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Abstract Some new families of caps in Galois affine spaces AG(N , q) of dimension
N ≡ 0 (mod 4) and odd order q are constructed. Such caps are proven to be complete
by using some new ideas depending on the concept of a regular point with respect to
a complete plane arc. As a corollary, an improvement on the currently known upper
bounds on the size of the smallest complete caps in AG(N , q) is obtained.
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1. Introduction

A k-cap in AG(N , q), the affine N -dimensional space over the finite field with q
elements Fq , is a set of k points no three of which are collinear. A k-cap is said to be
complete if it is not contained in a (k + 1)-cap. A k-cap in AG(2, q) is also called a
k-arc.

The central problem on caps is determining the maximal and minimal sizes of
complete caps in a given space, see the survey papers [1, 13] and the references
therein. As the only complete cap in AG(N , 2) is the whole AG(N , 2), from now on
we assume q > 2. For the size t2(AG(N , q)) of the smallest complete cap in AG(N , q),
the trivial lower bound is t2(AG(N , q)) >

√
2q

N−1
2 . Unlike the even order case, where

for every dimension N ≥ 3 there exist complete caps in AG(N , q) with less than q
N
2

points ([9, 10, 16, 17], see Remark 1.5), for q odd complete k-caps in AG(N , q) with
k ≤ q

N
2 are known to exist only for N ≡ 2 (mod 4) and for small values of N and q
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([2, 6, 7, 8, 15], see Remark 1.5). The aim of this paper is to describe small complete
caps in AG(N , q) with q odd and N ≡ 0 (mod 4). Our results are summarized in the
following theorems.

Theorem 1.1. Let q be odd and s ≥ 1. For any k for which there exists a complete
k-cap in AG(s, q), there also exists a complete (q2sk)-cap in AG(4s, q).

The proof of Theorem 1.1 is constructive. First, certain q2s-caps in AG(4s, q) are
constructed by using an idea of Davydov and Östergård [8]. Then, k copies of such
caps are put together in a proper way in order to obtain complete (q2sk)-caps.

Theorem 1.2. Let q be odd and s ≥ 1.
(A) If q > 5, then there exists a complete cap of size q2s−1(q + 2) in AG(4s, q).
(B) If q > 13, then there exists a complete cap of size q2s in AG(4s, q).
(C) If q > 762, then there exists a complete cap of size 1

2
(q2s − 3q2s−1) in AG(4s, q).

It should be noted that the caps in Theorem 1.2 are constructed by the known cartesian
product method, see [1, Theorem 4]. However, the proof of their completeness needs
some new ideas depending on the concept of a regular point with respect to a complete
arc in AG(2, q), see Proposition 4.2, which can be viewed as an extension of the
concept of a regular point with respect to a conic due to Segre [18].

Theorem 1.2 has the following corollary.

Corollary 1.3. If q is odd, q > 13, and N ≡ 0 (mod 4), then

t2(AG(N , q)) ≤ q
N
2 .

If, in addition, q > 762 then

t2(AG(N , q)) ≤ 1

2

(
q

N
2 − 3q

N
2
−1

)
.

Results on complete caps in projective spaces can be deduced from results on com-
plete caps in affine spaces, and conversely. Let PG(N , q) be the projective N -
dimensional space over Fq ; also let t2(N , q) be the minimum size of a complete
cap in PG(N , q), and m2(N , q) be the maximum size of a complete cap in PG(N , q).
For any hyperplane H∞ of PG(N , q), the affine space obtained by removing the
points of H∞ is isomorphic to AG(N , q). A complete k-cap K in PG(N , q) can
then be viewed as a complete cap in AG(N , q), provided that there exists a hy-
perplane containing no point of K . Conversely, for any embedding of AG(N , q) in
PG(N , q), it is always possible to obtain a complete cap in PG(N , q) from a com-
plete cap of AG(N , q) by adding some points on the hyperplane at infinity. Therefore
t2(N , q) ≤ t2(AG(N , q)) + m2(N − 1, q). The following bounds then follow from
(B) and (C) of Theorem 1.2.
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Corollary 1.4. Let t2(N , q) be the minimum size of a complete cap in PG(N , q). Let
m2(N − 1, q) be the maximum size of a complete cap in PG(N − 1, q). Assume q is
odd and N ≡ 0 (mod 4).� If q > 13, then t2(N , q) ≤ q

N
2 + m2(N − 1, q).� If q > 762, then t2(N , q) ≤ 1

2
(q

N
2 − 3q

N
2
−1) + m2(N − 1, q) .

In particular,� if q > 13, then t2(4, q) ≤ 2q2 + 1;� if q > 762, then t2(4, q) ≤ 3
2
q2 − 3

2
q + 1 .

Note that the bound t2(4, q) ≤ 2q2 + 1 is a new result for q > 17, as smaller complete
caps in PG(4, q) are known for q ∈ {7, 9, 11, 13, 17} (see [6, Table 4]).

Finally, it should be noted that the problem of determining the minimun size of a
complete cap in a given space is of particular interest in Coding Theory, see e.g. the
survey paper [13]. In Section 6 some features of the linear codes associated to the caps
presented in this paper are considered.

Remark 1.5. A computer search has shown that for each of the caps in PG(N , q)
described in [2, 6, 7], there exists a hyperplane disjoint from the cap; this happens for
the caps constructed in [15] for N ∈ {3, 4} as well, with the exception of the 72-cap
in PG(4, 8). Therefore such caps can be viewed as complete caps in AG(N , q).
Also, some known constructions of infinite families of complete caps in PG(N , q)
are based on a complete cap K in an affine space PG(N , q) \ H∞, to which some
properly chosen points on H∞ are added (see [8, 10, 16, 17]; note that in [8, 16, 17]
the completeness of K in the affine space is proven without being explicitly stated).
Results on t2(AG(N , q)) that can be deduced from [8, 10, 16, 17] are reported in the
following table.

q N t2(AG(N , q)) ≤ Reference

q even, q > 2 N = 3 2q [17, Paragraph 3]

q even, q > 2 N even q
N
2 [16, Section 3]

q even, q > 2 N odd 2q
N−1

2 [16, Section 3]

q even, q ≥ 32 N even 1
2 q

N
2 [10, Theorem 1.2]

q odd, q ≥ 5 N ≡ 2 (mod 4) q
N
2 [8, Theorem 2]

2. Caps of size q
N
2 in AG(N, q), N even

Throughout this section, we assume that q is an odd prime power and that N is even. Let
q ′ = q

N
2 . Fix a basis of Fq ′ as a linear space over Fq , and identify points in AG(N , q)

with vectors of Fq ′ × Fq ′ .
Our starting point is the following result, due to Davydov and Östergård (it follows

immediately from the proof of Theorem 2 in [8]).

Springer



152 J Algebr Comb (2007) 25:149–168

Proposition 2.1. The point set K = {(α, α2) | α ∈ Fq ′ } is a cap in AG(N , q). If N ≡
2 (mod 4), then K is complete.

The first assertion of Proposition 2.1 can be generalized as follows.

Proposition 2.2. Let j ∈ {0, 1, . . . , N
2

− 1}. Then the point set

K j = {(
α, αq j +1

) ∣∣ α ∈ Fq ′
}

is a cap in AG(N , q).

Proof: Let q̄ = q j . Assume that (γ, γ q̄+1) belongs to the line joining (α, αq̄+1) to
(β, β q̄+1), with α, β, γ pairwise distinct elements in Fq ′ . By [12, Lemma 2.1], there
exists t ∈ Fq , t 
= 0, t 
= 1, such that{

γ = α + t(β − α)

γ q̄+1 = αq̄+1 + t(β q̄+1 − αq̄+1)
.

As (β − α)q̄ = β q̄ − αq̄ , it follows that

0 = t(1 − t)(β − α)q̄+1 ,

which is impossible. �

Note that for any η ∈ Fq ′ , j ∈ {0, 1, . . . , N
2

− 1}, the map

Lη : Fq ′ × Fq ′ → Fq ′ × Fq ′

(X, Y ) �→ (
X, Y + ηXq j + ηq j

X
)

is Fq -linear. Then the map

�η : AG(N , q) → AG(N , q)

(X, Y ) �→ Lη(X, Y ) + (
η, ηq j +1

)
is an affinity of AG(N , q). It is straightforward to check that the group of affinities of
AG(N , q),

G j := {�η | η ∈ Fq ′ },

acts regularly on the points of the cap K j from Proposition 2.2.
Let Hj be the subgroup of the multiplicative group of Fq ′ consisting of the non-zero

(q j + 1)-th powers in Fq ′ . Also, let C j consist of the union of sets (t − t2)Hj with t
ranging over Fq .
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Lemma 2.3. Let K j be as in Proposition 2.2. A point P = (a, b) ∈ AG(N , q) belongs
to a secant of K j if and only if b − aq j +1 ∈ C j .

Proof: Let q̄ = q j . Assume that P belongs to the line joining (α, αq̄+1) to (β, β q̄+1).
Then there exists t ∈ Fq such that{

a = α + t(β − α)

b = αq̄+1 + t(β q̄+1 − αq̄+1).

Then

b − aq̄+1 = t(1 − t)(β − α)q̄+1 ∈ C j .

Conversely, let t ∈ Fq be such that b − aq̄+1 ∈ (t − t2)Hj . Clearly t ∈ {0, 1} if and

only if P ∈ K j . Assume then that t /∈ {0, 1}. Let γ ∈ Fq ′ be such that γ q̄+1 = b−aq̄+1

t−t2 .
Note that γ 
= 0, as otherwise P ∈ K j . Let α = a − tγ and β = a + (1 − t)γ . Then
it is straightforward to check that

a = α + t(β − α) , b = αq̄+1 + t(β q̄+1 − αq̄+1),

that is, P belongs to the line joining (α, αq̄+1) and (β, β q̄+1). �

The following lemma is a well-known result on finite fields (see e.g. [12])

Lemma 2.4. If q > 3, then the set {t − t2 | t ∈ Fq} contains both a non-zero square
in Fq and a non-square in Fq .

Proposition 2.5. Let K j be as in Proposition 2.2. If q > 3, then K j is complete if and
only if N ≡ 2 (mod 4) and (q

N
2 − 1, q j + 1) = 2.

Proof: By Lemma 2.3, the cap K j is complete if and only if the set C j coincides with

Fq ′ . Note that every non-zero square in Fq is an element of Hj , since a2 = aq j +1 holds
for any a ∈ Fq . Then, by Lemma 2.4,

C j = Hj ∪ s Hj ∪ {0},

s being any non-square in Fq . The set C j then coincides with Fq ′ if and only if both
of the following conditions hold:

(i) the index of Hj as a subgroup of the multiplicative group of Fq ′ is equal to 2, that

is (q
N
2 − 1, q j + 1) = 2;

(ii) any non-square element in Fq belongs to Fq ′ \ Hj .

Note that condition (i) is equivalent to Hj coinciding with the subgroup of non-zero
squares in Fq ′ . Therefore, provided that (i) holds, condition (ii) is equivalent to N

2

being odd. This completes the proof. �
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We end this section by noticing that the completeness of K j holds in a stronger
sense.

Lemma 2.6. Let K j be as in Proposition 2.2. Assume that q > 3, N ≡ 2 (mod 4)

and (q
N
2 − 1, q j + 1) = 2. Let P = (a, b) ∈ AG(N , q) \ K j . If b − aq j +1 is a non-

zero square in Fq ′ , then for any t ∈ Fq such that t − t2 is a non-zero square in Fq

there exist P1, P2 ∈ K j such that P = P1 + t(P2 − P1). Similarly, if b − aq j +1 is a
non-square in Fq ′ , then for any t ∈ Fq such that t − t2 is a non-square in Fq there
exist P1, P2 ∈ K j such that P = P1 + t(P2 − P1).

Proof: Assume that b − aq j +1 is a non-zero square in Fq ′ , and let t ∈ Fq be such
that t − t2 is a non-zero square in Fq . Then b − aq j +1 ∈ (t − t2)S, where S is the set
of non-zero squares in Fq ′ . As (q

N
2 − 1, q j + 1) = 2, S coincides with the subgroup

Hj . Note also that t ∈ Fq implies t2 = tq j +1. Then there exists γ ∈ Fq ′ such that
γ q j +1 = b−aq j +1

t−tq j +1
. Note that γ 
= 0, as otherwise P ∈ K j . Let α = a − tγ and β =

α + γ . Then it is straightforward to check that

a = α + t(β − α) , b = αq j +1 + t
(
βq j +1 − αq j +1

)
,

that is, P = P1 + t(P2 − P1), where P1 = (α, αq j +1) and P2 = (β, βq j +1).
The proof of the assertion for b − aq j +1 non-square in Fq ′ is analogous. �

3. Proof of Theorem 1.1

We keep the notation used in Section 2. Throughout this section, N is assumed to be
divisible by 4.

Let s = N
4

and q̄ = qs . Fix a basis of Fq̄ over Fq , so that any subset of points of
AG(s, q) can be viewed as a subset of Fq̄ . Also, let q ′ = q2s .

Proposition 3.1. Let C be a cap in AG(s, q), viewed as a subset of Fq̄ . Let w be a
primitive element of Fq ′ . Then the point set

K̄ =
⋃
ν∈C

{
(α, αq̄+1 + wν) | α ∈ Fq ′

}
is a cap in AG(N , q) that is preserved by the group Gs.

Proof: For ν ∈ C , denote by Kν = {(α, αq̄+1 + wν) | α ∈ Fq ′ }. Clearly each Kν is
affinely equivalent to Ks , whence Kν is a cap in AG(N , q).

Note that Gs acts regularly on Kν . Then to prove the assertion it is enough to show
that P1 = (0, wν1), P2 = (α, αq̄+1 + wν2), P3 = (β, β q̄+1 + wν3) are not collinear
for any α, β ∈ Fq ′ , ν1, ν2, ν3 in C . Suppose on the contrary that there exists t ∈ Fq
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such that {
0 = α + t(β − α)

wν1 = αq̄+1 + wν2 + t(β q̄+1 + wν3 − αq̄+1 − wν2).

Then

w(ν1 − ν2 − t(ν3 − ν2)) = αq̄+1 + t(β q̄+1 − αq̄+1) . (3.1)

Note that both ν1 − ν2 − t(ν3 − ν2) and αq̄+1 + t(β q̄+1 − αq̄+1) belong to Fq̄ . Then
(3.1) yields ν1 = ν2 + t(ν3 − ν2), which is impossible as C is a cap in AG(s, q). �

Proposition 3.2. Let K̄ be as in Proposition 3.1. If C is complete in AG(s, q), then
K̄ is a complete cap in AG(N , q).

Proof: Let P = (a, b) in AG(N , q) \ K̄ . Let b − aq̄+1 = u + wv, with u, v ∈ Fq̄ .
Assume first that v ∈ C . Fix an element t ∈ Fq such that t − t2 
= 0. As u

t−t2 ∈ Fq̄ ,

there exists γ ∈ Fq ′ such that γ q̄+1 = u
t−t2 . Note that γ 
= 0, as otherwise P ∈ K̄ . Let

α = a − tγ and β = a + (1 − t)γ . Then it is straightforward to check that

a = α + t(β − α) , b = αq̄+1 + wv + t(β q̄+1 − αq̄+1),

that is, P belongs to the line joining (α, αq̄+1 + wv) and (β, β q̄+1 + wv).
Assume now that v /∈ C . As C is a complete cap, there exist ν1, ν2 in C such that

v = ν1 + t(ν2 − ν1) for some t ∈ Fq . Note that u
t−t2 ∈ Fq̄ implies that there exists

γ ∈ Fq ′ such that γ q̄+1 = u
t−t2 . Let α = a − tγ and β = a + (1 − t)γ . Then

a = α + t(β − α) , b = αq̄+1 + wν1 + t(β q̄+1 + wν2 − αq̄+1 − wν1),

that is, P belongs to the line joining (α, αq̄+1 + wν1) and (β, β q̄+1 + wν2). �

Proof of Theorem 1.1: Theorem 1.1 is a straightforward corollary to Proposition 3.2.
�

Remark 3.3. Proposition 3.2 provides a description of a complete (2q2)-cap K̄ in
AG(4, q), namely

K̄ = {
(α, αq+1) | α ∈ Fq2

} ∪ {
(α, αq+1 + w) | α ∈ Fq2

}
,

with w a primitive element of Fq2 .

Remark 3.4. Let N = 22n+1m, with n ≥ 1, m odd. Then the construction described
in Proposition 3.2, together with Proposition 2.1, provide an explicit description of a
complete cap in AG(N , q) of size

q
N
2 q

N
8 · · · q4mqm = q

N
2

(1+ 1
4
+ 1

16
+···+ 1

4n−1 )qm = q
2N−m

3 .
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4. Caps arising from arcs admitting few regular points

Throughout this section, q is assumed to be odd and N divisible by 4. Let q ′ = q
N−2

2 .
Fix a basis of Fq ′ as a linear space over Fq , and identify points in AG(N , q) with
vectors of Fq ′ × Fq ′ × Fq × Fq . Also, let c be a non-square in Fq . Note that as N−2

2
is

odd, c is a non-square in Fq ′ as well.
For an arc A in AG(2, q), let

K A = {(α, α2, u, v) ∈ AG(N , q) | α ∈ Fq ′ , (u, v) ∈ A} .

As K A is the cartesian product of a cap in AG(N − 2) by an arc A, by [1, Theorem
4] K A is a cap in AG(N , q). To investigate the completeness of K A in AG(N , q),
the concept of a regular point with respect to a complete arc in AG(2, q) is useful.
According to Segre [18], given three pairwise distinct points P, P1, P2 on a line � in
AG(2, q), P is external or internal to the segment P1 P2 depending on whether

(x − x1)(x − x2) is a non-zero square in Fq or not, (4.1)

where x , x1 and x2 are the coordinates of P , P1 and P2 with respect to any affine frame
of �. Definition 13 in [18] extends as follows.

Definition 4.1. Let A be a complete arc in AG(2, q). A point P ∈ AG(2, q)\ A is
regular with respect to A if P is external to any segment P1 P2, with P1, P2 ∈ A
collinear with P . The point P is said to be pseudo-regular with respect to A if it is
internal to any segment P1 P2, with P1, P2 ∈ A collinear with P .

Now we are in a position to prove the following proposition.

Proposition 4.2. Let A be a complete arc in AG(2, q) such that no point in AG(2, q)
is either regular or pseudo-regular with respect to A. Then K A is a complete cap in
AG(N , q).

Proof: Fix a point P = (a, b, x, y) ∈ AG(N , q) \ K A. Assume first that (x, y) ∈ A.
Then Lemma 2.6 for j = 0 ensures the existence of t ∈ Fq , α, β ∈ Fq ′ , α 
= β, such
that

(a, b) = (α, α2) + t((β, β2) − (α, α2)),

that is

(a, b, x, y) = (α, α2, x, y) + t((β, β2, x, y) − (α, α2, x, y)).

If b = a2, then by completeness of A there exists t ∈ Fq , (u1, v1), (u2, v2) ∈ A, such
that

(x, y) = (u1, v1) + t ((u2, v2) − (u1, v1)) ,
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that is

(a, b, x, y) = (a, b, u1, v1) + t ((a, b, u2, v2) − (a, b, u1, v1)) .

Now, assume that (x, y) /∈ A and that a2 − b is a non-square in Fq ′ . As (x, y) is not a
regular point with respect to A, there exists t ∈ Fq , (u1, v1), (u2, v2) ∈ A, such that

(x, y) = (u1, v1) + t ((u2, v2) − (u1, v1)) ,

with t2 − t a non-square in Fq . By Lemma 2.6, there exist α, β ∈ Fq ′ , α 
= β, such
that

(a, b) = (α, α2) + t((β, β2) − (α, α2)).

Then

(a, b, x, y) = (a, b, u1, v1) + t ((a, b, u2, v2) − (a, b, u1, v1)) . (4.2)

If (x, y) /∈ A and a2 − b is non-zero square in Fq ′ , then the same argument yields
(4.2). This completes the proof. �

Proposition 4.3. Let A be a complete arc in AG(2, q), admitting exactly one regular
point (x0, y0) and no pseudo-regular point. Then

K = K A ∪ {
(α, α2 − c, x0, y0) | α ∈ Fq ′

}
is a complete cap in AG(N , q).

Proof: Let K0 = {(α, α2 − c, x0, y0) | α ∈ Fq ′ }. Note that K0 is a cap contained in
the subspace 	 = AG(N − 2, q) × {(x0, y0)}. As K A is disjoint from 	, to prove that
K is a cap we only need to show that no point in K0 is collinear with two points in
K A. Assume on the contrary that

(α, α2 − c, x0, y0) = (β, β2, u1, v1) + t((γ, γ 2, u2, v2) − (β, β2, u1, v1))

for some (u1, v1), (u2, v2) ∈ A, t ∈ Fq , α, β, γ ∈ Fq ′ . Then,

(x0, y0) = (u1, v1) + t ((u2, v2) − (u1, v1)).

As (x0, y0) is regular with respect to A, t2 − t is a non-zero square in Fq . On the other
hand, {

α = β + t(γ − β)

α2 − c = β2 + t(γ 2 − β2)

implies c = (t2 − t)(γ − β)2, which is a contradiction as c is not a square in Fq ′ .
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To prove that K is complete, fix a point P = (a, b, x, y) ∈ AG(N , q) \ K . If either
(a) (x, y) ∈ A, or (b) b = a2, or (c) (x, y) /∈ A and a2 − b is a non-square in Fq ′ ,
or (d) (x, y) /∈ A, (x, y) 
= (x0, y0) and a2 − b is a non-zero square in Fq ′ , then one
can argue as in the proof of Proposition 4.2. Therefore, we only need to consider the
case (x, y) = (x0, y0), and a2 − b is a non-zero square in Fq ′ . Note that by Propo-
sition 2.1 the point (a, b + c) in AG(N − 2, q) is collinear with (α, α2) and (β, β2)
for some α, β ∈ Fq ′ . Then P = (a, b, x0, y0) is collinear with (α, α2 − c, x0, y0) and
(β, β2 − c, x0, y0). �

A similar result holds for A being a complete arc admitting exactly one pseudo-regular
point and no regular point. The proof is omitted as it is similar to that of Proposition
4.3.

Proposition 4.4. Let A be a complete arc in AG(2, q), admitting exactly one pseudo-
regular point (x0, y0) and no regular point. Then

K = K A ∪ {(α, α2 − c2, x0, y0) | α ∈ Fq ′ }

is a complete cap in AG(N , q).

Now both (A) and (B) of Theorem 1.2 can be easily proven.

Proof of (A) of Theorem 1.2: Let A be the complete arc in AG(2, q), q odd, consisting
of the (q + 1) points of an ellipse. In [18] it is proven that for q > 5 the center of the
ellipse is the only regular point with respect to A; also, no point in AG(2, q) \ A is
pseudo-regular with respect to A. Then the assertion follows from Proposition 4.3.

�

Proof of (B) of Theorem 1.2: Let A be the complete arc in AG(2, q), q odd, consisting
of the (q − 1) points of a hyperbola. By a result in [18], if q > 13 the center of the
hyperbola is the only point in AG(2, q) \ A which is either regular or pseudo-regular
with respect to A. Then the assertion follows from Propositions 4.3 and 4.4. �

5. Small complete caps arising from plane cubic curves

Statement (C) of Theorem 1.2 follows from Propositions 4.2, together with the exis-
tence of a complete ( q−3

2
)-arc A in AG(2, q) admitting neither regular nor pseudo-

regular points in AG(2, q).
Let q be odd, and let w be a primitive element of Fq . For α ∈ Fq , α 
= 0, α 
= w,

let

Pα :=
(

(α − 1)3

α2 − wα
,

α

α − w

)
∈ AG(2, q).

Denote by S the set of non-zero squares in Fq , and let

A := {Pα | α ∈ Fq \ S, α 
= 0, α 
= w}.
Springer
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Note that A is contained in the set of Fq -rational affine points of the plane cubic curve

E : w2(1 − Y )XY + ((w − 1)Y + 1)3 = 0.

Proposition 5.1. The point set A is a ( q−3
2

)-arc in AG(2, q).

Proof: Assume that three distinct points Pα, Pβ, Pγ ∈ A are collinear. Then,

det

⎛⎝(α − 1)3 α2 α2 − wα

(β − 1)3 β2 β2 − wβ

(γ − 1)3 γ 2 γ 2 − wγ

⎞⎠ = 0 .

Hence,

w(α − γ )(α − β)(β − γ )(αβγ − 1) = 0 ,

which is impossible as αβγ is not a square in Fq . �

For u, v ∈ Fq , let Gu,v(X, Y ) be the following polynomial:

Gu,v(X, Y ) = w4 X4Y 4(1 − v) + w4 X2Y 2(X2 + Y 2)v
+ w2 X2Y 2(−uw − 3vw − 3(1 − v))
+ w(X2 + Y 2)(1 − v) + vw .

(5.1)

Let Xu,v be the algebraic plane curve defined by Gu,v(X, Y ) = 0. The completeness
of A is related to the existence of some Fq -rational points of Xu,v .

Proposition 5.2. Let P = (u, v) be a point in AG(2, q) \ A. There exist two distinct
points of A collinear with P if and only if the curve Xu,v has an Fq -rational affine
point (x, y) satisfying

(i) x2 
= y2, x2 
= 0, y2 
= 0, x2 
= 1, y2 
= 1.

Proof: Assume that P is collinear with two points Pα and Pβ in A. Then

det

⎛⎜⎝(α − 1)3 α2 α2 − wα

(β − 1)3 β2 β2 − wβ

u v 1

⎞⎟⎠ = 0 , (5.2)

that is,

α2β2(1 − v) + αβ(α + β)(wv) + αβ(−uw − 3vw − 3(1 − v))

+ (α + β)(1 − v) + vw = 0 .
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As α and β are both non-square in Fq , there exist x, y ∈ Fq \ {0} such that α = wx2,
β = wy2, x2 
= y2. Also, both x2 
= 1 and y2 
= 1 hold, since α 
= w and β 
= w.

Conversely, assume that Xu,v admits an Fq -rational point (x, y) satisfying (i). Then
(5.2) holds for α = wx2 and β = wy2, whence P is collinear with Pα and Pβ . As both
Pα and Pβ belong to A, the proof is complete. �

Proposition 5.3. If either the point P = (u, v) ∈ AG(2, q) does not belong to E , or
v ∈ {0, 1}, then either Xu,v is absolutely irreducible, or it consists of two absolutely
irreducible Fq -rational quartic curves. If P ∈ E and v(v − 1) 
= 0, then Xu,v consists
of the four lines X = ±√

v
v−1

, Y = ±√
v

v−1
, together with two irreducible conics of

equations

XY −
√

v − 1

vw3
= 0 , XY +

√
v − 1

vw3
= 0 .

Proposition 5.3 essentially arises from straightforward computation. A detailed proof
is the object of the Appendix.

Proposition 5.4. If q > 413, the arc A is complete.

Proof: Let P = (u, v) be a point in AG(2, q) \ A. Note that if P ∈ E \ A and v(v − 1)

= 0, then v−1

vw3 is a square in Fq . Let X ′ be an absolutely irreducible non-linear com-
ponent of Xu,v . By Proposition 5.3 the curve X ′ is Fq -rational. Also, by Riemann
Theorem [19, p. 132], the genus gX ′ of X ′ is at most 9. Then Hasse-Weil Theorem
[19, p. 170] yields that the number of Fq -rational places ofX ′ is at least q + 1 − 18

√
q .

We need to prove that there exists an Fq -rational point (x, y) ∈ X ′ satisfying (i) of
Proposition 5.2. Note that (i) is equivalent to (x, y) not belonging to the union of 8
lines, 6 of which being either vertical or horizontal. Let M be the number of places of
X ′ centered at points which are either infinite points, or are points (x, y) not satisfy-
ing (i) of Proposition 5.2. The number of places of X ′ centered on affine points of a
given line is at most 8; such number is reduced to 4 when the line is either vertical or
horizontal. Also, the number of infinite points of X ′ is at most 8. This yields that M
is less than or equal to 48. Note that

q + 1 − 18
√

q > 48

if and only if
√

q > 9 + √
128. This condition is implied by the hypothesis q > 413.

Then the assertion follows from Proposition 5.2. �

Proposition 5.5. If q > 762, no point in AG(2, q) \ A is either regular or pseudo-
regular with respect to A.
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Proof: Assume that P = (u, v) ∈ AG(2, q) \ A is regular with respect to A. This
means that P is external to the segment Pα Pβ for any Pα, Pβ ∈ A collinear with P .
By (4.1) this means that(

v − α

α − w

) (
v − β

β − w

)
∈ S,

or, equivalently,

(α − w) (β − w) (v(α − w) − α)(v(β − w) − β) ∈ S.

Let x2 = α/w and y2 = β/w. Then by the proof of Proposition 5.2 we have that for
any Fq -rational point (x, y) of Xu,v satisfying (i) of Proposition 5.2,

(x2 − 1)(y2 − 1)(v(x2 − 1) − x2)(v(y2 − 1) − y2) ∈ S.

Equivalently, the space curve Su,v of equation{
Gu,v(X, Y ) = 0

(X2 − 1)(Y 2 − 1)(v(X2 − 1) − X2)(v(Y 2 − 1) − Y 2) = wZ2

has no Fq -rational points (x, y, z) satisfying (i) of Proposition 5.2, together with (ii)
z 
= 0.

The next step is to prove that Su,v has an absolutely irreducible Fq -rational compo-
nent. Let X ′ : G ′(X, Y ) = 0 be any non-linear component of Xu,v . By Proposition 5.3,
the curve X ′ is Fq -rational. Let Fq (X ′) = Fq (ξ, η) be the function field of X ′, where

Fq denotes the algebraic closure of Fq and (ξ, η) satisfy G ′(ξ, η) = 0.
The curve S ′ of equation{

G ′(X, Y ) = 0

(X2 − 1)(Y 2 − 1)(v(X2 − 1) − X2)(v(Y 2 − 1) − Y 2) = wZ2

is clearly an Fq -rational component of Su,v . Such component is absolutely irreducible
provided that the rational function

μ = (ξ 2 − 1)(η2 − 1)(v(ξ 2 − 1) − ξ 2)(v(η2 − 1) − η2)

is not a square in the function field Fq (X ′). Straightforward computation yields that
if P 
= Pw−2 , then for a non-singular point Q of X ′ on the line X = 1, the valuation
vQ(μ) of μ at Q is an odd integer; if P = Pw−2 , then vQ(μ) turns out to be odd for a
point Q on the line X = ξ , with ξ any square root of w3 in Fq . This yields that μ is
not a square, whence S ′ is absolutely irreducible.

Now, let π denote the rational map from S ′ to X ′ such that π (x, y, z) = (x, y) for
any affine point (x, y, z) ∈ S ′. By the Hurwitz genus formula [19, p. 88], the genus
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gS ′ of S ′ satisfies

2gS ′ − 2 = 2(2gX ′ − 2) + R ,

where gX ′ is the genus of X ′ and R is the number of ramification places of π . By
Riemann Theorem, gX ′ ≤ 9. Note that any ramification place of π is either a zero of
μ centered at an affine point of X ′, or is centered at an infinite point of X ′. The zeros
of μ centered at an affine point of X ′ correspond to the affine points of X ′ lying on the
union of 8 lines, each of which being either vertical or horizontal. Then the number of
such zeros is at most 32. As the number of places centered at infinite points of X ′ is at
most 8, we have that R ≤ 40. Therefore, gS ′ ≤ 37. Then by the Hasse-Weil Theorem,
the number of Fq -rational places of S ′ is at least q + 1 − 74

√
q.

Let M be the number of places of S ′ centered at points which are either infi-
nite points, or are points (x, y, z) not satisfying conditions (i) of Proposition 5.2
and (ii). Places centered at points (x, y, z) not satisfying conditions (i) and (ii) are
the places centered at affine points of the union of 9 planes. For each of the planes
of equation X = 0, X = ±1, Y = 0, Y = ±1 there are at most 8 of such places,
whereas for the plane Z = 0 and the planes X = ±Y there are at most 16 of them.
Also, the number of places centered at infinite points of S ′ is at most 16. There-
fore M is less than or equal to 96. Note that q + 1 − 74

√
q > 96 holds if and only

if
√

q > 37 + √
1464. Then the hypothesis q > 762 implies the existence of an Fq -

rational point (x, y, z) ∈ Su,v satisfying (i) of Proposition 5.2 and (ii). But this is a
contradiction.

Finally, let P = (u, v) ∈ AG(2, q) \ A be pseudo-regular. Then a contradiction
follows by the same arguments, provided that Su,v is replaced with the curve{

Gu,v(X, Y ) = 0

(X2 − 1)(Y 2 − 1)(v(X2 − 1) − X2)(v(Y 2 − 1) − Y 2) = Z2.

�

Now we are in a position to complete the proof of Theorem 1.2.

Proof of (C) of Theorem 1.2: The assertion follows from Propositions 4.2 and 5.5.
�

6. Linear codes associated to complete caps

Complete k-caps in PG(N , q) with k > N + 1 and linear [k, k − N − 1, 4]-codes
with covering radius ρ = 2 over Fq are equivalent objects (with the exceptions of the
complete 5-cap in PG(3, 2) giving rise to a binary [5, 1, 5]-code, and the complete
11-cap in PG(4, 3) corresponding to the Golay [11, 6, 5]-code over F3), see e.g. [9].
The code corresponding to a cap is defined by its parity check matrix, whose columns
are the points of the cap treated as (N + 1)-dimensional vectors.

If AG(N , q) is embedded in PG(N , q), then a complete k-cap in AG(N , q) can
be viewed as a k-cap in PG(N , q). The corresponding [k, k − N − 1, 4]-code has

Springer



J Algebr Comb (2007) 25:149–168 163

covering radius ρ = 2 if and only if K is complete in PG(N , q) as well. If this does
not happen the code still has good covering properties; more precisely, we prove that
the number ζ of words at distance greater than two from the code is less then 1

q of

the total number of words in Fk
q . Let T be the set of points in PG(N , q) that does

not belong to any secant of the cap; as T is contained in the hyperplane at infinity,

#T ≤ q N −1
q−1

holds. This means that the number ξ of vectors in FN+1
q that are not an Fq -

linear combination of two points of the cap satisfies ξ ≤ #T (q − 1) = q N − 1. Now,
the inequality ζ ≤ ξqk−N−1 holds as well. In fact, for any word v ∈ Fk

q at distance
greater than 2 from the code, the multiplication of a parity check matrix H by v is a
vector in FN+1

q which is not an Fq -linear combination of two columns of H ; as the
columns of H can be assumed to coincide with the points of the cap, the inequality
follows from the fact that for any given x ∈ FN+1

q there are exactly qk−N−1 words

v ∈ Fk
q such that Hv = x . Then

ζ ≤ ξqk−N−1 ≤ qk−1 − qk−N−1 <
#Fk

q

q
.

One of the parameters characterizing the quality of an [k, r, d]-code C over Fq with
covering radius ρ is its density μ(C), introduced in [3]:

μ(C) = 1

qk−r

ρ∑
i=0

(q − 1)i

(
k
i

)
.

Clearly,μ(C) ≥ 1; equality holds when C is perfect. For an infinite familyU , consisting
of [k, r, d]q codes Ck with the same covering radius ρ, the asymptotic parameter

μ(U) = lim inf
k→+∞

μ(Ck)

is of interest [11]. In [5] the density of a [k, r, d]-code C is expressed in terms of the
related subset of points in PG(N , q) with N = k − r + 1. In particular, when d = 4
and ρ = 2 one can consider the associated complete k-cap K in PG(N , q); the density
of C turns out to be related to the average number of secants of K passing through
a point in PG(N , q) \ K . This average number will be denoted by s(K ); it can be
computed as follows:

s(K ) =
(k

2

)
(q − 1)

#PG(N , q) − k
= (k2 − k)(q − 1)2

2
(
q N+1 − 1 − k(q − 1)

) .

Corollary 1.4 implies the existence of a complete cap K4 in PG(4, q) of size k ≤
2q2 + 1 for q > 13. For such cap

s(K4) ≤ q2(2q2 + 1)(q − 1)2

q5 − 2q3 + 2q2 − q
< 2q
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holds. For q > 762 there exists a complete k-cap K ′
4 in PG(4, q), with k ≤ 3

2
q2 −

3
2
q + 1 (see Corollary 1.4 again). We have that

s(K ′
4) ≤ ( 9

4
q4 − 9

2
q3 + 9

4
q2 + 3

2
q2 − 3

2
q)(q − 1)2

2(q5 − 3
2
q3 + 3q2 − 3

2
q − q)

<
9

8
q .

For caps K in spaces of dimension N greater than 4 satisfying the upper bounds of
Corollary 1.4 it is not possible to provide a meaningful upper bound on s(K ), as no
precise result on m2(N − 1, q) is known for N ≥ 8.

A parameter analogous to s(K ) can be defined for complete caps in affine spaces.
For a complete k-cap K in AG(N , q) let sA(K ) denote the average number of secants
of K passing through a point in AG(N , q) \ K . Equivalently,

sA(K ) =
(k

2

)
(q − 2)

q N − k
.

Let us consider the parameter sA(K ) for the caps of Theorem 1.2. Let N ≡ 0 (mod 4).
Let� K (A)

N be a complete k-cap in AG(N , q), q > 5, with k = q
N
2 + q

N−2
2 ,� K (B)

N be a complete k-cap in AG(N , q), q > 13, with k = q
N
2 ,� K (C)

N be a complete k-cap in AG(N , q), q > 762, with k = 1
2
q

N
2 − 3

2
q

N−2
2 .

Then parameters sA(K (A)
N ), sA(K (B)

N ), and sA(K (C)
N ) can be easily computed, and their

limits are as follows:

lim
N→+∞

sA
(
K (A)

N

) = lim
N→+∞

sA
(
K (B)

N

) = q − 2

2
, lim

N→+∞
sA

(
K (C)

N

) = q − 2

4
.

Appendix: Proof of Proposition 5.3

The plane curveXu,v : Gu,v(X, Y ) = 0 is fixed by the following affine transformations:

ϕ1 : AG(2, Fq ) → AG(2, Fq )
(X, Y ) �→ (−X, Y )

,
ϕ2 : AG(2, Fq ) → AG(2, Fq )

(X, Y ) �→ (Y, X )
.

The group D generated by ϕ1 and ϕ2 is a dihedral group of order 8.
As usual, for a point P and an algebraic plane curve C, let m P (C) be the multiplicity

of P as a point of C. Also, for a line �, let I (C, �, P) denote the intersection multiplicity
of C and � at P . Denote by �∞ the line at infinity. Let X∞ be the infinite point of the
X -axis, and Y∞ be the infinite point of the Y -axis. Finally, let ı ∈ Fq be one of the
square roots of −1.

The proof of Proposition 5.3 is divided into four cases.
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Proof of Proposition 5.3 for v = 0:

Some geometric features of Xu,v are the following:

(a1) the order of Xu,v is equal to 8;
(a2) m X∞ (Xu,v) = mY∞ (Xu,v) = 4;
(a3) the only tangent of Xu,v at X∞ is the X -axis; also, I (Xu,v, Y = 0, X∞) = 6;
(a4) the only tangent of Xu,v at Y∞ is the Y -axis; also, I (Xu,v, X = 0, Y∞) = 6;
(a5) m(0,0) = 2; the tangents of Xu,v at (0, 0) are Y = ı X , Y = −ı X .

Assume that Xu,v has a linear component �. Then by (a2) � passes through either X∞
or Y∞. By (a3) and (a4) this is impossible.

Let C2 be any irreducible conic component of Xu,v . Then (a2) yields that C2 passes
through both X∞ and Y∞. Also, by (a3) and (a4), the tangents of C2 at such points are
the X -axis and the Y -axis respectively. Then C2 has equation XY + k = 0 for some
k ∈ Fq . But it is straightforward that the polynomial XY + k cannot divide Gu,v(X, Y ).

Let C3 be any absolutely irreducible cubic component of Xu,v . Then Xu,v consists
of C3 together with an absolutely irreducible component C5 of order 5. Note that C3 is
fixed by both ϕ1 and ϕ2. Then C3 does not pass through (0, 0), otherwise m(0,0)(C3) = 2,
and by (a3) the X -axis would be a component of C3. Whence, mC5

(0, 0) = 2. Also,
as C3 has at most one singular point, the point X∞ is simple for C3 and therefore it
is a point of multiplicity 3 for C5. Then I (C5, Y = 0, (0, 0)) + I (C5, Y = 0, X∞) = 6,
which is a contradiction as the order of C5 is 5.

Then either Xu,v is absolutely irreducible, or Xu,v consists of two absolutely irre-
ducible quartic curves, say C4 and C ′

4. Assume that C4 passes through (0, 0). If C ′
4 does

not pass through (0, 0), then

m(0,0)(C4) = m X∞ (C4) = mY∞ (C4) = 2 ,

and therefore I (C ′
4, �∞, X∞) + I (C ′

4, �∞, Y∞) = 6, which is impossible. Then (0, 0)
is a simple point for both C4 and C ′

4. By (a5), ϕi (C4) = C ′
4 for both i = 1, 2. Therefore,

the affine transformation

ϕ3 : AG(2, Fq ) → AG(2, Fq )

(X, Y ) �→ (−Y, X )

preserves both C4 and C ′
4. Conditions

(i) m X∞ (C4) = 2,
(ii) the only tangent of C4 at X∞ is the X -axis;

(iii) I (C4, Y = 0, X∞) = 3;

together with ϕ3(C4) = C4 yield that C4 has equation X2Y 2 + k(X − Y ) = 0 for some
k ∈ Fq . As ϕ1(C4) = C ′

4, the curve C ′
4 has equation X2Y 2 − k(X − Y ) = 0. This is a

contradiction, as the polynomial

(X2Y 2 + k(X − Y ))(X2Y 2 − k(X − Y ))

does not divide Gu,v(X, Y ).
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Proof of Proposition 5.3 for v = 1:

Note that:

(b1) the order of Xu,v is equal to 6;
(b2) m X∞ (Xu,v) = mY∞ (Xu,v) = 2;
(b3) the only tangent of Xu,v at X∞ is the X -axis; also, I (Xu,v, Y = 0, X∞) = 6;
(b4) the only tangent of Xu,v at Y∞ is the Y -axis; also, I (Xu,v, X = 0, Y∞) = 6;
(b5) the lines �1 : Y − ı X = 0 and �2 : Y + ı X = 0 are both tangents of Xu,v at their

infinite points.

Assume that Xu,v has a linear component �. Then by (b2) � passes through either X∞
or Y∞. By (b3) and (b4) this is impossible.

If Xu,v consists either of an irreducible conic and an absolutely irreducible quartic
curve, or of three irreducible conics, then one of such conics, say C2, must be fixed
by the whole group D. Also, conditions (b2) and (b4) yield that C2 passes through
both X∞ and Y∞. Therefore, C2 has equation XY + k = 0 for some k ∈ Fq . But it is
straightforward that the polynomial XY + k cannot divide Gu,v(X, Y ).

The only possibility for Xu,v being reducible is then that Xu,v consists of two abso-
lutely irreducible cubic curves, sayC3 andC ′

3. Assume that either X∞ or Y∞ is a singular
point for one of such cubics, say C. By (b2), (b3), and (b4), either I (C, Y = 0, X∞) = 6
or I (C, X = 0, Y∞) = 6, which is clearly impossible. ThenC ∩ �∞ consists of X∞, Y∞
and one of the infinite points of the lines �1 and �2. Assume without loss of generality
thatC3 passes through the infinite point of �1. Then ϕ3 preservesC3. Taking into account
that I (C3, X∞, Y = 0) = 3, we obtain that an equation of C3 is XY (Y − ı X ) + k = 0
for some k ∈ Fq . Then C ′

3 has equation XY (Y + ı X ) + k. This is a contradiction, as
the polynomial

(XY (Y − ı X ) + k)(XY (Y + ı X ) + k)

does not divide Gu,v(X, Y ).

Proof of Proposition 5.3 for v(v − 1) 
= 0, (u, v) 
∈ E :

Let θ ∈ Fq be any square root of v
v−1

. Note that:

(c1) the order of Xu,v is equal to 8;
(c2) m X∞ (Xu,v) = mY∞ (Xu,v) = 4;
(c3) the tangents of Xu,v at X∞ are the lines Y = ±θ , together with the X -axis; also,

I (Xu,v, Y = 0, X∞) = I (Xu,v, Y = θ, X∞) = I (Xu,v, Y = −θ, X∞) = 6 ;

(c4) the tangents of Xu,v at Y∞ are the lines X = ±θ , together with the Y -axis; also,

I (Xu,v, X = 0, Y∞) = I (Xu,v, X = θ, Y∞) = I (Xu,v, X = −θ, Y∞) = 6 ;
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(c5) points Q1 = (0, θ ), Q2 = (0, −θ ), Q3 = (θ, 0), Q4 = (−θ, 0) are all simple
points of Xu,v; also,

I (Xu,v, Y = θ, Q1) = I (Xu,v, Y = −θ, Q2) = 2 ,

I (Xu,v, X = θ, Q3) = I (Xu,v, X = −θ, Q4) = 2 .

Assume that Xu,v has a linear component �. Then by (c2) � passes through either X∞
or Y∞. By (c3) and (c4) this is impossible.

Let C2 be an irreducible conic component ofXu,v , and let C6 the (possibly reducible)
sextic curve obtained from Xu,v by dismissing C2. As ϕ2(C2) is a conic component
of Xu,v as well, one can assume without loss of generality that C2 passes through
X∞. Let � denote the tangent of C2 at X∞. If � is the line Y = θ , then I (C6, Y =
−θ, X∞) + I (C6, Y = −θ, (0, −θ )) = 7, which is impossible. The same contradiction
is obtained if � is the line Y = −θ . Then (c3) yields that � coincides with the X -axis.
By (c4), both Q1 and Q2 lie on C2. But then C2 does not pass through either Y∞ or
Q3. This is clearly impossible, as some point on the line X = θ must belong to C2.

Let C3 be any absolutely irreducible cubic component of Xu,v . Then Xu,v consists
of C3 together with an absolutely irreducible component C5 of degree 5. Note that
C3 is fixed by both ϕ1 and ϕ2. Assume that C3 passes through one point of E =
{Q1, Q2, Q3, Q4}; as D acts transitively on E , the curve C3 must pass through all
points in E . But then no line can be the tangent to C3 at X∞. Then C3 ∩ E = ∅.
This yields that the three lines X = θ , X = 0, X = −θ intersect C3 only in Y∞. Then
mY∞ (C3) = 3, which is impossible as C3 is an absolutely irreducible curve of degree 3.

If Xu,v is reducible, then Xu,v consists of two absolutely irreducible quartic curves,
say C4 and C ′

4. We need to prove that both C4 and C ′
4 are Fq -rational, or, equivalently,

that the action of Frobenius collineation

� : AG(2, Fq ) → AG(2, Fq )

(X, Y ) �→ (Xq , Y q )

on {C4, C ′
4} is trivial. Note that if θ ∈ Fq , then �(C4) = C ′

4, as otherwise m Q1
(Xu,v) = 2,

contradicting (c5). Therefore, θ /∈ Fq can be assumed. Then �(Q1) = Q2, �(Q2) =
Q1, �(Q3) = Q4, and �(Q4) = Q3. This yields that � acts on {C4, C ′

4} as the affine
transformation (ϕ3)2. (ϕ3)2 being the square of a map acting on {C4, C ′

4}, its action on
{C4, C ′

4} is trivial, and so is that of �. This completes the proof.

Proof of Proposition 5.3 for v(v − 1) 
= 0, (u, v) ∈ E :

It is straightforward to check that if w2v(v − 1)u = ((w − 1)v + 1)3, then the lines

X = ±
√

v
v−1

, Y = ±
√

v
v−1

and the irreducible conics

XY −
√

v − 1

vw3
= 0 , XY +

√
v − 1

vw3
= 0

are components of Xu,v .
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