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Abstract Let F be a k-uniform hypergraph on [n] where k − 1 is a power of some

prime p and n ≥ n0(k). Our main result says that if |F | > (
n

k−1
) − logp n + k!kk ,

then there exists E0 ∈ F such that {E ∩ E0 : E ∈ F} contains all subsets of E0. This

improves a longstanding bound of (
n

k−1
) due to Frankl and Pach [7].

Keywords Trace . Hypergraph . VC-dimension . Extremal problems

1. Introduction

Let G be a set system (or hypergraph) on X and S be a subset of X . The trace of G
on S is defined as G|S = {E ∩ S : E ∈ G}. We treat G|S as a set and therefore omit

multiplicity. We say that S is shattered by G if G|S = 2S , the set of all subsets of S. The

Vapnik-Chervonenkis dimension (VC dimension) of G is the maximum size of a set

shattered by G. Extremal problems on traces started from determining the maximum

size of a set system on n vertices with VC dimension k − 1 (equivalently, without a

shattered k-set). Sauer [10], Perles and Shelah [11], and Vapnik and Chervonenkis [12]

independently proved that this maximum is (
n
0
) + · · · + (

n
k−1

). This and other results

on traces have found numerous applications in geometry and computational learning

theory (see Füredi and Pach [9] and Section 7.4 of Babai and Frankl [3]).
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Given two set systems G and F , if there exists a set S such that G|S con-

tains a copy of F as a subhypergraph, we say that G contains F as a trace. In

this case we write G → F (G �→ F otherwise). Let (
X
r ) denote the set of all r -

subsets of X . We call G an r -uniform hypergraph (r -graph) on X if G ⊆ (
X
r ) and

call the members of G edges. We define Trr (n, F) as the maximum number of

edges in an r -graph on [n] = {1, . . . , n} not containing F as a trace. Frankl and

Pach [7] considered the maximum size of uniform hypergraphs with fixed VC di-

mension. They showed that Trr (n, 2[k]) ≤ (
n

k−1
) for k ≤ r ≤ n. They conjectured that

Trk(n, 2[k]) = (
n−1

k−1
) for sufficiently large n. Obviously if a k-graph G contains a shat-

tered edge, then G contains two disjoint edges (since the empty set appears in the

trace). Therefore the conjecture of Frankl and Pach, if true, generalizes the well-known

Erdős-Ko-Rado Theorem [5]. However, Ahlswede and Khachatrian [1] disproved it

by constructing a G ⊆ (
[n]

k ) of size (
n−1

k−1
) + (

n−4

k−3
) that contains no shattered k-set

when k ≥ 3 and n ≥ 2k. Combining this with the upper bound in [7], for k ≥ 3 and

n ≥ 2k, (
n − 1

k − 1

)
+

(
n − 4

k − 3

)
≤ Trk

(
n, 2[k]

) ≤
(

n

k − 1

)
. (1)

Our main result improves the upper bound in (1) in the case that k − 1 is a prime

power and n is large.

Theorem 1. Let p be a prime, t be a positive integer, k = pt + 1, and n ≥ n0(k). If
F is a k-uniform hypergraph on [n] with more than (

n
k−1

) − logp n + k!kk edges, then
there is a k-set shattered by F . In other words,

Trk
(
n, 2[k]

) ≤
(

n

k − 1

)
− logp n + k!kk .

In addition, we find exponentially many k-graphs achieving the lower bound in (1).

Proposition 2. Let P(n, r ) denote the number of non-isomorphic r-graphs on [n].
Then for k ≥ 3, there are at least P(n − 4, k − 1)/2 non-isomorphic k-graphs F on
[n] such that |F | = (

n−1

k−1
) + (

n−4

k−3
) and F �→ 2[k].

Note that the gap between the upper and lower bounds in (1) is (
n−1

k−2
) − (

n−4

k−3
). The-

orem 1 reduces this gap by essentially log n for certain values of k. Though this im-

provement is small, the value of Theorem 1 is perhaps mainly in its proof—a mixture of

algebraic and combinatorial arguments. The main tool in proving Trk(n, 2[k]) ≤ (
n

k−1
)

in [7] is the so-called higher-order inclusion matrix, whose rows are labeled by edges

of a hypergraphF ⊆ (
[n]

k ). It was shown that ifF contains no shattered k-sets, then the

rows of this matrix are linearly independent. Consequently |F |, the number of the rows,

equals to the rank of the matrix, which is at most (
n

k−1
). The main idea in proving Theo-

rem 1 is to enlarge the inclusion matrix ofF by adding more rows such that the rows in

the enlarged matrix are still linearly independent. The method of adding independent
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vectors (or functions) to a space has been used before, e.g., on the two-distance problem

by Blokhuis [4] and a proof of the Ray-Chaudhuri–Wilson Theorem by Alon, Babai and

Suzuki [2].

In order to prove Theorem 1, we also need more combinatorial tools. In particular,

the sunflower lemma of Erdős and Rado [6], which is used to prove Lemma 3 below.

Note that Lemma 3 and Theorem 4 together prove Theorem 1. Let 2[k]− = 2[k]\∅.

Lemma 3. For any k ≤ n,

Trk
(
n, 2[k]

) ≤ Trk
(
n, 2[k]−) + k!kk .

Theorem 4. Let p be a prime, t be a positive integer, and k = pt + 1. Then
Trk(n, 2[k]−) ≤ (

n
k−1

) − logp n for n ≥ n0(k).

In the next section we prove Proposition 2 and Lemma 3. We prove Theorem 4 in

Section 3 and give concluding remarks in the last section.

2. Proofs of Proposition 2 and Lemma 3

Proof of Proposition 2: We construct F = F0 ∪ F1 ∪ F2 such that F0 is the set of all

k-sets containing 1 and 2, edges in F1 contain 1 but avoid 2, and edges in F2 contain

2 but avoid 1. If we let Gi = {E\{i} : E ∈ Fi } denote the link graph of i in Fi , then

G1 and G2 are (k − 1)-graphs on V ′ = {3, 4, . . . , n}. Let G1 and G2 further satisfy

the following conditions:

1. G1 ∪ G2 = (
V ′

k−1
)

2. G1 ∩ G2 = {E ∈ (
V ′

k−1
) : E ⊇ {3, 4}}

3. G1 ⊇ {E ∈ (
V ′

k−1
) : E � 3, E �� 4}, G2 ⊇ {E ∈ (

V ′
k−1

) : E � 4, E �� 3}.
It is easy to see that |F | = (

n−1

k−1
) + (

n−4

k−3
), since |F0| = (

n−2

k−2
) and

|F1| + |F2| = |G1| + |G2| = |G1 ∪ G2| + |G1 ∩ G2| =
(

n − 2

k − 1

)
+

(
n − 4

k − 3

)
.

We claim that F �→ 2[k]. Suppose to the contrary that some E ∈ (
[n]

k ) is shattered.

Then E ∈ F . Note that every edge in F contains either 1 or 2. If {1, 2} ⊂ E , then

E\{1, 2} is not contained in F |E . Without loss of generality, assume that E � 1

and E �� 2. Since E \{1} ∈ G1 is contained in F |E , we have (E \{1}) ∪ {2} ∈ F and

consequently E \{1} ∈ G1 ∩ G2. Therefore E ⊇ {3, 4}. In order to have E \{1, 4} ∈
F |E , there must be one edge of G2 containing 3 and not containing 4. But this is

impossible because of the third condition on G1 and G2.

In the above construction, every E ∈ (
V ′

k−1
) with E �� 3, E �� 4 could be in either

G1 or G2. These undecided edges form a complete (k − 1)-graph K k−1
n−4 on {5, . . . , n}.

Recall that P(n − 4, k − 1) is the number of non-isomorphic (k − 1)-graphs on n − 4

vertices, or the number of non-isomorphic 2-edge-colorings of K k−1
n−4 . We claim that

Springer



104 J Algebr Comb (2007) 25:101–110

the number of non-isomorphic F satisfying our construction is P(n − 4, k − 1)/2. To

see this, let us consider vertex degrees in F . Let deg(x) be the number of edges in F
containing a vertex x . It is not hard to see that no matter what the undecided edges

are, deg(1) and deg(2) are always greater than deg(3) = deg(4), which is greater than

deg(x) for all x > 4, and deg(x) is fixed for all x > 4. Therefore two constructions F
and F ′ are isomorphic if and only if F |{5,...,n} and F ′|{5,...,n} are isomorphic or one is

the complement of the other (since the vertices 1 and 2 are identical). �

Note that the construction in [1] is isomorphic to the case when all undecided E
are in G1.

A sunflower (or �-system) with r petals and a core C is a collection of distinct

sets S1, . . . , Sr such that Si ∩ Sj = C for all i �= j . Erdős and Rado [6] proved the

following simple but extremely useful and fundamental lemma.

Lemma 5 (Sunflower Lemma). Let G be a k-graph with |G| > k !(r − 1)k . Then G
contains a sunflower with r petals. �

We call a set S almost-shattered by F if F |S contains 2S \∅.

Proof of Lemma 3: Let F be a k-graph on [n] with |F | > Trk(n, 2[k]−) + k!kk .

We need to show that F contains a shattered set. Since |F | > Trk(n, 2[k]−), we

may find an almost-shattered k-set E1 ∈ F . Since |F \{E1}| > Trk(n, 2[k]−), we

may find an almost-shattered k-set E2 ∈ F \{E1}. Repeating this process, we find

distinct almost-shattered sets E1, E2, . . . , Ek!kk ∈ F . By the Sunflower Lemma,

F ′ = {E1, . . . , Ek!kk } contains a sunflower with k + 1 petals. Let us simply denote it

by E1, . . . , Ek+1 and C = ∩k+1
i=1 Ei . Since E1 is almost-shattered by F and E1\C �= ∅,

there is E0 ∈ F such that E0 ∩ E1 = E1\C . Now E1 ∩ E0, E2 ∩ E0, . . . , Ek+1 ∩ E0

are pairwise disjoint. Since |E0| = k < k + 1, there exists i �= 1 such that Ei ∩ E0 =
∅. This means that ∅ ∈ F |Ei . Consequently Ei is shattered by F . �

3. Proof of Theorem 4

3.1. Inclusion matrices and proof outline

The proof of Theorem 4 needs the concept of higher-order inclusion matrices. Let F
be a set system on X . The incidence matrix M(F, ≤ s) of F over (

X
≤s ) is the matrix

whose rows (incidence vectors) are labeled by the edges of F , columns are labeled by

subsets of [n] of size at most s, and entry (E, S), E ∈ F , |S| ≤ s, is 1 if S ⊆ E and

0 otherwise. Throughout this paper, we fix s = k − 1 and simply write M(F) instead

of M(F, ≤ k − 1). In particular, let

I (k) = M

((
[n]

k

))
= M

((
[n]

k

)
, ≤ k − 1

)
.

For each E ⊂ [n], the incidence vectorvE is a (0, 1)-vector of length (
n
0
) + · · · + (

n
k−1

),

whose coordinates are labeled by all subsets of [n] of size at most k − 1. Note that vE

always has a 1 in the position corresponding to ∅. Let ei = v{i} for each i ∈ [n].
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Let q be 0 or a prime number. As usual, Fq denotes a field of q elements when q is

a prime. Let us define F0 to be Q, the field of rational numbers. Given a hypergraph F ,

a weight function of F over Fq is a function α : F → Fq . If α(E) = 0 for all E ∈ F ,

then we call α the zero function and write α ≡ 0. We define

v(F, α) =
∑
E∈F

α(E)vE

and write v(F) = ∑
E∈F vE . We say that F is linearly independent in characteristic

q if the rows of M(F) are linearly independent over Fq , namely, v(F, α) = 0 (mod

q) implies that α ≡ 0.

Part 1 of Lemma 6 below is the key observation to the proof of the upper bound in

(1). It implies that ifF ⊆ (
[n]

k ) contains no shattered sets, then it is linearly independent

in any characteristic. Our proof of Theorem 4 also needs Part 2. We call a set S near-
shattered by F if F |S contains 2S \({i} ∪ ∅) for some i ∈ S.

Lemma 6. Let q be 0 or a prime number. Suppose that F ⊆ (
[n]

k ) and α : F → Fq

is a non-zero weight function. Define d(S) = ∑
S⊆E∈F α(E) for every subset S ⊂ [n].

Fix A ∈ F with α(A) �= 0.

1. If d(S) = 0 mod q for all S ⊂ A, then A is shattered by F .
2. Let i ∈ A. If d(S) = 0 mod q for all S ⊂ A with S �= ∅ and S �= {i}, then A is

near-shattered.

Proof: Parts 1 and 2 have almost the same proofs. Since Part 1 was proved in [7] and

[3] (Theorem 7.27), we only prove Part 2 here.

SinceF is k-uniform, we have d(A) = α(A) �= 0. For B ⊆ A, we define d(A, B) =∑
E∈F,E∩A=B α(E). The following equality can be considered as a variant of the

Inclusion-Exclusion formula.

d(A, B) =
∑

B⊆S⊆A

(−1)|S−B|d(S). (2)

In fact, because d(B) = d(A, B) + ∑
E∈F,B⊂E∩A α(E), (2) is equivalent to∑

E∈F,B⊂E∩A

α(E) +
∑

B⊂S⊆A

(−1)|S−B|d(S) = 0.

This holds because on the left side, each α(E) with r = |E ∩ A| − |B| > 0 has coef-

ficient 1 − (
r
1
) + · · · + (−1)r (

r
r ) = 0.

Pick any B ⊂ A with B �= ∅ and B �= {i}. We now show that there exists E ∈ F
such that E ∩ A = B. We use (2) and the assumption that d(S) = 0 mod q for all S
with B ⊆ S ⊂ A to derive∑
E∈F,E∩A=B

α(E) = d(A, B) =
∑

B⊆S⊆A

(−1)|S−B|d(S) = (−1)|A−B|d(A) �= 0 mod q.

Hence the sum on the left side is not empty. �
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By Lemma 6 Part 1, if F contains no shattered sets, then the rows of M(F) are

linearly independent (over Q) and consequently |F | = rank(M). Clearly rank(M) ≤
rank(I (k)). It is well-known that rankQ(I (k)) = (

n
k−1

) (e.g., see [3] Section 7.3). This

immediately gives Trk(n, 2[k]) ≤ (
n

k−1
), the result of Frankl and Pach [7].

The proof of Theorem 4 proceeds as follows. Suppose that F ⊆ (
[n]

k ) satisfies

F �→ 2[k]−. Recall that k = pt + 1 for some prime p and positive integer t . We will

construct a matrix M ′ obtained from M = M(F) by adding logp n new rows. The new

rows have the form eS = ∑
i∈S ei , for some set S of size m = pt+1. In other words, a

new row has entry 1 at m coordinates corresponding to m singletons and 0 otherwise

(the entry at ∅ is 0 because m = 0 mod p). The main step is to show that these new

rows lie in the row space of I (k), and all the rows of M ′ are still linearly independent.

Consequently,

|F | + logp n = rank Fp (M ′) ≤ rank Fp (I (k)) ≤ rank Q(I (k)) =
(

n

k − 1

)
,

which implies that |F | ≤ (
n

k−1
) − logp n.

We now divide the main step into three lemmas, which we will prove in the next

subsection.

Lemma 7. Suppose that k = pt + 1 and m = pt+1 for prime p and t > 0. Then for
every S ∈ (

[n]

m

)
, eS is in the row space of I (k) over Fp.

Lemma 8 is the key to our proof. For a, b ∈ [n], let ea,−b = ea − eb. Thus ea,−b

is the vector with a 1 in position {a}, a −1 in position {b}, and 0 everywhere else.

Lemma 8 says that ea,−b is outside the row space of M for every a �= b.

Lemma 8. Let k ≥ 2 and n ≥ n0(k). Suppose that F ⊆ (
n
k ) contains no almost-

shattered set, i.e., F �→ 2[k]−. If |F | > (
n

k−1
) − logp n, then for every two distinct

a, b ∈ [n], the set {vE : E ∈ F} ∪ {ea,−b} is linearly independent in any characteris-
tic.

Lemma 9. Given a prime p and m ≥ 1, let n ≥ n0(p, m) andr = logp n. Suppose that
for every two distinct a, b ∈ [n], the set {vE : E ∈ F} ∪ {ea,−b} is linearly independent
in characteristic p. Then there exist subsets S1, . . . , Sr ∈ (

[n]

m ) such that the set {vE :

E ∈ F} ∪ {eS1
, . . . , eSr } is linearly independent in characteristic p.

3.2. Proof of lemmas

Given a hypergraph F on X and a subset A ⊆ X , we define the degree degF (A) to be

the number of edges in F containing A.

Proof of Lemma 7: Let K = (
S
k ). It suffices to prove that

∑
E∈K vE = c · eS for

some nonzero c ∈ Fp. Equivalently, we need to show that for T ⊂ S, degK (T ) = 0

mod p when |T | ≥ 2 or |T | = 0, and deg(T ) = c �= 0 mod p when |T | = 1. Since K
is a complete k-graph, degK (T ) = (

m−|T |
k−|T | ). By a well-known result of Kummer, the
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binomial coefficient (
a
b ) is divisible by a prime p if and only if, when writing a and b as

two numbers in base p, a = (a j . . . a1a0)p and b = (b j . . . b1b0)p, there exists i ≤ j ,

such that bi > ai . Since m is a power of p, for any 1 ≤ k ≤ m − 1, p divides (
m
k ). Hence

degK (∅) = (
m
k ) = 0 mod p. Now consider |T | = s ≥ 2. Since k = pt + 1, we know

k − s < pt and thus write k − s = (at−1 · · · a0)p. Since m = pt+1, we have m − s =
pt+1 − s = (p − 1)pt + k − s − 1. We thus have m − s = (p − 1 at−1 . . . a0)p − 1.

Hence there exists i ≤ t − 1 such that the value of m − s at bit i is less than ai and

consequently (
m−s
k−s ) is divisible by p. When |T | = 1, we have m − 1 = pt+1 − 1 and

therefore (
m−1

k−1
) is not divisible by p for any 1 ≤ k ≤ m − 1. �

Proof of Lemma 8: We prove the contrapositive of the claim: If F �→ 2[k]− and there

exists a non-zero function α : F → Fq such that v(F, α) = ea,−b for some a, b ∈ [n]

(a �= b), then |F | ≤ (
n

k−1
) − logp n. We claim that it suffices to show that degF ({a}) =

O(nk−3). In fact, suppose degF ({a}) ≤ cknk−3 for some constant ck and |F | > (
n

k−1
) −

logp n. After we remove a and all the edges containing a, we obtain a k-graph F̃ ⊆ F
with n − 1 vertices satisfying

|F̃ | >

(
n

k − 1

)
− logp n − cknk−3

=
(

n − 1

k − 1

)
+

(
n − 1

k − 2

)
− logp n − cknk−3

≥
(

n − 1

k − 1

)
where the last inequality holds because (

n−1

k−2
) ≥ logp n + cknk−3 for n ≥ n0(k). But

we showed that Trk(n, 2[k]) ≤ n
k−1

for any k ≤ n, therefore F̃ → 2[k], a contradiction.

Suppose that
∑

E∈F α(E)vE = ea,−b. Let F ′ = {E ∈ F : α(E) �= 0} and V ′ =
[n]\{a, b}. For a subset A ⊂ [n], let d(A) = ∑

A⊆E∈F ′ α(E) mod q . Our assump-

tion v(F, α) = ea,−b implies that d({a}) = 1, d({b}) = −1, and d(A) = 0 for every

A �= {a}, {b} and |A| ≤ k − 1. Applying Lemma 6 Part 1, we conclude that no E ∈ F ′

satisfies E ⊆ V ′. In other words, every edge in F ′ contains either a or b. Next ob-

serve that if F ′ contains an edge E such that a ∈ E and b �∈ E , then F ′ also contains

(E \{a}) ∪ {b}. Otherwise E is the only edge inF ′ containing E\{a} and consequently

d(E\{a}) = α(E) �= 0, a contradiction.

Let Ga = {E \{a} : E ∈ F ′, a ∈ E, b �∈ E} and define Gb similarly. By the previ-

ous observation, we have G := Ga = Gb. We then observe that G �= ∅ otherwise every

edge (of F ′) containing a also contains b, and consequently 1 = d({a}) = d({a, b}) =
0.

Fix an edge E0 ∈ F ′ containing a but not b. Applying Lemma 6 Part 2, we conclude

that E0 is near-shattered, i.e., all subsets of E0 are in the trace F ′|E0
except for {a} and

∅. If another edge E ∈ F satisfies E ∩ E0 = {a}, then E0 becomes almost-shattered,

contradicting the assumption that F �→ 2[k]−. We may therefore assume that every

E ∈ F containing a also contains some other element of E0. Below we show that

there exists H ⊆ G with at most 2k vertices and transversal number at least 2 (i.e.,
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no element lies in all sets of H ). Therefore every E ∈ F containing a has at least two

vertices in H and consequently degF ({a}) ≤ (
2k
2

)(
n−3

k−3
) = O(nk−3).

Pick A ∈ Ga (thus |A| = k − 1). We claim that for every S ⊂ A, |S| = k − 2, there

exists B ∈ Ga such that A ∩ B = S. Suppose instead, that for some S ∈ (
A

k−2
), no such

B exists. In this case, A ∪ {a} and S ∪ {a, b} are the only possible edges in F ′ contain-

ing S ∪ {a}. We thus have S ∪ {a, b} ∈ F ′, otherwise d(S ∪ {a}) = α(A ∪ {a}) �= 0.

Because Ga = Gb, no B ∈ Gb satisfies A ∩ B = S. We now have a contradiction

since

d(S) = α(A ∪ {a}) + α(A ∪ {b}) + α(S ∪ {a, b})
= d(A) + α(S ∪ {a, b}) = α(S ∪ {a, b}) �= 0.

Now, for every S ∈ (
A

k−2
), we choose exactly one set B = B(S) ∈ Ga such that A ∩

B = S. Let H = {A} ∪ {B(S) : S ∈ (
A

k−2
)}. Clearly H contains at most 2k vertices.

It is easy to see that there is no x ∈ ∩E∈H E . In fact, if such x ∈ A, then B(A\{x})
misses x . If x �∈ A, then A misses x . Therefore the transversal number of H is at least

2, and the proof is complete. �

Proof of Lemma 9: Let M be the inclusion matrix of F . We sequentially add vectors

eS1
, . . . , eSi with S1, . . . , Si ∈ (

[n]

m ) to M such that eS1
, . . . , eSi and the rows of M are

linearly independent. We claim that this can be done as long as i ≤ logp n. Suppose

to the contrary, that there exists i ≤ logp n − 1 such that we fail to add a new vector

at step i + 1. In other words, we have chosen eS1
, . . . , eSi successfully, but for every

S ∈ (
[n]

m )\{S1, . . . , Si }, there exist a weight function α and c1, . . . , ci ∈ Fp such that

eS = v(F, α) +
i∑

j=1

c j eSj . (3)

We observe that for fixed c1, . . . , ci , the set of m-sets satisfying (3) forms a partial

Steiner system P S(n, m, m − 1) (an m-graph on [n] such that each (m − 1)-subset of

[n] is contained in at most one edge). In fact, if two m-sets S, S′ with |S ∩ S′| = m − 1

both satisfy (3), with weight functions α1 and α2 respectively, then v(F, α1 − α2) =
ea,−b, where {a} = S\S′ and {b} = S′ \S. This is a contradiction to our assumption.

Consequently for fixed c1, . . . , ci , the number of m-sets satisfying (3) is at most

(
n

m−1
)/m. As a result, the number of m-sets that cannot be chosen is at most pi (

n
m−1

)/m.

We thus obtain∣∣∣∣([n]

m

)
\{S1, . . . , Si }

∣∣∣∣ =
(

n

m

)
− i ≤ pi 1

m

(
n

m − 1

)
,

which implies that

(n − m + 1) − im( n
m−1

) ≤ pi .

Springer
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Since i ≤ logp n − 1, we have pi ≤ n/p, and consequently n − m + 1 − im/(
n

m−1
) ≤

n/p, which is impossible for fixed p ≥ 2, m and sufficiently large n. �

4. Concluding remarks

We believe that the lower bound in (1) is correct, though verifying this for all k may

be hard because Proposition 2 gives exponentially many extremal hypergraphs. In

order to reduce the bound in Theorem 1, one probably wants to look for a better

way to find independent vectors than the greedy algorithm we used in the proof of

Lemma 9. It may not be very hard to check this for the k = 3 case, namely, to verify

that Tr3(n, 2[3]) = (
n−1

2
) + 1. Using more involved combinatorial arguments, instead

of the Sunflower Lemma, we can prove that Tr3(n, 2[3]) ≤ (
n
2
) − log2 n.

Improving the upper bound further for other values of k will most likely need

some new ideas. Our approach uses incidence vectors of a family of singletons. The

following proposition shows that this approach requires k − 1 to be a prime power.

Proposition 10. Let p be a prime and k ≥ 2. Suppose thatF ⊆ (
[n]

k ) and α : F → Fp

is a non-zero weight function. Define d(S) = ∑
S⊆E∈F α(E) for every subset S ⊂ [n].

If there exists a vertex x ∈ [n] such that d({x}) �= 0 and d(S) = 0 mod p for every
S � x with 2 ≤ |S| ≤ k − 1, then k − 1 is a power of p.

Proof: Let 2 ≤ s ≤ k − 1. When we sum up d(S) for all S � x with |S| = s, we

over-count d({x}) by a factor of (
k−1

s−1
). In other words,

d({x}) = 1(k−1

s−1

) ∑
x∈S,|S|=s

d(S).

Since d({x}) �= 0 but d(S) = 0 mod p for all S in the right-hand side, it must be the

case that p divides (
k−1

s−1
). We thus conclude that p divides (

k−1

i ) for all 1 ≤ i ≤ k − 1.

By the result of Kummer on binomial coefficients, this happens only if k − 1 is a

power of p. �
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