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Abstract We study a class of algebras associated with linear spaces and its relations

with polymatroids and integral posets, i.e. posets supporting homogeneous ASL. We

prove that the base ring of a transversal polymatroid is Koszul and describe a new

class of integral posets. As a corollary we obtain that every Veronese subring of a

polynomial ring is an ASL.
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1. Introduction

Let K be an infinite field and R = K [x1, . . . , xn] be a polynomial ring over K . Let

V = V1, . . . , Vm be a collection of vector spaces of linear forms. Denote by A(V ) the

K -subalgebra of R generated by the elements of the product V1 . . . Vm . Our goal is to

investigate the properties of the algebra A(V ) and its relationship with conjectures and

questions of White, Herzog and Hibi on polymatroids and with the study of integral

posets.

1.1. Polymatroids

A finite subset B of Nn is a base set of a discrete polymatroid P if for every v =
(v1, . . . , vn), w = (w1, . . . , wn) ∈ B one has v1 + · · · + vn = w1 + · · · + wn and for

all i such that vi > wi there exists a j with v j < w j and v + e j − ei ∈ B. Here ek

denotes the k-th vector of the standard basis of Nn . The notion of discrete polymatroid

is a generalization of the classical notion of matroid, see [9, 11, 18, 25]. Associated
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e-mail: conca@dima.unige.it

Springer



26 J Algebr Comb (2007) 25:25–41

with the base B of a discrete polymatroid P one has a K -algebra K [B], called the base

ring of P , defined to be the K -subalgebra of R generated by the monomials xv with

v ∈ B. The algebra K [B] is known to be normal and hence Cohen-Macaulay [11].

White predicted in [26] the shape of the defining equations of K [B] as a quotient of

a polynomial ring: they should be the quadrics arising from the so-called symmetric

exchange relations of the polymatroids. Herzog and Hibi [11] did not “escape from

the temptation” to ask whether K [B] is defined by a Gröbner basis of quadrics and

whether K [B] is a Koszul algebra. These two questions are closely related to White’s

conjecture. This is because for any standard graded algebra A with defining ideal I ,

the existence of a Gröbner basis of quadrics for I implies the Koszul property of A
which implies that I is defined by quadrics.

If C1, . . . , Cm are non-empty subsets of {1, . . . , n} then the set of vectors
∑m

k=1 e jk
with jk ∈ Ck is the base of a polymatroid. Polymatroids of this kind are called transver-

sal. Therefore the base rings of transversal polymatroids are exactly the rings of type

A(V ) where the spaces Vi are generated by variables. For transversal polymatroids

we prove that the base ring K [B] is Koszul and describe the defining equations, see

Section 3. Indeed, K [B] is defined as a quotient of a Segre product T ∗ of polynomial

rings by a Gröbner basis of linear binomial forms of T ∗.

1.2. ASL and integral posets

Algebras with straightening laws (ASL for short) on posets were introduced by De

Concini, Eisenbud and Procesi [7, 10], see also [4]. The abstract definition of an ASL

was inspired by earlier work of Hochster, Hodge, Laksov, Musili, Rota, and Seshadri

among others. It was motivated by the existence of many families of classical algebras,

such as coordinate rings of Grassmannians and their Schubert subvarieties and various

kinds of determinantal rings, which could be treated within that framework. We recall

in 5.4 the definition of homogeneous ASL and in 5.5 a well-known characterization

of them in terms of revlex Gröbner bases.

A finite poset H is integral (with respect to a field K ) if there exists a homogeneous

ASL domain supported on H . A beautiful result, due to Hibi [14], says that any

distributive lattice L is integral. Indeed, L supports a homogeneous ASL domain,

denoted by HL , in a very natural way. The ring HL is called the Hibi ring of L and its

defining equations are the so-called Hibi relations: xy − (x ∧ y)(x ∨ y). In a series

of papers [15–17, 22, 23] Hibi and Watanabe classified various families of integral

posets of low dimension. In this direction, we construct a new class of integral posets:

the rank truncations of hypercubes. In details, given a sequence of positive integers

d = d1, . . . , dm, let H (d) = �m
i=1{1, . . . , di } and, for n ∈ N, Hn(d) = {α ∈ H (d) :

rk α < n}. We show that Hn(d) is an integral poset (over every infinite field K ). This is

done by proving that A(V ) is a homogeneous ASL on Hn(d) if the Vi are generic linear

spaces of dimension di of R, see Section 5. In particular, our construction shows that the

Veronese subrings of polynomials rings are homogeneous ASL (obviously domains).

Note however that they are not, in general, ASL with respect to their semigroup

presentation.

Results from [6] show that for any collection V = V1, . . . , Vm the algebra A(V ) is

normal. As said above, in the monomial case, i.e. when Vi are generated by variables,

we show that A(V ) is Koszul and describe its defining equations. Our argument for
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the monomial case is based on a certain elimination process and on a result, Theo-

rem 3.1, proved independently by Sturmfels and Villarreal, describing the universal

Gröbner basis of the ideal of 2-minors of a matrix of variables. This approach sug-

gests also a possible strategy for proving that A(V ) is Koszul in the general case.

The elimination process is still available and what one needs is a replacement of the

Sturmfels-Villarreal’s theorem. This boils down to the following:

Conjecture 1.1. Let ti j be distinct variables over a field K with 1 ≤ i ≤ m and 1 ≤
j ≤ n. Let L = (Li j ) be an m × n matrix with Li j = ∑n

k=1 ai jk tik and ai jk ∈ K for

all i, j, k. Denote by I2(L) the ideal of the 2-minors of L . We conjecture that for

every choice of ai jk’s, and for every term order < on K [ti j ] the initial ideal in<(I2(L))

is square-free in the Zm-graded sense, i.e. it is generated by elements of the form

ti1 j1 . . . tik jk with i1 < i2 < · · · < ik .

This conjecture can be rephrased in terms of universal comprehensive Gröbner bases

[24]: the parametric ideal I2(L) (the parameters being the ai jk’s) has a comprehensive

and universal Gröbner basis whose elements are multihomogeneous of degree bounded

by (1, 1, . . . , 1).

If L = (ti j ) then 1.1 holds; this is a consequence of Theorem 3.1. We prove in

Theorem 5.1 that Conjecture 1.1 holds when ai jk are generic. As a consequence,

we are able to show that for generic spaces Vi algebra A(V ) is Cohen-Macaulay and

Koszul, and describe the defining equations of A(V ). In particular, as mentioned above,

in the generic case A(V ) turns out to be a homogeneous ASL on the poset Hn(d) where

d = d1, . . . , dm and di = dim Vi .

We thank C. Krattenthaler who provided a combinatorial argument for a statement

which was used in an earlier version of the proof of Theorem 5.1. The results presented

in this paper have been inspired, suggested and confirmed by computations performed

by computer algebra system CoCoA [5].

2. Normality of A(V)

Let Ii be the ideal of R generated by Vi . In [6] it is proved that the product ideal

I1 . . . Im has always a linear resolution. One of the main steps in proving that result is

the following [6, 3.2]:

Proposition 2.1. For any subset A ⊆ {1, . . . , m} set IA = ∑
i∈A Ii and denote by #A

the cardinality of A. Then

I1 . . . Im = ∩I #A
A

is a primary decomposition of I . Here the intersection is extended to all A 
= ∅.

Proposition 2.1 easily implies:

Theorem 2.2. A(V ) is normal.
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Proof: Set J = I1 . . . Im . Note that IA is a prime ideal generated by linear forms.

Hence the powers of IA are integrally closed. It follows that J is integrally closed. Since

the powers of J are again products of ideals of linear forms, the same argument applies

also to the powers of J . Hence we conclude that J is normal (i.e. all powers of J are

integrally closed). This is equivalent to the fact that the Rees algebra R(J ) = ⊕k∈N J k

is normal. Now A(V ), being a direct summand of R(J ), is normal as well. �

3. The monomial case

We now analyze the monomial case. Our goal is to show that A(V ) is Koszul if

each Vi is monomial and to develop a strategy to attack the general case. So in this

section we assume that each Vi is generated by a subset of the variables {x1, . . . , xn}.
Say Vi = 〈x j : j ∈ Ci 〉 where Ci is a non-empty subset of {1, . . . , n}. Consider the

auxiliary algebra

B(V ) = K [V1 y1, . . . , Vm ym] = K [yi x j : i ∈ 1, . . . , m, and j ∈ Ci ]

where y1, . . . , ym are new variables. The algebra B(V ) sits inside the Segre product

S = K [yi x j : 1 ≤ i ≤ m, 1 ≤ j ≤ n].

We consider variables ti j with i = 1, . . . , m and j = 1, . . . , n, and define

T = K [ti j : 1 ≤ i ≤ m, 1 ≤ j ≤ n] and T (V ) = K [ti j : 1 ≤ i ≤ m, j ∈ Ci ]

and the presentations:

φ : T → S and φ′ : T (V ) → B(V )

are defined by sending ti j to yi x j .

It is well-known that Ker φ is the ideal I2(t) of 2-minors of the m × n matrix t =
(ti j ). Then the algebra B(V ) is defined as a quotient of T (V ) by the ideal I2(t) ∩ T (V ).

The algebras B(V ), T (V ), S and T can be given a Zm-graded structure by setting the

degree of yi x j and ti j to be ei ∈ Zm .

By work of Sturmfels [20, 4.11 and 8.11] and Villarreal [21, 8.1.10 ] one knows

that a universal Gröbner basis of I2(t) is given by the cycles of the complete bipartite

graph Kn,m . In details, a cycle of the complete bipartite graph is described by a pair

(I, J ) of sequences of integers, say

I = i1, . . . , is, J = j1, . . . , js

with 2 ≤ s ≤ min(n, m), 1 ≤ ik ≤ m, 1 ≤ jk ≤ n, and such that the ik are distinct and

the jk are distinct. Associated with any such a pair we have polynomial

f I,J = ti1 j1 . . . tis js − ti2 j1 . . . tis js−1
ti1 js

which is in I2(t).
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Theorem 3.1 (Sturmfels-Villarreal). The set of the polynomials f I,J where (I, J ) is
a cycle of Kn,m forms a universal Gröbner basis of I2(t).

In particular we have:

Corollary 3.2. The polynomials f I,J involving only variables of T (V ) form a univer-
sal Gröbner basis of I2(t) ∩ T (V ).

Important for us is the following:

Corollary 3.3. The ideal I2(t) ∩ T (V ) has a universal Gröbner basis whose elements
have Zm-degree bounded above by (1, 1, . . . , 1) ∈ Zm.

For a Zm-graded algebra E we denote by E� the direct sum of the graded compo-

nents of E of degree (v, v, . . . , v) ∈ Zm as v varies in Z. Similarly, for a Zm-graded

E-module M we denote by M� the direct sum of the graded components of M of

degree (v, v, . . . , v) ∈ Zm as v varies in Z. Clearly E� is a Z-graded algebra and M�

is a Z-graded E�-module. Furthermore −� is exact as a functor on the category of

Zm-graded E-modules with maps of degree 0.

Now B(V )� is the K -algebra generated by the elements in y1V1 . . . ym Vm .

Therefore A(V ) is (isomorphic to) the algebra B(V )�.

Hence we obtain a presentation

0 → Q → T ∗ → A(V ) → 0

where Q = (I2(t) ∩ T (V ))� and T ∗ = T (V )� is the K -algebra generated by the

monomials t1 j1 . . . tmjm with jk ∈ Ck , that is, T ∗ is the Segre product of the polynomial

rings

Ti = K [ti j : j ∈ Ci ].

From Corollary 3.3 we get:

Corollary 3.4. The ideal Q is generated by elements of degree (1, 1, . . . , 1) which
form a Gröbner basis with respect to any term order on the variables ti j .

Proof: Let g ∈ Q be a homogeneous element of degree, say, (a, a, . . . , a). Then there

exists h ∈ I2(t) ∩ T (V ) of multidegree ≤ (1, 1, . . . , 1) such that in(h)| in(g). Then

there exists a monomial v of multidegree (1, 1, . . . , 1) − deg h such that in(h)v| in(g).

It follows that hv ∈ Q has degree (1, 1, . . . , 1) and its initial term divides in(g). �

In 3.4 (and later on) we consider Gröbner bases and initial ideals of ideals in K -

subalgebras of polynomial rings. For the details on this “relative” Gröbner basis theory

the reader can consult, for instance, [2, Section 3] or [20, Chapter 11]. We may now

conclude:
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Theorem 3.5. If Vi are generated by variables then A(V ) is a Koszul algebra. More-
over A(V ) is the quotient of the Segre product T ∗ by an ideal generated by linear
(binomial) forms which are a Gröbner basis.

Proof: From 3.4 we know that the initial ideal in(Q) (with respect to any term order) is

an ideal of T ∗ generated by a subset of the monomials generating T ∗ as a K -algebra.

By work of Herzog, Hibi and Restuccia [12, 2.3] we know that Segre products of

polynomial rings are strongly Koszul semigroup rings. Strongly Koszul semigroup

rings remain strongly Koszul after moding out by semigroup generators [12, 2.1]. So

T∗/in(Q) is strongly Koszul and in particular Koszul. But then the standard deformation

argument shows that T ∗/Q is Koszul, see [2, 3.16] for details. Therefore we can

conclude that A(V ) is a Koszul algebra. �

Remark 3.6. In the proof above we have shown that a Segre product of polynomial

rings modulo a certain ideal of linear forms is Koszul. One might ask whether the

linear sections of the Segre product of polynomial rings are always Koszul. It is not

the case. The ideal of 2-minors of the matrix(
0 x y z

x y 0 t

)

defines an algebra which is a linear section of the Segre product of polynomial rings

of dimension 2 and 4 and it is not Koszul. This is the algebra number 69 in Roos’ list

[19], a well-known gold-mine of examples.

Keeping track of the various steps of the construction above one can describe the

defining equations of A(V ). In details, we set C = C1 × C2 × · · · × Cm . Consider

variables sα with α ∈ C and the polynomial ring K [C] = K [sα : α ∈ C]. Then we get

presentations of the Segre product T ∗ and of A(V ) as quotients of K [C] by sending

s( j1,..., jm ) to t1 j1 . . . tmjm and to x j1 . . . x jm respectively.

The ring T ∗ is the Hibi ring of the distributive lattice C so it is defined by the Hibi

relations, namely

sαsβ − sα∨βsα∧β

where

α ∨ β = (max(α1, β1), . . . , max(αm, βm))

and

α ∧ β = (min(α1, β1), . . . , min(αm, βm)).

We have:
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Proposition 3.7. The defining ideal of A(V ) as the quotient of the polynomial ring
K [C] is generated by the Hibi relations sαsβ − sα∨βsα∧β and by the relations

sα − sβ

where α, β ∈ C and one is obtained from the other by the other with a non-trivial
permutation.

For instance:

Example 3.8. Let n = 3 and V1 = 〈x2, x3〉, V2 = 〈x1, x3〉, V3 = 〈x1, x2〉. Then B(V )

is the quotient of K [t12, t13, t21, t23, t31, t32] by the polynomial t12t23t31 − t13t21t32 and

then A(V ) is the quotient of K [si jk : (i, j, k) ∈ {2, 3} × {1, 3} × {1, 2}] by the Hibi-

relations

s312s331 − s311s332, s212s311 − s211s312,

s212s231 − s211s232, s212s331 − s211s332,

s231s311 − s211s331, s231s312 − s211s332,

s232s311 − s211s332, s232s312 − s212s332,

s232s331 − s231s332

and by the linear relation

s231 − s312

Remark 3.9. It is not clear whether the defining ideal of A(V ) as the quotient of K [C]

has a Gröbner basis of quadrics. The Hibi relations form a Gröbner basis with respect

to any revlex linear extension of the partial order on C . There are examples where the

Hibi relations together with the linear relations defining A(V ) are not a Gröbner basis

with respect to such revlex linear extensions.

Remark 3.10. In the following special case it turns out that both B(V ) and A(V )

are defined by Gröbner bases of quadrics as quotients of polynomial rings. For a

nested chain of vector spaces of linear forms V1 ⊇ V2 ⊇ · · · ⊇ Vm , we can fix a basis

x1, x2, . . . , xn of R1 such that Vi is generated by x1, . . . , xdi . Here d1 ≥ d2 ≥ · · · ≥ dm .

It follows that B(V ) corresponds to a one-sided ladder determinantal ring, the ladder

being the set of points (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ di . Furthermore, A(V )

coincides with the algebra associated with the principal Borel subset generated by the

monomial �i xdi . A Gröbner basis of quadrics for B(V ) is described in [13] and a

Gröbner basis of quadrics for A(V ) is described in [8].

In general, however, the algebra B(V ) is not defined by quadrics as Example 3.8

shows. White’s conjecture [26] predicts the structure of the defining equations of the

base ring of a (poly)matroid: they should be quadrics representing the basic symmetric
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exchange relations of the polymatroid. Our result above Proposition 3.7 does not prove

White’s conjecture in this precise form.

4. Conjectures

The constructions and arguments of the previous section suggest a general strategy to

investigate the Koszul property of A(V ) for general (i.e. non-monomial) Vi . We outline

in this section the strategy which leads us to Conjecture 1.1. Let V = V1, . . . , Vm be

a collection of subspaces of R1 and let y1, . . . , ym be new variables. Set di = dim Vi ,

and set

S = K [yi x j : i = 1, . . . , m, j = 1, . . . , n]

B(V ) = K [y1V1, . . . , ym Vm].

and

T = K [ti j : i = 1, . . . , m, j = 1, . . . , n].

Again B(V ) is a K -subalgebra of S. We give degree ei ∈ Zm to yi x j and to ti j so

that S, T and B(V ) are Zm-graded. We present S as a quotient of T by sending ti j

to yi x j . The kernel of such presentation is the ideal I2(t) generated by the 2-minors

of the m × n matrix t = (ti j ). As we have seen in the previous section A(V ) is the

diagonal algebra B(V )�.

We want to get the presentations of B(V ) and A(V ) by elimination from that of S.

To that end we do the following: Let fi j , j = 1, . . . , di , be a basis of Vi and complete it

to a basis of R1 with elements fi j , j = di + 1, . . . , n. Denote by fi the row vector ( fi j )

and by x the row vector of the xi ’s. Let Ai be the n × n matrix with entries in K with

x = fi Ai . Then S = K [yi fi j : i = 1, . . . , m, j = 1, . . . , n] and B(V ) = K [yi fi j :

i = 1, . . . , m, j = 1, . . . , di ]. Set T (V ) = K [ti j : 1 ≤ i ≤ m, 1 ≤ j ≤ di ]. We have

presentations:

φ : T → S with ti j → yi fi j for all i, j

φ′ : T (V ) → B(V ) with ti j → yi fi j for all i and 1 ≤ j ≤ di

By construction, the kernel of φ is the ideal of 2-minors I2(L) of the matrix L =
(Li j ) where the row vector (Li j : j = 1, . . . , n) is given by (ti1, . . . , tin)Ai . Clearly,

Ker φ′ = I2(L) ∩ T (V ). As explained in the previous section, by applying the diagonal

functor we obtain a presentation:

A(V ) � T ∗/Q

where T ∗ is the Segre product of the Ti ’s, Ti = K [ti j : j = 1, . . . , di ], and Q =
(I2(L) ∩ T (V ))�.
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Remark 4.1. One can easily check that the arguments of Section 3, in particular those

of 3.4 and 3.5, work and can be used to show that A(V ) is Koszul provided one knows

that I2(L) ∩ T (V ) has an initial ideal generated in degree ≤ (1, 1, . . . , 1) ∈ Zm . On the

other hand, I2(L) ∩ T (V ) has the desired initial ideal provided I2(L) has an initial ideal

generated in degree ≤ (1, 1, . . . , 1) ∈ Zm with respect to the appropriate elimination

order.

We are led by Remark 4.1 to analyze the initial ideals of ideals of 2-minors of

matrices such as L . To our great surprise, the experiments support Conjecture 1.1.

What we really need is a weak form of Conjecture 1.1, namely:

Conjecture 4.2. Let L = (Li j ) be an n × m matrix with Li j = ∑n
k=1 ai jk tik and

ai jk ∈ K for all i, j, k. Assume that for every i the forms Li1, . . . , Lin are linearly

independent. Then any lexicographic initial ideal of I2(L) is generated in degree

≤ (1, 1, . . . , 1).

If conjecture 4.2 holds then from the discussion above it follows that for every

V1, . . . , Vm the algebra A(V ) is Koszul and defined by a Gröbner basis of linear forms

as the quotient of the Segre product T ∗.

The next section is devoted to proving Conjecture 1.1 in the generic case.

5. The generic case

We consider now the case of generic spaces V1, . . . , Vm . What we prove is the follow-

ing:

Theorem 5.1. If the matrix L is generic, that is, every entry Li j = ∑n
k=1 ai jk tik is a

generic linear combination of ti1, . . . , tin , then Conjecture 1.1 holds.

The key lemma is:

Lemma 5.2. Let V1, . . . , Vm be subspaces of R1. If
∑m

i=1 dim Vi ≥ n + m then
dim

∏m
i=1 Vi <

∏m
i=1 dim Vi , i.e. there is a non-trivial linear relation among the gen-

erators of the product
∏m

i=1 Vi obtained by multiplying K -bases of the Vi .

Proof: By induction on n and m. If one of the Vi is principal then we can simply

skip it. The case m = 2 is easy: the assumption is equivalent to dim (V1 ∩ V2) ≥ 2

and for f, g ∈ V1 ∩ V2 we get the non-trivial relation f g − g f = 0. For m > 2, if

dim (Vi ∩ Vj ) ≥ 2 for some i 
= j then the non-trivial relation above gives a non-

trivial relation also for V1 . . . Vm . Therefore we may assume that dim (Vi ∩ Vj ) < 2,

and, since none of the Vi is principal, also none of the Vi is R1. The case n = 2 follows

and to prove the assertion in the general case we may assume that 1 < di < n for all i .
Further we may assume also that the Vi are generic, since the dimension of V1 . . . Vm

for special Vi can be only smaller. By genericity of the Vi we may find K -bases fi j

of Vi so that any set of n elements in the set { fi j : i = 1, . . . , m, and j = 1, . . . , di }
is a basis of R1. Now let x be a general linear form (it suffices that x is not contained
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in any sum of the Vi which is a proper subspace of R1). Since x 
∈ Vi we have that

dim Vi + (x)/(x) = di , so by induction on n we may find a non-trivial relation among

the generators of V1 . . . Vm modulo x . In other words there exists a relation of the form∑
λα f1α1

. . . fmαm = xh

where λα ∈ K , the sum is extended over all α in
∏m

i=1{1, . . . , di } and at least one of the

λα is non-zero. We may assume λα 
= 0 for α = (1, 1, . . . , 1). By the above relation

we have that xh ∈ ∏m
i=1 Vi and hence xh ∈ ∏

i 
= j Vi for all j . But from Proposition 2.1

we see immediately that x acts as a non-zero divisor in degree m − 1 and higher on

the ideal generated by
∏

i 
= j Vi . It follows that h ∈ ∏
i 
= j Vi for all j . By the choice

of the fi j and since
∑m

i=1 di ≥ n + m we may write x as a linear combination of the

fi j with i = 1, . . . , m, and 1 < j ≤ di . It follows that xh can be written as a linear

combination of the f1α1
. . . fmαm with α 
= (1, 1, . . . , 1). Hence we obtain a relation∑

λ′
α f1α1

. . . fmαm = 0

with λ′
α = λα 
= 0 for α = (1, 1, . . . , 1). �

Now we are ready to prove:

Proof of Theorem 5.1: Set I = I2(L). Let < be a term order on the ti j . After a name

change of the variables in the i-th row of L if needed, we may assume that ti j+1 > ti j

for all j = 1, . . . , n − 1 and for all i = 1, . . . , m. Let J be the ideal generated by the

monomials

ti1 j1 . . . tik jk

satisfying conditions:

(∗)

⎧⎪⎨⎪⎩
1 ≤ i1 < · · · < ik ≤ m,

1 ≤ j1, . . . , jk ≤ n,

j1 + · · · + jk ≥ n + k.

We will show that the initial ideal of I with respect to < is equal to J . From this

the assertion follows immediately. It is a simple exercise on primary decompositions

that the equality J = in(I ) follows from three facts:

(1) J ⊆ in(I ),

(2) J and I have the same codimension and degree,

(3) J is unmixed.

For (1) we have to show that for each pair of sequences of integers satisfying

conditions (*) the monomial ti1 j1 . . . tik jk is in in(I ). As L is generic, the initial ideal

in(I ) is the multigraded generic initial ideal of I with respect to >. Hence in(I ) is

Borel fixed in the multigraded sense, see [1]. In characteristic 0 this means that if a

monomial M is in in(I ) and ti j | M then tik M/ti j is in in(I ) as well for all the k > j .
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In arbitrary characteristic the same assertion is also true as long as M is square-free.

It follows that (no matter what the characteristic is) it suffices to show that there

exists an f in I such that in( f ) = ti1 p1
. . . tik pk and p1 ≤ j1, . . . , pk ≤ jk . To this end,

consider the linear forms fi j defined (implicitly) by the relation x j = ∑n
k=1 fi j aik j

for all j . By the construction of Section 4 we see that I is the kernel of the map φ.

Now for s = 1, . . . , k consider the subspace Wis generated by the fis j with j ≤ js .

Since, by assumption
∑k

s=1 dim Wis = ∑k
s=1 js ≥ n + k, by Lemma 5.2 we have that

there exists a non-trivial relation among the generators of the product Wi1
. . . Wik . This

implies that I contains a non-zero polynomial f supported on the set of monomials

ti1 p1
. . . tik pk where p1 ≤ j1, . . . , pk ≤ jk . Take in( f ) to get what we want.

As for the steps (2) and (3), the ideal I is a generic determinantal ideal and its nu-

merical invariants are well-known: its codimension is (m − 1)(n − 1) and its degree

is (
m+n−2

m−1
). Knowing the generators of J we can describe the facets of the associated

simplicial complex �(J ). Then we can read from the descriptions of the facets the codi-

mension of J and check that it is unmixed. The facets of �(J ) have the following de-

scription: for each p = (p1, . . . , pm) ∈ {1, . . . , n}m with p1 + · · · + pm = n + m − 1

we let

Fp = {ti j : i = 1, . . . , m and 1 ≤ j ≤ pi }

It is easy to check that any such Fp is a facet of �(J ). On the other hand if F is a

face of �(J ) let a(F) = {i : ∃ j with ti j ∈ F} and ji = max{ j : ti j ∈ F} if i ∈ a(F).

Then set q = (q1, . . . , qm) with qi = ji if a ∈ a(F) and qi = 1 otherwise. Note that

q1 + · · · + qm =
∑

i∈a(F)

ji + m − |a(F)|

and that ∑
i∈a(F)

ji < n + |a(F)|

since {ti ji : i ∈ a(F)} ⊂ F ∈ �(J ). It follows that q1 + · · · + qm < n + m. So, in-

creasing the qi ’s if needed, we may take p = (p1, . . . , pm) ∈ {1, . . . , n}m with

p1 + · · · , pm = n + m − 1 and qi ≤ pi . It follows that F ⊆ Fp.

From the description above we see that the cardinality of each Fp is n + m − 1.

It follows that J is unmixed of codimension (m − 1)(n − 1). The degree of J is the

number of facets of �(J ), that is the number of p = (p1, . . . , pm) ∈ {1, . . . , n}m

with p1 + · · · + pm = n + m − 1. Setting qi = pi − 1, we see that the number

of facets of �(J ) is the number of q = (q1, . . . , qm) ∈ {0, . . . , n − 1}m with

q1 + · · · + qm = n − 1, that is, the number of monomials of degree n − 1 in m
variables. This number is (

m+n−2

m−1
). We have checked that (2) and (3) hold. The proof

of the theorem is now complete. �

Let us single out the following corollary of the proof of Theorem 5.1:

Corollary 5.3. With the notation of the proof of Theorem 5.1 we have:
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(a) If i1 < · · · < ik then a monomial ti1 j1 . . . tik jk is in J iff j1 + · · · + jk ≥ n + k.
(b) For every monomial M = ti1 j1 . . . tik jk ∈ J with i1 < · · · < ik there exists a poly-

nomial fM ∈ I of the form

fM = M +
∑

v

λvti1v1
. . . tikvk

where λv ∈ K , v ∈ �k
h=1{1, 2, . . . , jh}, and ti1v1

. . . tikvk 
∈ J .
(c) The set of the polynomials fM is a Gröbner basis of I with respect to any term order

< on K [ti j ] satisfying ti j+1 > ti j for all j = 1, . . . , n − 1 and all i = 1, . . . , m.

Proof: (a) follows from the definition of J . For (b) we argue as follows. Let < be a term

order on K [ti j ] satisfying ti j+1 > ti j for all j = 1, . . . , n − 1 and for all i = 1, . . . , m.

We have seen in the proof of Theorem 5.1 that J = in<(I ). Considering the reduced

expression, we have that for every monomial M = ti1 j1 . . . tik jk ∈ J there exists a

polynomial fM in I with initial term M and all the others terms not in J . Suppose

that one of the non-leading terms of fM , say N = ti1v1
. . . tikvk , does not satisfy the

condition vh ≤ jh for some h = 1, . . . , k. So there exists an h in {1, 2, . . . , k}, say h1,

such that vh1
> jh1

. We claim that there exists a term order <1 such that ti j+1 >1 ti j

for all i, j and such that N >1 M . Then it follows that the initial term of fM with

respect to <1 is not M and hence it must be a monomial not in J . This contradicts the

fact, proved in 5.1 that in<1
(I ) = J . It remains to prove the existence of a term order

<1 as above. To this end it suffices to find weights wi j ∈ N such that wi j < wi j+1 for

all i, j and w(M) < w(N ), that is

wi1, j1 + · · · + wik jk < wi1v1
+ · · · + wikvk .

Just take wi j = j if i 
= ih1
or i = ih1

and j < vh1
; otherwise take wi j = a + j with

a large enough. Finally (c) is a direct consequence of (b). �

As explained in Section 4 it follows from Theorem 5.1 that A(V ) is Koszul for

generic V . To get more precise information about the structure of A(V ) we analyze in

detail the defining equations of B(V ) and A(V ). To this end we recall the definition

of homogeneous ASL on posets.

Let (H, >) be a finite poset and denote by K [H ] the polynomial ring whose variables

are the elements of H . Let JH be the monomial ideal of K [H ] generated by xy with

x, y ∈ H such that x and y are incomparable in H .

Definition 5.4. Let A = K [H ]/I where I is a homogeneous ideal (with respect to the

usual grading). One says that A is a homogeneous ASL on H if

(ASL1) The (residue classes of the) monomials not in JH are linearly independent in

A.

(ASL2) For every x, y ∈ H such that x and y are incomparable the ideal I contains a

polynomial of the form

xy −
∑

λzt

with λ ∈ K , z, t ∈ H , z ≤ t , z < x and z < y.
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A linear extension of the poset (H, <) is a total order <1 on H such that x <1 y
if x < y. A revlex term order τ on K [H ] is said to be a revlex linear extension of <

if τ induces on H a linear extension of <. For obvious reasons, if A = K [H ]/I is a

homogeneous ASL on H and τ is a revlex linear extension of < then the polynomials

in (ASL2) form a Gröbner basis of I and inτ (I ) = JH . In a sense the converse is also

true:

Lemma 5.5. Let A = K [H ]/I where I is a homogeneous ideal. Assume that for every
revlex linear extension τ of < one has inτ (I ) = JH . Then A is an ASL on H.

Proof: Let τ be a revlex linear extension of <. Since inτ (I ) = JH the monomials not

in JH form a K -basis of A, hence (ASL1) is satisfied. Let x, y ∈ H be incomparable

elements. Then xy ∈ inτ (I ) and hence there exists F ∈ I with inτ (F) = xy. We can

take F reduced in the sense that xy is the only term in F belonging to JH . It follows

that F has the form

xy −
∑

λzt

with λ ∈ K , z, t ∈ H and z ≤ t . Assume, by contradiction that this polynomial does

not satisfy the conditions required in (ASL2). Then there exist a non-leading term z1t1
appearing in F such that z1 
< x or z1 
< y. Say z1 
< x . It is easy to see that one can

find a linear extension <1 of < such that x <1 z1. Denote by σ the revlex term order

associated with <1. Then xy is smaller than z1t1 with respect to σ and hence inσ (F)

is a term not in JH , contradicting the assumption. �

For a given sequence of positive integers d = d1, . . . , dm we set

H (d) = {1, . . . , d1} × · · · × {1, . . . , dm}

and note that H (d) is a sublattice of Nm with respect to the natural partial orderα ≤ β iff

αi ≤ βi for all i . The rank rk α of an element α = (αi ) ∈ H (d) is α1 + · · · + αm − m.

Set

Hn(d) = {α ∈ H (d) : rk α < n}

With the notation of Section 4 we have a presentation φ′ : T (V ) → B(V ) where

T (V ) = K [ti j : i = 1, . . . , m, j = 1, . . . , di ]. As a corollary of Theorem 5.1, by

elimination we obtain the following description of Ker φ′:

Corollary 5.6. Let V1, . . . , Vm be generic spaces of dimension d1, . . . , dm and let fi j

with j = 1, . . . , di be generic generators of Vi . Let < be a term order such that ti j <

ti j+1. Then the ideal Ker φ′ has a Gröbner basis whose elements are the polynomials
fM of Corollary 5.3 where M = ti1 j1 . . . tik jk with i1 < · · · < ik , 1 ≤ jh ≤ dih and
j1 + · · · + jk ≥ n + k.
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Set Ti = K [ti j : 1 ≤ j ≤ di ] and denote by T ∗ the Segre product T1 ∗ · · · ∗ Tm .

Consider variables sα with α ∈ H (d) and the polynomial ring K [sα : α ∈ H (d)]. For

each α ∈ H (d) set tα = t1α1
. . . tmαm .

We get a presentation K [sα : α ∈ H (d)] → T ∗ by sending sα to tα whose kernel is

generated by the Hibi relations:

sαsβ − sα∨βsα∧β.

Adopting the notation of Section 4 we get a presentation A(V ) = T ∗/Q. To describe

the generators of Q we do the following. For every α ∈ H (d)\Hn(d) consider the

polynomial fM of Corollary 5.3 associated with the monomial M = tα . Set Lα = fM .

So for all α ∈ H (d)\Hn(d) we have

Lα = tα −
∑
β<α

λαβ tβ with λαβ ∈ K

and the arguments of Corollary 3.4 show that the Lα’s form a Gröbner basis of Q for

any term order such that ti j > ti j−1 for all i, j . It follows that

in(Q) = (tα : α ∈ H (d)\Hn(d))

for any term order such that ti j > ti j−1 for all i, j . Then T ∗/in(Q) is defined as the

quotient of K [sα : α ∈ H (d)] by:

(1) the Hibi relations sαsβ − sα∨βsα∧β with α, β ∈ H (d) incomparable.

(2) sα with α ∈ H (d)\Hn(d).

It is easy to see that the elements of type (1) and (2) form a Gröbner basis for any

revlex linear extension of the partial order on H (d). Hence a K -basis of T ∗/in(Q)

is given by the monomials not in JHn (d) + (H (d)\Hn(d)). This in turn implies that

the Hibi relations and the relation Lα form a Gröbner basis of the defining ideal of

A(V ) (as a quotient of K [sα : α ∈ H (d)] by the map sending sα to f1α1
. . . fmαm ) with

respect to any revlex linear extension of the partial order on H (d). Summing up, we

have:

Theorem 5.7. Let V1, . . . , Vm be generic spaces of dimension d1, . . . , dm and take
generic generators fi j of Vi . Then:

(1) We have a surjective K -algebra homomorphism F : K [sα : α ∈ Hn(d)] → A(V )

sending the variable sα to f1α1
. . . fmαm .

(2) Ker F is generated by two types of polynomials:
(a)

sαsβ − sα∨βsα∧β

if α, β ∈ Hn(d) are incomparable and α ∨ β ∈ Hn(d).
(b)

sαsβ −
∑

λγ sγ sα∧β
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if α, β ∈ Hn(d) are incomparable α ∨ β 
∈ Hn(d) the sum is extended to the
γ ∈ Hn(d) with γ ≤ α ∨ β and λγ ∈ K (and depends also on α and β).

(3) The polynomials of type (a) and (b) form a Gröbner basis of Ker F with respect
to any revlex linear extension of the partial order of Hn(d).

(4) A(V ) is a homogeneous ASL on the poset Hn(d).
(5) A(V ) is normal, Cohen-Macaulay and Koszul.
(6) A(V ) is defined, as the quotient of the Segre product T ∗, by a Gröbner basis of

linear forms.
(7) The Krull dimension of A(V ) is min{n, dim T ∗ = 1 − m + ∑m

i=1 di } and its degree
is the number of maximal chains in Hn(d).

Proof: (1), (2), (3) and (6) follow immediately from the discussion above and (4)

follows from Lemma 5.5 and (3). As for (5), normality is proved in Theorem 2.2,

Koszulness follows from the general argument of Section 4 and also from (3). The

Cohen-Macaulay property and (7) follow from (4) by applying [4, Chap. 5] since

Hn(d) is a wonderful poset. �

As a corollary we obtain:

Corollary 5.8. For every m and n, the Veronese subring R(m) of R = K [x1, . . . , xn]

is an ASL on the poset Hn(d) where d = n, n, . . . , n (m-times).

Remark 5.9. The realization of the m-th Veronese subring of a polynomial ring in n
variables as a homogeneous ASL has been done before for n = 2 and any m in [22],

for n = m = 3 in [15] and in two different ways, and for n = m = 4 in [23].

An interesting consequence of Corollary 5.6 is:

Corollary 5.10. Let V1, . . . , Vm be subspaces of R1 of dimension d1, d2, . . . , dm then:

(a) dim �m
i=1Vi ≤ |Hn(d)|.

(b) if the Vi are generic then dim �m
i=1Vi = |Hn(d)|.

(c) if the Vi are generic and if fi j with j = 1, . . . , di are generic generators of Vi then
the set { f1 j1 . . . fmjm : ( j1, . . . , jm) ∈ Hn(d)} is a K -basis of �m

i=1Vi .
(d) if the Vi are generic then: dim �m

i=1Vi = �m
i=1dim Vi iff

∑
dim Vi < m + n.

Proof: Obviously (b) implies (a) and also (c) implies (b) and (d). So we only have to

prove (c). By definition, the product �m
i=1Vi is the component of degree (1, 1, . . . , 1)

of the algebra B(V ). Then the conclusion follows from 5.6. �

Example 5.11. Take n = 3, d1 = d2 = d3 = 2 and generic spaces Vi of dimension di .

Note that, up to a choice of coordinates, we are in the situation of Example 3.8 and so

the structure of A(V ) has been already identified. But to describe the ASL structure

of A(V ) we have to take generic coordinates for Vi , say Vi = 〈 fi1, fi,2〉. In this case
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Hn(d) is the cube {1, 2}3 without the point (2, 2, 2). We have a relation

f12 f22 f32 =
∑

α∈Hn (d)

λα f1α1
f2α2

f3α3
.

Set L = ∑
α∈Hn (d) λαsα . Then the defining equations of A(V ) as the quotient of K [sα :

α ∈ Hn(d)] are:

s112s221 − s111L , s121s212 − s111L , s211s122 − s111L ,

s121s211 − s111s221, s112s211 − s111s212, s112s121 − s111s122,

s212s221 − s211L , s122s221 − s121L , s122s212 − s112L

Remark 5.12. With an argument similar to that of 2.2 one can prove that the algebra

B(V ) is normal for any V = V1, . . . , Vm . Furthermore, in the monomial and in the

generic case one can prove that B(V ) is Cohen-Macaulay. In the monomial case the

Cohen-Macaulayness is a consequence of the normality. In generic case it follows

from the fact that, by 5.1, we can describe an initial ideal of its defining ideal and such

an initial ideal turns out to be associated with a shellable simplicial complex.
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