ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism

Michael Giudici and Jing Xu
School of Mathematics and Statistics The University of Western Australia Crawley 6009 WA Australia

DOI: 10.1007/s10801-006-0032-5

Abstract

The polycirculant conjecture states that every transitive 2-closed permutation group of degree at least two contains a nonidentity semiregular element, that is, a nontrivial permutation whose cycles all have the same length. This would imply that every vertex-transitive digraph with at least two vertices has a nonidentity semiregular automorphism. In this paper we make substantial progress on the polycirculant conjecture by proving that every vertex-transitive, locally-quasiprimitive graph has a nonidentity semiregular automorphism. The main ingredient of the proof is the determination of all biquasiprimitive permutation groups with no nontrivial semiregular elements.

Pages: 217–232

Keywords: keywords locally-quasiprimitive graphs; semiregular automorphism; biquasiprimitive; 2-closure

Full Text: PDF

References

1. N. Biggs, “Three remarkable graphs,” Canad. J. Math. 25 (1973), 397-411.
2. P.J. Cameron, M. Giudici, G.A. Jones, W.M. Kantor, M.H. Klin, D. Maru\check si\check c, and L.A. Nowitz, “Transitive permutation groups without semiregular subgroups,” J. London Math. Soc. 66 (2002), 325-333.
3. P.J. Cameron (ed.), “Problems from the fifteenth British combinatorial conference,” Discrete Math. 167/168 (1997), 605-661. Springer J Algebr Comb (2007) 25:217-232
4. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
5. J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York-Heidelberg-Berlin, 1996.
6. E. Dobson, A. Malni\check c, D. Maru\check si\check c, and L.A. Nowitz, “Minimal normal subgroups of transitive permutation groups of square-free degree”, to appear in Discrete Math.
7. E. Dobson, A. Malni\check c, D. Maru\check si\check c, and L.A. Nowitz, “Semiregular automorphisms of vertex-transitive graphs of certain valencies”, to appear in J. Combin. Theory Ser. B.
8. S.F. Du, J.H. Kwak, and M.Y. Xu, “2-arc-transitive regular covers of complete graphs having the covering transformation group Z 3p,” J. Combin. Theory Ser. B. 93 (2005), 73-93.
9. S.F. Du, D. Maru\check si\check c, and A.O. Waller, “On 2-arc-transitive covers of complete graphs,” J. Combin. Theory Ser. B. 74 (1998), 276-290.
10. X.G. Fang and C.E. Praeger, “Finite two-arc transitive graphs admitting a Suzuki simple group,” Comm. Algebra 27 (1999), 3727-3754.
11. X.G. Fang and C.E. Praeger, “Finite two-arc transitive graphs admitting a Ree simple group,” Comm. Algebra 27 (1999), 3755-3769.
12. B. Fein, W.M. Kantor, and M. Schacher, “Relative Brauer groups. II',” J. Reine Angew. Math. 328 (1981), 39-57.
13. M. Giudici, “Quasiprimitive permutation groups with no fixed point free elements of prime order,” J. London Math. Soc. 67 (2003), 73-84.
14. M. Giudici, “New constructions of groups without semiregular subgroups,” submitted.
15. A. Hassani, L.R. Nochefranca, and C.E. Praeger, “Two-arc transitive graphs admitting a twodimensional projective linear group,” J. Group Theory 2 (1999), 335-353.
16. A.A. Ivanov and M.E. Iofinova, “Biprimitive cubic graphs, in Investigations in the Algebraic Theory of Combinatorial Objects,” Kluwer, 1993, pp. 459-472.
17. A.A. Ivanov and C.E. Praeger, “On finite affine 2-arc transitive graphs,” European J. Combin. (1993), 421-444.
18. D. Jordan, “Eine symmetrieeigenschaft von graphen,graphentheorie und ihre anwendungen (Stadt Wehlen, 1988),” Dresdner Reihe Forsch. 9 (1988), 17-20.
19. C.H. Li, “The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s \geq 4,” Trans. Amer. Math. Soc. 353 (2001), 3511-3529.
20. C.H. Li, C.E. Praeger, A. Venkatesh, and S. Zhou, “Finite locally-quasiprimitive graphs,” Discrete Math. 246 (2002), 197-218.
21. C.H. Li, and Á. Seress, “Constructions of quasiprimitive two-arc transitive graphs of product action type.” in A. Hulpke, R. Liebler, T. Penttila, Á. Seress (eds.), Finite Geometries, Groups and Computation, Walter de Gruyter 2006, pp. 115-124.
22. D. Maru\check si\check c, “On vertex symmetric digraphs,” Discrete Math. 36 (1981), 69-81.
23. D. Maru\check si\check c and R. Scapellato, “Permutation groups, vertex-transitive digraphs and semiregular automorphisms,” European J. Combin. 19 (1998), 707-712.
24. D. Maru\check si\check c, “On 2-arc-transitivity of Cayley graphs,” J. Combin. Theory Ser. B. 87 (2003), 162-196.
25. C.E. Praeger, “Imprimitive symmetric graphs,” Ars Combin. 19 A (1985), 149-163.
26. C.E. Praeger, “On a reduction theorem for finite, bipartite 2-arc-transitive graphs,” Australas J. Comb. 7 (1993), 21-36.
27. C.E. Praeger, “An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs,” J. London Math. Soc. 47(2) (1993), 227-239.
28. C.E. Praeger, “Finite transitive permutation groups and finite vertex transitive graphs,” in G. Hahn and G. Sabidussi (eds.), Graph Symmetry, NATO Advanced Science Institute Series C, Mathematical and Physical Sciences, Vol. 497, Kluwer Academic Publishing, Dordrecht, 1997, pp. 277-318.
29. C.E. Praeger, “Finite quasiprimitive graphs,” in R.A. Bailey (ed.), London Mathematical Society, Lecture Note Series, Cambridge University Press, Cambridge, 1997, Vol. 241, pp. 65-85.
30. C.E. Praeger, “Finite transitive permutation groups and bipartite vertex-transitive graphs,” Illinois J. Math. 47 (2003), 461-475.
31. C.E. Praeger and J. Saxl, “Closures of finite primitive permutation groups,” Bull. London Math. Soc. 24 (1992), 251-258.
32. W.T. Tutte, “A family of cubical graphs,” Proc. Cambridge Philos. Soc. 43 (1947), 459-474.
33. W.T. Tutte, “On the symmetry of cubic graphs,” Canad. J. Math. 11 (1959), 621-624.
34. R. Weiss, “The nonexistence of 8-transitive graphs,” Combinatorica 1 (1981), 309-311.
35. H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lecture Notes, Ohio State University, Columbus,
1969. Also publised in: Wielandt, Helmut, Mathematische Werke/Mathematical works. Vol.
1. Group theory. Walter de Gruyter & Co., Berlin, 1994, pp. 237- 296.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition