertices of G1. Since P contains te and hi for all i = 1, . . . , n, it follows that
P contains as well the linear forms hi ↓G

G1
for all i = 1, . . . , n, where we define the

above form to equal hi if i �∈ {�, s}, and to equal hi − ai j ti j if i ∈ {�, s}, where in
this last case we use j for the only vertex in V (G) such that {i, j} = {�, s}. Note
that hi ↓G

G1
is zero if and only if i �∈ V1. The matrix associated to the nonzero forms

hi ↓G
G1

is precisely A ↓G
G1

. Since A is H ZC K , it follows that A ↓G
G1

is also H ZC K ,
and now the induction hyphotesis applied to G1 shows that P must indeed contain t f

for all f ∈ E(G1). Since E(G) = E(G1) ∪ {e}, we do get that P contains t f for all
f ∈ E(G).

Thus, we shall assume that P does not contain any te for e ∈ E(G). We now note that
this assumption together with the induction hypothesis shows that G is connected and
that every vertex has degree ≥2. Indeed, if G is not connected, then, up to relabeling
the vertices of G, the matrix A is seen as being a diagonal block matrix whose diagonal
blocks are A ↓G

Gi
, where G1, . . . , Gt are the connected components of G and t ≥ 2.

Clearly, A ↓G
Gi

is the matrix whose rows are just the normal vectors to h� for � ∈ V (Gi )
and for i = 1, . . . , t . By the induction hypothesis applied to each one of the connected
components Gi of G for i = 1, . . . , t , we get that P must indeed contain all te for
e ∈ E(G). The fact that G does not contain any vertex of degree 1 is follows by
the argument for the case of trees together with the fact that ai j �= 0 for {i, j} ∈
E(G).

In the above two instances, when we invoked the induction hypothesis, we had in
mind the following argument. Assume that H is a nonempty proper subgraph of G
without isolated points such that either t f ∈ P for all f ∈ V (G)\V (H ), or H is the
union of some (but not all) connected components of G, if G is not connected. Since
hi ∈ P holds for all i = 1, . . . , n, it follows easily that under the above assumptions
hi ↓G

H∈ P holds for all i = 1, . . . , n. The matrix A ↓G
H is H ZC K and its rows are

precisely the normal vectors to the nonzero forms hi ↓G
H , and by the induction hypoth-

esis every prime ideal in S′ := k[te | e ∈ V (H )] containing hi ↓G
H and P(H ) contains

te for all e ∈ V (H ) as well. This shows that the radical of the ideal JH generated by
hi ↓G

H for i = 1, . . . , n and P(H ) in S′ is precisely (te | e ∈ V (H )) · S′. Thus, there
exists a positive integer N such that for all e ∈ V (H ) t N

e is a linear combination with
coefficients in S′ of hi ↓G

H for i = 1, . . . , n and elements of P(H ) for all e ∈ V (H ).
Since S′ ⊂ S, P(H ) ⊂ P(G) ⊂ P , and hi ↓G

H∈ P for i = 1, . . . , n, we obtain that
t N
e ∈ P for all e ∈ V (H ), and therefore te ∈ P holds for all e ∈ V (H ) as well.

We now leave this prime ideal P for the time being, we let J be the ideal of k[G]
generated by

∑
1≤ j≤n

{i, j}∈E(G)

ai j xi x j . (3.2)
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for i = 1, . . . , n, and we writeI for the extension ofJ to R. Note thatI is generated
by the same elements as the ones shown in (3.2). As such, it is an ideal contained in
the Rees ideal I(G) := (xi x j | {i, j} ∈ E(G)) · R of R. We now claim that if Q is a
minimal prime ideal containing I, then Q contains I(G) as well. To see this, let Q
be such a prime ideal. Writing xi for the class of xi modulo Q, we get the system of
quadratic equations

xi

∑
1≤ j≤n

{i, j}∈E(G)

ai j x j . (3.3)

in the domain R/Q. The above system of Eqs. (3.3) together with the fact that R/Q is a
domain implies that there exist disjoint subsets I1 and I2 of V (G) (one of them might
be empty) whose union is V (G), and such that

xi = 0 for all i ∈ I1, (3.4)

and ∑
1≤ j≤n

{i, j}∈E(G)

ai j x j = 0. (3.5)

Let G1 be the subgraph of G obtained by removing from G all the vertices i ∈ I1

and all the edges adjacent to them, and then deleting the vertices which have become
isolated. If G1 is empty, it follows that I1 is a vertex cover for G. Assume now that
G1 is nonempty, and write V1 := V (G1). Note that V1 ⊂ I2. Injecting relations (3.4)
into (3.5), and eliminating the trivial equations produced in this way (corresponding
to vertices in I2\V1), we get that xV1

:= (xi | i ∈ V1) is in the kernel of A ↓G
G1

regarded
as an element of M|V1|(R/Q). However, A ↓G

G1
is an H ZC K matrix as an element of

M|V1|(k
|V1|), and from the structure of the kernel of any square matrix, it follows easily

that A ↓G
G1

is also a H ZC K matrix over any integral domain which is a k-algebra
(because kerP/Q(A ↓G

G1
) is simply obtained from kerk(A ↓G

G1
) by extending the scalars

to R/Q). Thus, by Proposition 2.4, we arrive at the conclusion that there exists a vertex
cover I3 of G1 such that xi = 0 for all i ∈ I3. Since I1 ∪ I3 is a vertex cover for G, we
conclude that we have just proved that the system of Eq. (3.3) in R/Q implies that there
exists a vertex cover I of G such that xi = 0 for all i ∈ I . Interpreting this in R, we
conclude that xi x j ∈ Q holds for all {i, j} ∈ E(G), and therefore I(G) ⊂ Q. Since
this is true for all prime ideals Q of R containing I, we get that rad(I) = rad(I(G)),
and since R is Noetherian we conclude that I(G)N ⊂ I.

We now pick an arbitrary edge {�, s} of G and conclude that there must exist a
relation of the form

(x�xs)N =
∑

1≤i≤n

fiψ(hi ) (3.6)

with fi := fi (x1, . . . , xn) ∈ R. We may assume that N ≥ 2. Note that if it were true
that all the polynomials fi appearing in (3.6) can be represented as polynomials in
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the monomials xi x j for {i, j} ∈ E(G), then we would immediately get that (x�xs)N ∈
ψ(P), which contradicts the fact that P does not contain any of the te for e ∈ E(G). We
also notice that since (x�xs)N is homogeneous of degree 2N and ψ(hi ) is homogeneous
of degree 2 for i = 1, . . . , n, it follows that we may assume that all the polynomials
fi appearing in (3.6) are homogeneous of degree 2N − 2 for all i = 1, . . . N .

From now on, we distinguish two cases according to the geometry of G. Note that
since G is connected and since every vertex of it is of degree ≥2, it follows that G
cannot be a tree, and as such it contains cycles.

Case 1. G contains an odd cycle.

Recall that a path in G is just a concatenation of edges e1 . . . et where eλ := {iλ, iλ+1} ∈
E(G) for all λ = 1, . . . , t . We call i1 the starting point and it+1 the final point of the
path, respectively. We say that t is the length of the path, and that the path is a circuit
if i1 = it+1.

Since G contains an odd cycle, it follows that for all i, j in V (G) (not necessarily
distinct) there exists an odd path from i to j . If this path is e1 . . . et with t odd, it is
then immediate that

xi x j =
t∏

λ=1

M (−1)λ−1

eλ
, (3.7)

where we write Me := xie x je for every e := {ie, je} ∈ E(G). Formula (3.7) shows
therefore that every degree two monomial xi x j is a ratio of products of edge monomials;
i.e., those degree two monomials which appear in the list of generators of I(G).
In particular, every monomial of even degree in R is also a ratio of products of
edge monomials, and since each one of the polynomials fi appearing in (3.6) is
homogeneous of even degree 2N − 2, we conclude that each one of the polynomials
fi is a linear combination of fractional monomials in the edge monomials. This shows
that there exists a positive integer M such that( ∏

{i, j}∈E(G)

xi x j

)M

· (x�xs)N =
n∑

i=1

( ∏
{i, j}∈E(G)

xi x j

)M

· fi · ψ(hi ),

and such that for each i = 1, . . . , n the expression

Fi =
( ∏

{i, j}∈E(G)

xi x j

)M

· fi

is a linear combination of monomials in the edge monomials xi x j for {i, j} ∈ E(G).
In particular, the relation( ∏

{i, j}∈E(G)

xi x j

)M

· (x�xs)N =
n∑

i=1

Fi · ψ(hi ) (3.8)
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is a relation in k[G] and shows that

( ∏
{i, j}∈E(G)

xi x j

)M

· (x�xs)N ∈ J . (3.9)

Thus, the prime ideal ψ(P) of k[G] contains the element appearing on the left hand
side of relation (3.9), and since ψ(P) is prime, it follows that there exist i and j
with {i, j} = e ∈ E(G) such that xi x j ∈ ψ(P). This implies that te ∈ P , which is the
desired contradiction.

Case 2. G does not contain an odd cycle.

In this case G is bipartite. Let I ∪ J = V (G) be a partition of the set of vertices of
G such that all edges of G are of the form {i, j} for some i ∈ I and j ∈ J . We shall
call a monomial M := ∏n

i=1 xαi
i ∈ R balanced if

∑
i∈I αi = ∑

j∈J α j ; i.e., if its total
I -degree equals its total J -degree. Note that the product of two balanced monomials is
a balanced monomial, while the product of a balanced monomial with an unbalanced
one is unbalanced. Relation (3.6) together with the fact that (x�xs)N is balanced when
{�, s} ∈ E(G), as well as with the fact that ψ(hi ) is balanced for all i = 1, . . . , N , show
that we may assume that all monomials which effectively appear in fi are balanced
of degree 2N − 2. In particular, every monomial which appears in anyone of the fi ’s
is of the form

∏N−1
λ=1 (xiλ x jλ ) where iλ ∈ I and jλ ∈ J for all λ = 1, . . . , N − 1.

We now note that for all i ∈ I and j in J there exists a path in G from i to j
which is necessarily odd. This shows that formula (3.7) holds in this case as well
whenever i ∈ I and j ∈ J . The same argument as the one employed in the previous
case now shows that containment (3.9) holds, and, in particular, that ψ(P) must indeed
contain xi x j for some {i, j} = e ∈ E(G). Thus, te must belong to P , which is again a
contradiction, and completes the proof of Case 2 and of Proposition 3.3.

Remark 3.4. A different proof for the case when G contains an odd cycle can be
achieved as follows. Assume that P is a prime ideal of S containing P(G) and hi for
i = 1, . . . , n, but te �∈ P for all e ∈ E(G). Then ψ(P) is a prime ideal of k[G] which is
disjoint from the multiplicative system U of k[G] generated by xi x j for {i, j} ∈ E(G).
Invert the elements of U to obtain that ψ(P) · U−1 is a prime ideal of k[G] · U−1 ⊂
R · U−1. Relation (3.7) for j = i shows that xi/1 ∈ R · U−1 is a quadratic integer
over k[G] · U−1. Since this is true for all i = 1, . . . , n, we conclude that the extension
k[G] · U−1 ⊂ R · U−1 is integral. The Going Up Theorem can therefore be applied
and leads to the conclusion that there exists a prime ideal Q′ of R · U−1 sitting above
ψ(P) · U−1. This prime ideal is certainly of the form Q · U−1 for some prime ideal
Q of R containing ψ(P) and disjoint from U . Since Q contains ψ(P), it follows that
Q ⊃ I. But we have just seen that this implies that Q contains I(G), and in particular
it contains all elements from U\{1}, which is a contradiction.

Unfortunately, we could not find an analogue of this shorter argument for the case
in which G does not contain an odd cycle.
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4. Nullspaces of zero symmetric and zero diagonal square matrices with
algebraically independent nonzero entries

This section is independent of the preceding ones.
Throughout this section, we let k to be any field, n ≥ 2 to be any positive integer,

and K ⊃ k to be a field extension of k of a sufficiently large transcendence degree
(say, at least n2).

Let An(K) be the subset of Mn(K) consisting of all n × n matrices A = (ai j )1≤i, j≤n

with entries in K which fulfill the following properties:

1. aii = 0 for all i = 1, . . . , n.
2. ai j = 0 if and only if a ji = 0.
3. For all i = 1, . . . , n there exists j so that ai j �= 0.
4. The nonzero entries ai j are algebraically independent over k.

Put V := Kn and for i = 1, . . . , n put Vi := {v = (v1, . . . , vn) ∈ V | vi = 0}. Our
main result in this section addresses the structure of Ker(A), when A ∈ An(K).

Proposition 4.1. If n ≥ 2 and A ∈ An(K), then Ker(A) ⊂ Vi for some i = 1, . . . , n.

To make the above statement more precise, let N be a binary relation on {1, 2, . . . , n}
which is symmetric, reflexive, and has the property that for all i there exists j such that
(i, j) �∈ N . Write An,N (K) for the set of all matrices A in Mn(K) such that ai j = 0
if (i, j) ∈ N , and such that the remaining n2 − |N | entries of A are algebraically
independent over k (in particular, nonzero as well). Then,

An(K) =
⋃
N

An,N (K),

where in the above equation N runs over all the binary relations on {1, 2, . . . , n} with
the properties specified above. Proposition 4.1 then says that for all such N there ex-
ists i such that if A ∈ An,N (K) and v is a nullvector of A, then its i th component is zero.

First Proof of Proposition 4.1: Let A ∈ An,N , and write G for the graph on the
set of vertices [n] := {1, 2, . . . , n} and whose edge set is the complement of N in
[n]2. We write AG for A. Note that, formally, AG is precisely the matrix whose rows
are the normal vectors to the forms hi for i = 1, . . . , n shown in (1.5), with the only
difference that the entries ai j for (i, j) ∈ E(G) are “generic”, that is, there is no non-
trivial algebraic relation on all of them. It is easy to see that G has no trivial components.

We proceed by induction on n. If n = 2, then both a12 and a21 are nonzero, so that AG

is invertible, and the assertion of Proposition 4.1 is obvious.

Assume that n ≥ 3. If G has a vertex of degree one, then, up to relabeling the vertices,
we may assume that this vertex is 1, and that it is incident only with 2. In this case, if v
is a nullvector of AG , then the first row of the matrix equation AG · vT = 0 is simply
the equation a12v2 = 0, which implies that v2 = 0 because a12 �= 0. From now on, we
assume that every vertex has degree at least two.
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Assume that G is not connected, and write G = G1 ∪ G2, where G1 and G2 are two
subgraphs of G having n1 and n2 vertices, respectively, where n1 + n2 = n, and such
that there is no edge from a vertex of G1 to a vertex of G2. Relabeling the vertices,
if necessary, we may assume that the first n1 vertices are in G1 and the remaining n2

vertices are in G2. Then AG is a block diagonal matrix having AG1
and AG2

on the
main diagonal and zeros in the remaining entries. Write v ∈ V as v = (v1, v2), where
v1 stands for the vector constructed with the first n1 components of v, and v2 stands for
the vector constructed with the last n2 components of v. Now whenever v ∈ Ker(A),
we get that v� ∈ Ker(AG�

) for � = 1, 2, and, by the induction hypothesis, we get that
v ∈ Vi holds for at least two values of i .

We now assume that G is connected, and we let �n(G) be the determinant of AG .
If �n(G) �= 0, then AG is invertible, and the assertion of Proposition 4.1 is obvi-
ous. Assume now that �n(G) = 0. Before we go on, we make a relevant comment.
Given any matrix A with entries in some field, the structure of the nullspace of A,
and, in particular, whether or not a certain component of an arbitrary vector from
the nullspace of A must vanish identically or not, depends on whether or not certain
sub-determinants of A vanish. From the way we have defined our matrices A ∈ An,N ,
any given sub-determinant of A that will vanish will do so only because of the lo-
cation of the zero entries inside this sub-determinant. In particular, the vanishing of
such sub-determinants is a property of G itself (or, equivalently, of N ), and does not
depend on any specialization of the entries ai j . Thus, whenever we say that a certain
sub-determinant vanishes, it simply means that it vanishes identically regarded as a
polynomial in its entries not belonging to N .

Let r be the largest positive integer so that G contains a subgraph Gr with �r (Gr ) �=
0. Relabeling the vertices, we may assume that the vertices of Gr are 1, . . . , r . Write
Ar for AGr , which is the r × r submatrix of A appearing in the upper left corner.
We note that r ≥ 3. Indeed, since every vertex of G has degree at least two and G
is connected, it follows that G has a cycle of length k ≥ 3. But if Ck is the cycle of
length k, then

ACk =

⎛⎜⎜⎜⎜⎝
0 a12 0 . . . 0 a1k

a21 0 a23 . . . 0 0
0 a32 0 . . . 0 0
. . . . . . . . . . . . . . . . . .

ak1 0 0 . . . akk−1 0

⎞⎟⎟⎟⎟⎠

and it is easily seen that �k(ACk ) �= 0. Thus, r ≥ 3.
Assume first that r = n − 1. Then the vertex n must be adjacent with some vertex

i ≤ r , and relabeling the first n − 1 vertices we may assume that n is adjacent to 1.
Let �1n be the (n − 1) × (n − 1) determinant obtained by replacing the first column
of An−1 by the column of the first n − 1 entries (counted from the top towards the
bottom) of the nth column. We claim that �1n = 0. Indeed, to see why this is so, note
that if we expand �n := �n(G) using the last row, we see that (−1)n+1an1�1n is a
sub-polynomial of �n . Thus, if �1n �= 0, we get that �n �= 0, which is a contradiction.
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Using this observation, let v ∈ Ker(AG), and write the system of equations

n∑
j=1

ai jv j = 0 for i = 1, . . . , n.

Disregard the last equation and rewrite the first n − 1 equations as

n−1∑
j=1

ai jvi = −ainvn for i = 1, . . . , n − 1. (4.1)

The coefficient matrix of the above system is An−1 whose determinant is �n−1 :=
�n−1(Gn−1) �= 0, and so we may solve this system using Cramer’s rule and get

v1 = − �1n

�n−1

· vn = 0,

which is the assertion of Proposition 4.1.
From now on, we assume that 3 ≤ r ≤ n − 2. Write �r := �r (Gr ). We first note

that if j > r , then j is adjacent only with vertices i ≤ r . Indeed, assume that this is not
so. Then up to relabeling the last n − r vertices, we may assume that r + 1 is adjacent
to r + 2. But then it is easy to see that the nonzero polynomial ar+1,r+2ar+2,r+1�r

is a sub-polynomial of the sub-determinant of A formed by the first r + 2 rows and
columns, which is precisely �r+2(Gr+2), where we write Gr+2 for the subgraph of G
spanned by the first r + 2 vertices and the edges between them. Thus, �r+2(Gr+2) �= 0,
which contradicts our definition of r . In particular, it follows that A is of the form

A :=
(

Ar B
C 0

)
, (4.2)

where B and C are matrices of type r × (n − r ) and (n − r ) × r , respectively, whose
nonzero entries encode the incidences of the vertices j > r with the vertices of Gr ,
and the 0 appearing in the right lower corner in (4.2) above is the (n − r ) × (n − r )
zero matrix. Let v ∈ Ker(A), and write v = (vr , vn−r ), where vr is the vector formed
with the first r components of v, and vn−r is the vector formed with the last n − r
components of v. Then, the fact that v ∈ Ker(A) is equivalent to the following system
of equations

Ar · vT
r = −B · vT

n−r and C · vT
r = 0. (4.3)

We take a look at the first equation above. For i ≤ r and j > r we write �i j for the
determinant of order r of the matrix obtained from Ar by replacing the i th column
of Ar by the ( j − r )th column of B. Since Ar is invertible, we may solve the first
Eq. (4.3), either formally to get

vT
r = −(

A−1
r B

) · vT
n−r , (4.4)
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or specifically, using Cramer’s rule, to get

vi = −
∑
j>r

�i j

�r
· v j for i = 1, . . . , r. (4.5)

Fix i ≤ r . The argument employed in the case r = n − 1 now shows that if j > r
and {i, j} ∈ E(G), then �i j = 0. Indeed, the argument there was that a ji�i j is a sub-
polynomial of �r+1(Gr+1), where Gr+1 is the subgraph of G spanned by Gr , the
vertex j , and the edges from j to the vertices of Gr , and by the definition of r the
polynomial �r+1(Gr+1) is identically zero, and therefore �i j = 0. Thus, if for some
i we have that �i j = 0 for all j > r (and, by what we have just said, this will happen
if, say, i is adjacent to all j > r ), we would then get, by (4.5), that vi = 0, which
is the assertion of Proposition 4.1. From now on, we assume that for all i ≤ r there
exists j > r , necessarily not adjacent to i , such that �i j �= 0. We now remark that it
is also the case that for all j > r there exists i ≤ r such that �i j �= 0. Indeed, let ci

be the i th column of Ar if i ≤ r , and the (i − r )th column of B if i > r . Since Ar is
non-degenerate, it follows that for all j > r there exist λi j with i = 1, . . . , r such that

c j =
r∑

i=1

λi j ci . (4.6)

Here, the coefficients λi j are just rational functions in the entries of the ci for i < r
and c j not in N of the ci for i ≤ r and c j . Now the condition �i j = 0 is equivalent to
the fact that λi j = 0 because the vectors ci for i ≤ r are linearly independent. Thus,
should �i j = 0 held for all i ≤ r , we would learn that c j = 0, which means that j is
an isolated vertex, which is a contradiction.

There is a lot more we can learn from relation (4.6). For example, we can learn that
the degree of every vertex j > r is ≤ �r/2�. Indeed, to see why, assume that it is not
so, and let j > r be a vertex of degree t > �r/2�. By relabeling the vertices of Gr , we
may assume that j is incident to 1, 2, . . . , t . The previous argument now shows that
λi j = 0 for i = 1, . . . , t , therefore relation (4.6) becomes

c j =
∑
i>t

λi j ci . (4.7)

We now see that the right hand side of (4.7) is a linear combination of r − t < t
fixed vectors ci . However, the vector c j contains t > r − t nonzero entries which
are algebraically independent over the entries of Ar , and this is impossible. Thus,
t ≤ �r/2�, and since t ≥ 2, it follows that in this case we even know that r ≥ 4.

We now compare (4.4) with (4.5) to infer that �i j/�r is the i j entry of A−1
r B.

Substituting now (4.4) into the second Eq. (4.3), we get(
C A−1

r B
) · vT

n−r = 0. (4.8)

Thus, vn−r is a null vector of D := C A−1
r B which is a square matrix of order n − r < n.

To complete the induction, we shall show that D ∈ An−r (K).
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To check conditions 1 and 3 from the definition of An−r (K), note that if j > r , then
the ( j − r )th row of D is obtained by taking the equation∑

i≤r
{i, j}∈E(G)

a jivi .

replacing each one of the vi ’s by the linear combination shown in (4.5), and then
grouping alike terms i.e., grouping all the terms which are multiples of vs for some s.
Thus, this row is the normal vector to

∑
s>r

( ∑
i≤r

{i, j}∈E(G)

�is

�r
a ji

)
vs .

Hence, the nonzero entries of D on row j − r are precisely the entries d js for which
there exists a “mixed” path ( j, i, s) of length two with i ≤ r , such that j is adjacent
to i and �is is nonzero. At least one such entry exists because j is adjacent to some
i ≤ r , and then for this i there exists s, necessarily not adjacent to i (and so this s
cannot be j), such that �is �= 0. This proves that every row of D contains a nonzero
entry, and that all the diagonal entries of D are zero.

To prove 2, note that

DT = (
C A−1

r B
)T = BT

(
A−1

r

)T
CT = BT

(
AT

r

)−1
CT . (4.9)

Let N1, N2, and N3 be the subsets of [n − r ] × [r ], [r ] × [r ], and[r ] × [n − r ], that
are induced by N , and which give the locations of the zero entries in C, Ar and
B, respectively. Note that these subsets are uniquely determined by N , and so they
are independent of the matrix A = AG ∈ An,N . Let N4 be the subset of [r ] × [r ]
which gives the locations of the zeros in A−1

r , whenever Ar ∈ Ar,N2
. Note that N4

also depends only on N . Finally, write CN1
(and BN3

, respectively) for the subsets of
all matrices in Mn−r,r (K) (and Mr,n−r (K), respectively) which have the property that
their entries in the positions rs for (r, s) ∈ N1 (and (r, s) ∈ N3, respectively) are zero,
and the remaining entries are algebraically independent over k. Finally, let N5 be the
set of zero entries of all the matrices of the type C ′ A′ B ′ for C ′ ∈ CN1

, A′ ∈ Ar,N4
,

B ′ ∈ BN3
which furthermore have the property that all nonzero entries of C ′, A′, B ′

are algebraically independent over k. It is clear that N5 depends only on N . Now the
point is that by (4.9) and the fact that N is symmetric, it follows that (AT

r )−1 is in
Ar,N4

(like A−1
r ), CT ∈ BN3

(like B), and BT ∈ CN1
(like C), and so both D and DT

have their zero entries located in precisely the same positions, which proves 2.
Finally, to prove 4, write D := C(A−1

r B). If we write it this way and perform
the multiplication, we recognize easily that if j > r , then every nonzero entry from
( j − r )th row of D is a polynomial which effectively depends on some variable a ji

with i ≤ r , and that the variables of the form a ji with i ≤ r did not effectively appear
in any of the previous rows of D. If we now write D = (C A−1)B, and perform the
multiplication, we note that if j > r , then every nonzero entry in the column j − r
of D involves a variable ai j for i ≤ r which did not effectively appear in any of the
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previous columns of D. But this is enough to justify that indeed all the nonzero entries
of D are algebraically independent over k, which proves 4. This completes the proof
of Proposition 4.1.

Remark 4.2. From the above proof, we saw that r ≥ 2 always, and that r ≥ 3 whenever
G is not a union of trees. One can ask if r can be very small. The answer is of course yes,
and here is a canonical example. Let G be a bipartite graph. Assume that the partition
of [n] is I ∪ J , where |I | ≤ |J |, and assume that the first |I | vertices are in I and the
remaining ones are in J . Then, AG is of the form ( 0 B

C 0
) where B and C are matrices

of types |I | × (n − |I |) and (n − |I |) × |I |, respectively, and the upper and lower
0’s stand for the zero square matrices of orders |I | × |I | and (n − |I |) × (n − |I |),
respectively. It is now very easy to see that the rank of such a matrix cannot exceed
2|I |, and, in particular, r ≤ 2|I |. For example, a “star” graph, i.e., the graph such that
1 is adjacent to all other vertices and there are no other edges, has I = {1} and r = 2,
while the graph whose set of edges is {{1, j}, {2, j} | j = 3, . . . , n} has I = {1, 2}
and r = 4.

The simpler proof of Proposition 4.1 below was communicated to us by Andreas
Dress. It is shorter than the first proof above, but we included that proof because of its
relationship to the polynomial PG which appears in Section 5.

Alternative Proof of Proposition 4.1: This proof is a combination of four steps.

1. For the purpose of this proof only, assume that G ′ is an oriented finite and bipartite
graph with vertex set V (G ′) = V1 ∪ V2 and edge set E(G ′) any subset of V1 × V2.
Then there exists, in view of the celebrated Marriage Theorem (see, for example,
[2]), an injective mapping p : V1 −→ V2 with (v, p(v)) ∈ E(G ′) for all v ∈ V1, if
and only if the set

NG ′ (U ) := {v ∈ V2 : (u, v) ∈ E(G ′) for some u ∈ U }

has cardinality at least |U | for all finite subsets U of V1.
2. Assume now that A = (au,v : u ∈ V1, v ∈ V2) is a |V1| × |V2| matrix with entries

in some field K such that the following three conditions are satisfied:

(i) au,v = 0 if and only if (u, v) �∈ E(G ′);
(ii) the nonzero entries of A form a family of elements in K which are algebraically

independent over the prime subfield k ⊂ K of K;
(iii) N (v) �= ∅ holds for all v ∈ V (G ′).

Assume further that there exists some nonempty finite subset U in V1 with |U | at
least as large as |N (U )| (for example, we may take U = V1 if |V1| = |V2| holds),
and let f : V2 −→ K be a map such that the sum

A f (u) :=
∑
v∈V2

au,v f (v)

vanishes for all u ∈ V1. We then claim that f (v) = 0 must hold for some v ∈ V2.
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3. Indeed, to prove of the above claim, we choose the smallest such subset U of V1,
and we then see that the rank of the matrix

A(U, N (U )) := (au,v : u ∈ U, v ∈ N (U ))

must not only be smaller than or equal to min(|N (U )|, |U |) = |N (U )|, but it also
cannot be smaller than |U |, because, by 1 above, there must exist, for any subset W
of U , an injective map p′ from W into the subset N (W ) of N (U ) with (w, p′(w)) ∈
E(G ′) for all w ∈ W , which, via condition (ii) from 2 above, implies that the
determinant of the sub-matrix A(W, p′(W )) does not vanish. Thus, we get the
chain of inequalities

|U | ≤ rank(A(U, N (U ))) ≤ |N (U )| ≤ |U |,

and hence, |U | = rank(A(U, N (U ))) = |N (U )|. In particular, the determinant of
the square matrix A(U, N (U )) cannot vanish, implying that f (u) = 0 must hold
for all u ∈ U .

4. One may now start with an arbitrary finite simple graph G with vertex set V (G) and
edge set E(G), and with a matrix A ∈ An(K), and apply the formalism illustrated
in 1–3 above to the bipartite graph G ′ whose vertex set is V (G) × {1, 2}, edge set is
{{{u, 1}, {v, 1}} : {u, v} ∈ E(G)}, matrix A, and function f : V (G) × {2} −→ K
given by f ({i, 2}) = vi , where v = (v1, . . . , vn) is a fixed vector in Ker(A), to get
the conclusion of Proposition 4.1.

5. A universal polynomial detecting ZC K associated to the matrix of a
graph

The only result of this section is the following:

Proposition 5.1. Let G be a simple graph with n vertices labeled 1, 2, . . . , n which
has no trivial components. Let m be the number of edges of G. Let AG be the matrix
whose rows are the normal vectors of the form hi shown in (1.5), where ai j are
integers for {i, j} ∈ E(G). Then, there exists a nonzero homogeneous polynomial PG

in 2m variables with integer coefficients and degree <2n such that whenever a :=
(ai j ){i, j}∈E(G) ∈ Z2m is not a zero of PG, then every nullvector v := (v1, . . . , vn) ∈ Qn

of AG has the property that vi = 0 holds for some i ≤ n.

Proof of Proposition 5.1: Except for the statement about the degree of PG , the assertion
of Proposition 5.1 can be read off from the proof of Proposition 4.1.

We proceed to construct PG by induction on n. If n = 2, we may simply take
PG := �2(G) = −a12a21, and now if v ∈ Q2 is a nullvector of AG , then v1 = v2 = 0
whenever PG(a) �= 0. The degree of PG is 2 < 22.

Assume that n ≥ 3. If there exists a vertex i of G of degree 1, we may relabel the
vertices of G, and assume that this vertex is 1, and that it is adjacent only to 2. We may
then take again PG := −a12a21, which is of degree 2 < 2n , and then every nullvector
v ∈ Qn of AG has v2 = 0 provided that PG(a) �= 0.
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Assume now that every vertex of G has degree at least two. If G is not connected,
let G1 be a connected component of G with n1 < n vertices. We may assume that the
vertices of G1 are 1, 2, . . . , n1. It is then clear that we can choose PG := PG1

, which,
by induction, has degree <2n1 < 2n , and then every nullvector v ∈ Qn of AG will have
the property that vi = 0 for some i ≤ n1.

Assume now that G is connected. If either �n is not zero, or �n is zero but �n−1

is nonzero, where these polynomials were defined in the proof of Proposition 4.1,
then we can take PG := �n , or PG := �n−1, respectively, which are polynomials of
degree ≤ n < 2n , and the argument from the proof of Proposition 4.1 shows that every
nullvector v ∈ Qn of AG has vi = 0 for some i .

Assume now that �n = �n−1 = 0, and let r ≤ n − 2 be the number defined in the
proof of Proposition 4.1. Recall that r ≥ 3. The argument from the proof of Proposition
4.1 now shows that we may either take PG := �r , or we may take PG to be the
numerator of a rational function of the form

�r · PG ′ ( f1, . . . , f2m ′ ), (5.1)

where G ′ is the graph on a set of n − r vertices and m ′ < m edges whose adjacencies are
encoded in the nonzero “generic” entries of the matrix D from the proof of Proposition
4.1, and where f1, f2, . . . , f2m ′ are just the rational functions (versus ai j for {i, j} ∈
E(G)) which appear in the nonzero entries of D. All such rational functions f� for
� = 1, 2, . . . , 2m ′ are of the type P�/�r , where P� is a homogeneous polynomial of
degree exactly r + 1 and, in fact, every such f� is a sum of rational functions of the
form a ji · �is

�r
for j > r, i ≤ r, and s > r . Since PG ′ is homogeneous, we may discard

the common denominator �r of all the f�’s, and infer that

deg(PG) ≤ deg(�r ) + (r + 1)deg(PG ′ ) < r + (r + 1)2n−r < (2r + 1)2n−r < 2n,

where the last inequality holds because it is equivalent to 2r + 1 < 2r , which is indeed
fulfilled whenever r ≥ 3. Proposition 5.1 is therefore proved.

6. Proof of Theorem 1.2

This is almost immediate. Let G be a graph with n vertices and m edges. Let A := AG

be a matrix associated to G in such a way that the i th row of A is the normal vector
to hi for i = 1, . . . , n, where the forms h1, . . . , hn are the ones appearing in (1.5).
Assume that ai j ∈ Z∗ and write a := (ai j | {i, j} ∈ E(G)) ∈ Z2m .

Let H be any nonempty subgraph of G without isolated vertices. Write nH :=
|V (H )| and m H := |E(H )|. Proposition 5.1 shows that there exists a nonzero
polynomial PH ∈ Z2m H of degree < 2nH ≤ 2n such that if a ↓G

H := (ai j | (i, j) ∈
E(H )) ∈ Z2m H is such that PH (a ↓G

H ) �= 0, then A ↓G
H is ZC K . Let

RG :=
∏

H⊆G

PH ∈ Z[Xi j | {i, j} ∈ E(G)], (6.1)
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where in the above product H runs over all the nonempty subgraphs of G with-
out isolated vertices. We conclude that if a ∈ Z2m is such that RG(a) �= 0, then A
is H ZC K . Note that at this point we no longer need to impose the restriction that
ai j ∈ Z∗, because for any e := {i, j} ∈ E(G) both indeterminates Xi j and X ji are
factors of RG . Indeed, this follows by noting that when H is the subgraph with
V (H ) := {i, j} and E(H ) := {e}, then PH ∈ Z[Xi j , X ji ] is precisely�2(H ) = −Xi j ·
X ji .

Since G cannot possibly contain more than 2m subgraphs H (note that 2m is the
cardinality of the power set of E(G)), it follows that the degree of RG is smaller than
2n+m . We now recall without proof the following elementary fact.

Lemma 6.1. Let M be a positive integer, and let R be a nonzero polynomial with
integer coefficients in t ≥ 1 variables X1, . . . , Xt of total degree <M. Then, there
exists x := (x1, . . . , xt ) ∈ Zt with 1 ≤ xi ≤ M for all i = 1, . . . , t such that P(x) �= 0.

Returning to our proof of Theorem 1.2, we conclude that there exists a vector a ∈ Z2m ,
such that 1 ≤ ai j ≤ 2n+m for all {i, j} ∈ E(G), and such that RG(a) �= 0. For such a
value of a, the matrix A is H ZC K , and by Proposition 3.3 we conclude that h1, . . . , hn

fulfill the conditions of Question 1.1. This completes the proof of Theorem 1.2.

7. Comments, remarks and the case of finite characteristic

1. In [1], Alcántar lets G := Kn be the complete graph on n-vertices, and shows that
if one takes ai j := 1 for all i �= j , then the forms hi given by (1.5) do provide a
standard Noether normalization of k[G], provided that k is either of characteristic
zero, or of positive characteristic >n − 1. His proof of this result uses the precise
description of P(G) for such a graph G which he inferred from [3] and [6]. Here,
we give an elementary proof of Alcántar’s result, assuming, of course, that k[G]
has dimension n. With our formalism and Alcántar’s choice of coefficients, we
have

AG := An :=

⎛⎜⎜⎜⎝
0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1

. . . . . . . . . . . .

1 1 1 . . . 0

⎞⎟⎟⎟⎠ (7.1)

and the determinant of An is n − 1, a fact which can be easily shown either by
induction, or simply by using a classical formula for the determinant of a circulant
matrix. Thus, if k is any field of characteristic zero, or of positive characteris-
tic >n − 1, then An is non-degenerate, and therefore any solution v ∈ kn of the
system of Eq. (3.3) (with xi := vi for i = 1, . . . , n) must have vi = 0 for some
i . Eliminating the vertex i and the edges adjacent to it, we get G\{i} = Kn−1,
and AG\{i} = An−1. Thus, we may continue by successively eliminating vertices
to obtain smaller complete graphs, and conclude that if k is of characteristic zero,
or of positive characteristic >n − 1, then any solution v ∈ kn of the system of
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Eq. (3.3) has n − 1 of its components equal to zero. The argument from the
proof of Proposition 3.3 now shows that if P is a prime ideal in S containing
P(G) and hi for all i = 1, . . . , n, then there must exist an edge e ∈ E(G) such
that te ∈ P . Assume that e := {1, 2}. If all the edge indeterminates adjacent to
1 belong to P , then we may eliminate vertex 1 and all the edges adjacent to it
and reduce the problem to the complete graph Kn−1 with n − 1 vertices. Let us
assume now that there exists an edge adjacent to 1, say e′ := {1, 3}, such that
te′ �∈ P . It follows that n ≥ 4 because if not then h1 = te + te′ ∈ P , and te ∈ P ,
and therefore te′ ∈ P as well. The element tet{3,i} − te′ t{2,i} obviously belongs to
P(G) for all i ≥ 4, and since te ∈ P and te′ �∈ P , it follows that t{2,i} ∈ P for
all i ≥ 4. Since te = t{2,i} ∈ P and h2 = ∑

i �=2 t{2,i} ∈ P , we conclude that all the
edge indeterminates of edges adjacent to 2 belong to P . Thus, we may elimi-
nate vertex 2 and all the edges adjacent to it and reduce the problem to a smaller
complete graph Kn−1 with n − 1 vertices. The result follows now by induction on
n.

2. One can ask whether or not the matrix shown in (7.1) is H ZC K . The an-
swer is no. Indeed, if the matrix shown in (7.1) were H ZC K for all n ≥ 2,
it would then follow that if G is any finite graph without isolated vertices,
then the matrix AG associated to the forms hi for i = 1, . . . , n, appearing in
(1.5) with the choice of coefficients ai j = 1 for all {i, j} ∈ E(G) would also
be HC Z K (because any graph G is a subgraph of Kn with n = V (G)), and,
in particular, by Proposition 3.3, the forms h1, . . . , hn will fulfill the conditions
from Question 1.1. However, Alcántar’s Example 4.3 from [1] shows that this
is not the case for a certain graph G with n := |V (G)| = 5 and m := |E(G)|
= 8.

3. While the matrix shown in (7.1) is not H ZC K , Theorem 1.2 proves that there
exists an HC Z K matrix associated to the complete graph Kn whose entries are
positive integers ≤ 2n(n+1)/2. Detecting such a matrix for a given n, or a parametric
family of such matrices depending on n, could be of interest since such a matrix
will provide universal standard Noether normalizations for all graphs with at most
n vertices, simply by considering the matrices the AKn ↓Kn

G for all such graphs G.
4. We also note that since our arguments show that a := (ai j | {i, j} ∈ E(G)) ∈ Z2m

has the property that the forms shown in (1.5) fulfill the condition from Question
1.1 whenever RG(a) �= 0, and since algebraic sets are “thin”, we conclude that,
in practice, when searching for such a vector a, one may simply pick vector a
at random, and the chances of this random vector to produce a standard Noether
normalization for G are as good as any.

5. One might also ask whether our theorem is optimal with respect to sparseness.
That is, does there exist a graph subring S such that the Noether normalization
constructed in Theorem 1.2 is the one with the least number of nonzero coefficients?
We did not try to answer this question.

Using the observation from 2 above regarding the existence of a standard Noether
normalization of the complete graph over a field of positive characteristic which is
sufficiently large, we finally provide the proof of Theorem 1.2 in the case when k is
of finite characteristic. The precise result is the following.
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Proposition 7.1. The conclusion of Theorem 1.2 holds over any field k of positive
characteristic p > 22nn3

.

Proof of Proposition 7.1. It suffices to assume that n > 2, otherwise Proposition 7.1
holds over any field anyway (for n = 2 simply take a12 = a21 = 1 in (1.5)).

A careful analysis of the arguments used in the proofs of Propositions 4.1 and 5.1
shows that PG is a homogeneous polynomial of degree dG = deg(PG) < 2n in 2m
variables, and that moreover every monomial of total degree dG in the 2m variables
appears in the representation of PG with coefficient 0 or ±1, and, of course, at least
one of them appears with a nonzero coefficient because PG is not constant zero. This
shows that PG is not constant zero over any field. It also shows that the inequality
|PG(a)| ≤ h(dG, 2m)||a||dG holds for all a ∈ Z2m , where we use ||a|| := max{|ai j | :
| {i, j} ∈ E(G)}, and h(dG, 2m) stands for the number of all the monomials of total
degree dG in 2m variables. Obviously,

h(dG, 2m)<

(
dG + 2m

2m

)
<(dG + 2m)2m < (2n + n(n−1))n(n−1) ≤ (2n+1)n(n−1)<2n3

,

where in the above inequality we used the fact that the inequality 2n ≥ n(n − 1)
holds for all n ≥ 2. Thus, |PG(a)| ≤ 2n3 ||a||2n

holds for all a ∈ Z2m . In particular, the
polynomial RG given by (6.1) is not the zero polynomial over any field, and whenever
a ∈ Z2m is such that R(a) �= 0, then |R(a)| is a product of positive integers none of
which exceeds 2n3 ||a||2n

. Since by Theorem 1.2, a choice of a ∈ Z2m with ||a|| ≤ 2n+m

exists such that RG(a) �= 0, we conclude that for such an integer vector a, the integer
|RG(a)| is a product of positive integers none of which exceeds

2n3

(2n+m)2n ≤ 2n3+(n+n(n−1)/2)·2n ≤ 2n2·2n
, (6.2)

where in the above inequality (7.2) we used the fact that the inequality

2n · n2 > n3 + 2n ·
(

n + n(n − 1)

2

)
≥ n3 + 2n(n + m)

holds for all n ≥ 3. Thus, if k is any field of positive characteristic larger than 22nn3

,
then RG(a) is nonzero in k, which completes the proof of Proposition 7.1. �
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