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Abstract We give a short, self-contained derivation of the Möbius function for the
Bruhat orderings of Coxeter groups and their parabolic quotients.
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Introduction

The Bruhat orderings of Coxeter groups and their parabolic quotients play a significant
role in representation theory and related geometry, primarily due to the fact that in
special cases, these partial orderings encode the inclusions of Schubert varieties in
generalized flag varieties. In particular, the Möbius functions of these orderings are
of interest since they (1) occur naturally in inversion formulas involving sums over
Bruhat subintervals, and (2) provide topological information about the associated chain
complexes (namely, reduced Euler characteristics for subintervals).

The Möbius function for the Bruhat order was first obtained by Verma [10], although
his proof had a flaw that he later corrected in an unpublished paper (see the discussion in
Section 8.5 of [7]). Deodhar subsequently proved a generalization covering the case of
parabolic quotients [5]. Another way to obtain the Möbius function has been developed
by Björner and Wachs [2] (see also [1] and [6]), and is based on a lexicographic shelling
of the Bruhat order and its parabolic quotients. Kazhdan and Lusztig also point out
(see Remark 3.3 of [9]) how to obtain the Möbius function for the full Bruhat orderings
of finite Coxeter groups from basic properties of Kazhdan-Lusztig polynomials.

The goal of this paper is to derive these Möbius functions by a short, self-contained
argument; it is noteworthy that the apparent lack of such an approach has been men-
tioned in the literature (see Section 6 of [4]). For the full Bruhat order, once the
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preliminaries in Sections 1 and 2 are out of the way, the proof amounts to an easy
calculation in the 0-Hecke algebra (see Lemma 3.2). In the symmetric group case, a
similar calculation involving divided difference operators has been given by Lascoux
(Lemma 1.13 of [8]).

For parabolic quotients, we use a similarly pleasant calculation in a module for the
0-Hecke algebra (see Lemma 4.3). We have not seen this calculation elsewhere; the
only previous derivations of the Möbius function in the parabolic case we have seen
are the ones based on the shelling argument of Björner-Wachs, and Deodhar’s original
proof.

1. The Bruhat order

Let (W, S) be a Coxeter system. For each w ∈ W , we let �(w) denote the minimum
length among all expressions w = s1 · · · sl (si ∈ S). By Tits’ Theorem [3, IV.5], one
knows that any reduced (i.e., minimum-length) expression for w may be transformed
into any other by a sequence of braid relations; i.e., relations of the form

(st)m = (ts)m if st has order 2m,

(st)ms = (ts)mt if st has order 2m + 1

for all s, t ∈ S such that st has finite order in W .
Let ‘≤’ denote the Bruhat ordering of W . The most suitable definition of this

ordering for our purposes is based on the Subword Property; i.e.,

x ≤ w ⇔ for some (equivalently, every) reduced expression w = s1 · · · sl ,
there is a reduced subword x = si1

· · · sik (1 ≤ i1 < · · · < ik ≤ l).

The lack of dependence on the chosen reduced expression for w (and thus, transitivity)
is an easy consequence of Tits’ Theorem. Indeed, if two reduced expressions for w

differ by a single braid relation, then the corresponding sets of reduced subwords are
identical except for those that involve taking every term that participates in the braid
relation.

The following result is a well-known recursive characterization of the Bruhat or-
dering (e.g., see [10] or Theorem 1.1 of [5]). We include a proof for the sake of
completeness.

Proposition 1.1. For all x, w ∈ W and s ∈ S such that �(sw) < �(w),

x ≤ w if and only if

{
�(sx) < �(x) and sx ≤ sw, or

�(sx) > �(x) and x ≤ sw.

Proof: Since �(sw) < �(w), there is a reduced expression of the form w = s1 · · · sl

with s1 = s. In particular, sw ≤ w. Thus if x ≤ sw, then transitivity implies x ≤ w.
If sx ≤ sw and �(sx) < �(x), then there is a reduced expression sx = si1

· · · sik with
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i1 > 1, and x = s1si1
· · · sik is a (necessarily) reduced expression that occurs as a sub-

word of s1 · · · sl ; i.e., x ≤ w. Conversely, suppose x ≤ w and x = si1
· · · sik is reduced.

If �(sx) > �(x), then i1 > 1 and this expression occurs as a subword of s2 · · · sl (i.e.,
x ≤ sw). If �(sx) < �(x), then by the Exchange Property [3, IV.5], a reduced expres-
sion for x may be obtained by deleting a single term from si1

· · · sik and prepending
s = s1, so sx has a reduced expression that occurs as a subword of s2 · · · sl ; i.e.,
sx ≤ sw. �

For the remainder of this paper, the definition of the Bruhat order could be discarded,
saving only the above result and the fact that 1 is the minimum element. However, one
should avoid the temptation to use Proposition 1.1 as the basis of a definition, since it
would not be clear a priori that different choices for s lead to consistent results.

2. The 0-Hecke algebra

Let H denote the Iwahori-Hecke algebra associated to (W, S) with parameter q = 0.
More explicitly, define H to be the Q-algebra with unit element 1, generators {vs :
s ∈ S}, quadratic relations

v2
s = −vs (s ∈ S),

and the braid relations of (W, S); i.e.,

(vsvt )
m = (vtvs)m if st has order 2m,

(vsvt )
mvs = (vtvs)mvt if st has order 2m + 1

for all s, t ∈ S such that st has finite order in W .
Given the braid relations, Tits’ Theorem implies that for each group element w ∈ W ,

there is a well-defined element vw ∈ H such that

vw = vs1
· · · vsl

for all reduced expressions w = s1 · · · sl (si ∈ S).
The following is the q = 0 case of a standard but nontrivial fact about Iwahori-

Hecke algebras that is often the first thing one proves when they are introduced (e.g.,
see Chapter 7 of [7]). The q = 0 case is much easier, and since it is essentially the
only feature of H that we need, we include a proof.

Proposition 2.1. The elements {vw : w ∈ W } form a basis for H.

Proof: It is clear that the alleged basis spans H . To establish independence, let us
introduce linear operators As (s ∈ S) on the group algebra QW by setting

As(w) =
{

sw if �(sw) > �(w),

w if �(sw) < �(w).
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It is immediate that A2
s = As , and we claim that these operators also satisfy the braid

relations of (W, S). Indeed, if st has order 2m or 2m + 1 in W (s, t ∈ S), then (st)m

or (st)ms is the longest element of the dihedral subgroup 〈s, t〉, and it follows from
the well-known structure of parabolic cosets (e.g., see Exercise IV.1.3 of [3]) that
(As At )

m(w) or (As At )
m As(w) is the longest element of the coset 〈s, t〉w. The latter

is clearly symmetric in s and t , and hence the corresponding braid relation holds. It
follows that vs �→ −As defines a representation of H as an algebra of endomorphisms
of QW . Equivalently, QW is an H -module. Since vw maps the unit element of QW
to ±w under this action, the independence follows. �

3. The Möbius function

Let μ denote the Möbius function for the Bruhat order; i.e., the unique integer function
on pairs x ≤ w in W such that μ(w, w) = 1 and

∑
x≤y≤w μ(y, w) = 0 if x < w.

Theorem 3.1. (Verma). We have μ(x, w) = (−1)�(w)−�(x) for all x ≤ w in W .

Our proof follows from an easy calculation in H .

Lemma 3.2. If w = s1 · · · sl is reduced, then

(vs1
+ 1) · · · (vsl + 1) =

∑
x≤w

vx .

Proof: The case w = 1 is trivial, so assume l > 0 and set s = s1. By induction we
may assume the result to be true for sw = s2 · · · sl , and hence

(vs1
+ 1) · · · (vsl + 1) =

∑
x≤sw

(vs + 1)vx .

If there is a reduced expression for x starting with s, then (vs + 1)vx = (vs + 1)vsvsx =
0. If there is no such expression, then �(sx) > �(x) and vsvx = vsx , whence∑

x≤sw

(vs + 1)vx =
∑

x≤sw, �(sx)>�(x)

vsx + vx .

The above sum has exactly one copy of vy for each y ≤ w, by Proposition 1.1. �

Let us introduce a second set of generators for H by defining

us := vs + 1 (s ∈ S).

In these terms, Lemma 3.2 may be restated as the identity

uw =
∑
x≤w

vx , (1)

Springer



J Algebr Comb (2007) 25:141–148 145

where uw := us1
· · · usl for any reduced expression w = s1 · · · sl . Note that the right

side of (1) depends only on w, so uw does not depend on the choice of reduced
expression.

Lemma 3.3. The map vs �→ −us (s ∈ S) defines a ring involution on H.

Proof: If w is the longest element of some (finite) parabolic subgroup generated by
a pair s, t ∈ S, then the expression-independence of uw implies that us and ut satisfy
the corresponding braid relation of (W, S). Also, it is easy to check that u2

s = us ,
so the elements {−us : s ∈ S} obey the defining relations of H , and thus there is a
unique automorphism of H such that vs �→ −us for all s ∈ S. Since us = (vs + 1) �→
1 − us = −vs , this automorphism is an involution. �

Proof of Theorem 3.1. Applying the involution of Lemma 3.3 to (1), we obtain

vw =
∑
x≤w

(−1)�(w)−�(x)ux . (2)

The fact that this inverts (1) shows that (x, w) �→ (−1)�(w)−�(x) satisfies the defining
property of the Möbius function. �

4. The parabolic case

Let WJ denote the parabolic subgroup of W generated by some fixed J ⊆ S, and let

W J = {w ∈ W : �(ws) > �(w) for all s ∈ J }

denote the unique set of minimal coset representatives for W/WJ (Exercise IV.1.3
in [3]). It is well-known (ibid) that for all x ∈ W J and y ∈ WJ , one has

�(xy) = �(x) + �(y). (3)

Lemma 4.1. For all x ∈ W J and s ∈ S, either sx ∈ W J , or �(sx) > �(x) and sx = xt
for some t ∈ J .

Proof: If sx /∈ W J , then �(sxt) < �(sx) for some t ∈ J . If �(sx) < �(x), this forces
�(xt) < �(x) and contradicts having x ∈ W J . Hence �(sx) > �(x) and sx has a re-
duced expression of the form ss1 · · · sl . By the Exchange Property, it is possible to
transform this into another reduced expression for sx by appending t and deleting
either s or some si . In the former case, sx = xt ; in the latter, we obtain �(xt) < �(x),
a contradiction. �

Define a binary relation on W J by declaring

x � w ⇔ x ≤ w and xt � w for all t ∈ J .

Unlike the Bruhat order (the case J = ∅), this relation need not be transitive.

Springer



146 J Algebr Comb (2007) 25:141–148

Lemma 4.2. For all x, w ∈ W J and s ∈ S such that �(sw) < �(w),

x � w if and only if

{
�(sx) < �(x) and sx � sw, or

�(sx) > �(x), x � sw and sx ∈ W J .

Note that in the above context, Lemma 4.1 implies sw ∈ W J .

Proof: Suppose �(sx) < �(x). In that case, Proposition 1.1 implies x ≤ w if and
only if sx ≤ sw. We also have sx ∈ W J (Lemma 4.1), so for all t ∈ J we have
�(sxt) < �(xt), and hence xt ≤ w if and only if sxt ≤ sw (Proposition 1.1); i.e.,
x � w if and only if sx � sw.

The remaining possibility is that �(sx) > �(x). In that case, we have x ≤ w if and
only if x ≤ sw, again by Proposition 1.1. If sx /∈ W J , then Lemma 4.1 implies sx = xt
for some t ∈ J . On the other hand, x � w implies x ≤ w, and hence x ≤ sw and
sx = xt ≤ w (for the latter, apply Proposition 1.1 to the pair (sx, w)), a contradiction.
Thus we may add the condition sx ∈ W J to our assumptions about x . For all t ∈ J ,
it follows that �(sxt) > �(xt), and thus xt ≤ w if and only if xt ≤ sw; i.e., x � w if
and only if x � sw. �

Recall from the proof of Proposition 2.1 that QW may be viewed as an H -module
in which −vs(w) = sw (if �(sw) > �(w)) or w (if �(sw) < �(w)). We claim that

MJ := Span{w − wy : w ∈ W J , y ∈ WJ }

is an H -submodule of QW . Indeed, given w ∈ W J and y ∈ WJ , consider −vs(w −
wy). If sw ∈ W J then (3) implies �(sw) < �(w) if and only if �(swy) < �(wy), and
hence −vs(w − wy) = w − wy or sw − swy. Either way, −vs(w − wy) ∈ MJ . By
Lemma 4.1, the only other possibility is that sw = wt for some t ∈ J , in which case
−vs(w) = wt and −vs(wy) = wy′, where y′ ∈ WJ is the longer of t y or y. Hence

−vs(w − wy) = wt − wy′ = (w − wy′) − (w − wt) ∈ MJ ,

proving the claim. The quotient module QW/MJ has a basis {[w]J : w ∈ W J }, where

[w]J := w + MJ .

Furthermore, if sw = wt for some t ∈ J (i.e., sw /∈ W J ), then −vs(w) = wt = w

mod MJ , so −vs acts on this basis via the rule

−vs[w]J =
{

[sw]J if sw ∈ W J and �(sw) > �(w),

[w]J otherwise.
(4)

Note that if WJ is finite with longest element z, this is isomorphic to the action of −vs

on the left ideal of H generated by vz , relative to the basis {(−1)�(w)vwz : w ∈ W J }.
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The following calculation generalizes Lemma 3.2.

Lemma 4.3. For all w ∈ W J, we have

uw[1]J =
∑
x�w

vx [1]J =
∑
x�w

(−1)�(x)[x]J .

Proof: The case w = 1 is trivial, so assume there is some s ∈ S such that �(sw) <

�(w). In that case, we have uw = (vs + 1)usw and sw ∈ W J , so by induction,

uw[1]J = (vs + 1)usw[1]J =
∑

x�sw

(vs + 1)vx [1]J =
∑

x�sw

(−1)�(x)(vs + 1)[x]J .

If �(sx) < �(x) or sx /∈ W J , then (4) implies (vs + 1)[x]J = 0, and hence

uw[1]J =
∑

x�sw, �(sx)>�(x), sx∈W J

(−1)�(sx)[sx]J + (−1)�(x)[x]J .

Lemma 4.2 implies that this sum ranges over those x such that x � w and �(sx) > �(x),
and at the same time, y = sx ranges over those y � w such that �(sy) < �(y). �

Theorem 4.4 (Deodhar). As a subposet of (W, ≤), the Möbius function for W J is

μJ (x, w) =
{

(−1)�(w)−�(x) if x � w,

0 otherwise.

Proof: Given w ∈ W J , use (2) to apply vw to [1]J in QW/MJ , obtaining

(−1)�(w)[w]J = vw[1]J =
∑
x≤w

(−1)�(w)−�(x)ux [1]J .

If x /∈ W J , then ux = uxsus for some s ∈ J , and (4) implies us[1]J = 0, so

[w]J =
∑

x≤w, x∈W J

(−1)�(x)ux [1]J .

Inverting this relationship, one sees that μJ (x, w) is the coefficient of [x]J in the
expansion of (−1)�(w)uw[1]J , and that Lemma 4.3 provides this expansion. �
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