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Abstract It is known that in PG(3, q), q > 19, a partial flock of a quadratic cone with
q − ε planes, can be extended to a unique flock if ε < 1

4

√
q , and a similar and slightly

stronger theorem holds for the case q even. In this paper we prove the analogue of this
result for cones with base curve of higher degree.
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1 Introduction

A flock of a cone of PG(3, q) is a partition of the points of the cone different from the
vertex into q disjoint plane sections. The case of the quadratic cone was investigated by
several researchers. Associated with flocks of the quadratic cone are some line spreads
of PG(3, q) and translation planes; q-clans and some elation generalised quadrangles
of order (q2, q); hyperbolic fibrations; BLT-sets (when q is odd); and, when q is even,
families of ovals in PG(2, q), called herds.

Parts (i) and (ii) of the following theorem were proved in [10] in a short way, while
part (iii) is due to Storme and Thas [11].

Theorem 1. Let q > 19. Assume that the planes Ei , i = 1, . . . , q − ε intersect the
quadratic cone C ⊂ PG(3, q) in disjoint irreducible conics.

(i) If ε < 1
4

√
q then one can find additional ε planes (in a unique way), which extend

the set {Ei } to a flock.
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H-1117, Hungary
e-mail: sziklai@cs.elte.hu

Springer



234 J Algebr Comb (2007) 25:233–238

(ii) If q = p is a prime and ε < 1
40

p + 1 then the partial flock can be extended to a
unique flock.

(iii) If q is even and ε ≤ √
q if q is a square and ε <

√
2
√

q if q is a nonsquare then
the partial flock can be extended to a unique flock.

In Section 2 of this paper we prove the following analogue of this result for cones
with base curve of higher degree. The proof will be more complicated than in the
quadratic case.

Theorem 2. For 2 ≤ d ≤ 6
√

q consider the cone {(1, t, td , z) : t, z ∈
GF(q)} ∪ {(0, 0, 1, z) : z ∈ GF(q)} ∪ {(0, 0, 0, 1)} = C ⊂ PG(3, q) and let C∗

= C \ {(0, 0, 0, 1)}. Assume that the planes Ei , i = 1, . . . , q − ε, Ei 	
 (0, 0, 0, 1),
intersect C∗ in pairwise disjoint curves. If ε < � 1

d2

√
q� then one can find additional

ε planes (in a unique way), which extend the set {Ei } to a flock, (i.e. q planes
partitioning C∗).

The proof (see below) starts like in the quadratic case. Using elementary symmetric
polynomials we find an algebraic curve G(X, Y ), which “contains” the missing planes
in some sense. The difficulties are (i) to show that G splits into ε factors, and (ii) to
show that each of these factors corresponds to a missing plane. For (i) we use our new
Lemma 3. For (ii) we have to show that most of the possible terms of such a factor do
not occur, which needs a linear algebra argument on a determinant with entries being
elementary symmetric polynomials; this matrix may be well-known but the author
could not find a reference for it. To be self-contained we include that half of the proof
which is common with the one in [10].

2 Proof

Lemma 3. Choose three constants 1 ≤ d ≤ 6
√

q, α ≥ 1
d+1

+ 1+d(d−1)
√

q
(d+1)q and n ≤

1
d

√
q − d + 3

2
. Let Cn be a curve of order n defined over GF(q), and denote by N

the number of its points in PG(2, q). Suppose that Cn does not contain a component
defined over G F(q) of degree ≤ d. Then N ≤ nqα.

For curves without linear component a similar lemma can be found in Sziklai [9],
which is a variant of a lemma by Szőnyi [12]. For curves without quadratic component
see [10].

Proof: (i) Suppose first that Cn is absolutely irreducible. Then Weil’s theorem ([15],
[6]) gives N ≤ q + 1 + (n − 1)(n − 2)

√
q . We want q + 1 + (n − 1)(n − 2)

√
q ≤

nqα. As it is quadratic in n it is enough to check it for n = d + 1 and n = 1
d

√
q −

d + 3
2
, and it holds indeed.

If Cn is not absolutely irreducible, then it can be written as Cn = D1 ∪ · · · ∪ Ds ,
where D j is an absolutely irreducible component of order i j , so

∑s
j=1 i j = n. If D j

can not be defined over GF(q), then it has at most N j ≤ (i j )
2 ≤ i j qα points in PG(2, q)

(see [6], Lemma 2.24). If D j is defined over GF(q), then the Weil-bound implies again
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that N j ≤ i j qα. Hence

N =
s∑

j=1

N j ≤
s∑

j=1

i j qα = nqα.

�

Proof of Theorem 2. Suppose that the plane Ei has the equation X4 = ai X1 +
bi X2 + ci X3, for i = 1, 2, . . . , q − ε.

Define fi (T ) = ai + bi T + ci T d , then Ei ∩ C = {(1, t, td , fi (t)) : t ∈ GF(q)} ∪
{(0, 0, 1, ci )}. Let σk(T ) = σk({ fi (T ) : i = 1, . . . , q − ε}) denote the k-th elementary
symmetric polynomial of the polynomials fi , then degT (σk) ≤ dk. As for any fixed
T = t ∈ GF(q) the values fi (t) are all distinct, we would like to find

Xq − X∏
i (X − fi (t))

,

the roots of which are the missing values GF(q) \ { fi (t) : i = 1, . . . , q − ε}.
In order to do so, we define the elementary symmetric polynomials σ ∗

j (t) of the
“missing elements” with the following formula:

Xq − X = (Xq−ε − σ1(t)Xq−ε−1 + σ2(t)Xq−ε−2 − · · · ± σq−ε(t))

× (X ε − σ ∗
1 (t)X ε−1 + σ ∗

2 (t)X ε−2 − · · · ± σ ∗
ε (t));

from which σ ∗
j (t) can be calculated recursively from the σk(t)-s, as the coefficient

of Xq− j , j = 1, . . . , q − 2 is 0 = σ ∗
j (t) + σ ∗

j−1(t)σ1(t) + · · · + σ ∗
1 (t)σ j−1(t) + σ j (t);

for example

σ ∗
1 (t) = −σ1(t); σ ∗

2 (t) = σ1(t)2 − σ2(t);

σ ∗
3 (t) = −σ1(t)3 + 2σ1(t)σ2(t) − σ3(t); . . . (1)

etc. Note that we do not need to use all the coefficients/equations, it is enough to do
it for j = 1, . . . , ε.

Using the same formulae, obtained from the coefficients of Xq− j , j = 1, . . . , ε,
one can define the polynomials

σ ∗
1 (T ) = −σ1(T ); σ ∗

2 (T ) = σ1(T )2 − σ2(T );

σ ∗
3 (T ) = −σ1(T )3 + 2σ1(T )σ2(T ) − σ3(T ); . . . (1∗)

up to σ ∗
ε . Note that degT (σ ∗

j ) ≤ d j . From the definition

(Xq−ε − σ1(T )Xq−ε−1 + σ2(T )Xq−ε−2 − · · · ± σq−ε(T )) ×
(X ε − σ ∗

1 (T )X ε−1 + σ ∗
2 (T )X ε−2 − · · · ± σ ∗

ε (T ))
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is a polynomial, which is Xq − X for any substitution T = t ∈ GF(q), so it is of the
form Xq − X + (T q − T )(. . .). Now define

G(X, T ) = X ε − σ ∗
1 (T )X ε−1 + σ ∗

2 (T )X ε−2 − · · · ± σ ∗
ε (T ), (2)

from the recursive formulae it is a polynomial in X and T , of total degree ≤ dε and
X -degree ε.

For any T = t ∈ GF(q) the polynomial G(X, t) has ε roots in GF(q) (i.e. the missing
elements GF(q) \ { fi (t) : i = 1, . . . , q − ε}), so the algebraic curve G(X, T ) has at
least N ≥ εq distinct points in GF(q) × GF(q). Suppose that G has no component
(defined over GF(q)) of degree ≤ d . Let’s apply the Lemma with a suitable 1

d+1
+

1+d(d−1)
√

q
(d+1)q ≤ α < 1

d , n = deg G ≤ dε ≤ 1
d

√
q − d + 3

2
, we have

εq ≤ N ≤ dεqα < εq,

which is false, so G = H1G1, where H1 is an irreducible factor over GF(q) of degree
at most d . If degX H1 = dX ≥ 2 then degX G1 = ε − dX , which means that H1 has at
most q + 1 + (dX − 1)(dX − 2)

√
q and G1 has at most (ε − dX )q distinct points in

GF(q) × GF(q) (at most ε − dX for each T = t ∈ GF(q)), so in total G has

εq ≤ N ≤ (ε − dX + 1)q + 1 + (dX − 1)(dX − 2)
√

q,

a contradiction if 2 ≤ dX ≤ √
q + 1, so degX H1 = 1.

One can suppose w.l.o.g. that both H1 and G1, expanded by the powers of X , are
of leading coefficient 1. So H1 is of the form H1(X, T ) = X − fq−ε+1(T ), where

fq−ε+1(T ) = aq−ε+1 + bq−ε+1T + cq−ε+1T d + δq−ε+1(T ),

where δq−ε+1(T ) is an “error polynomial” with terms of degree between 2 and d − 1.
At the end of the proof we will show that δq−ε+1 and other error polynomials are zero.

Now one can repeat everything for G1, which has at least (ε − 1)q distinct points
in GF(q) × GF(q) (as H1 has exactly q and H1G1 has at least εq). A similar reasoning
gives G1 = H2G2, where H2(X, T ) = X − fq−ε+2(T ) with fq−ε+2(T ) = aq−ε+2 +
bq−ε+2T + cq−ε+2T d + δq−ε+2(T ). Going on we get fq−ε+3, . . . , fq (where for j =
q − ε + 1, . . . , q we have f j (T ) = a j + b j T + c j T d + δ j (T ), where δ j (T ) contains
terms of degree between 2 and (d − 1) only). Hence

G(X, T ) =
q∏

q−ε+1

(X − fi (T )).

For any t ∈ GF(q) the values f1(t), . . . , fq (t) are all distinct, this is obvious from

(Xq−ε − σ1(t)Xq−ε−1 + σ2(t)Xq−ε−2 − · · · ± σq−ε(t)) ×
((X − fq−ε+1(t)) · · · (X − fq (t))) = Xq − X.
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For j = q − ε + 1, . . . , q let the plane E j be defined by X4 = a j X1 + b j X2 +
c j X3. We are going to prove that {E j : j = 1, . . . , q} is a flock.

First we check the case “t = ∞”: we have to check whether the intersection points
Ei ∩ C on the plane at infinity X1 = 0, i.e. the values c1, . . . , cq−ε︸ ︷︷ ︸

�

; cq−ε+1, . . . , cq︸ ︷︷ ︸
�∗

are all distinct (for � we know it). (Note that even if q planes partition the affine part
of C∗ then this might be false for the infinite part of C∗.) From (1∗), considering the
leading coefficients in each defining equality, we have

σ1(�∗) = −σ1(�); σ2(�∗) = σ1(�)2 − σ2(�);

σ3(�∗) = −σ1(�)3 + 2σ1(�)σ2(�) − σ3(�);

etc., so

Xq − X = (Xq−ε− σ1(�)Xq−ε−1+ σ2(�)Xq−ε−2− · · · ± σq−ε(�))

× (X ε− σ1(�∗)X ε−1+ σ2(�∗)X ε−2− · · · ± σq−ε(�∗)),

which we wanted to prove.
Now we want to get rid of the δ j ’s, i.e. we are going to prove that δq−ε+1, . . . , δq =

0. Let s be the maximal T -exponent appearing in any of δq−ε+1, . . . , δq , so each
δ j (T ) = d j T s + · · · (for j = q − ε + 1, . . . , q; also 2 ≤ s ≤ d − 1 and there exists
a d j 	= 0). In the equation

G(X, T ) = X ε − σ ∗
1 (T )X ε−1 + σ ∗

2 (T )X ε−2 − · · · ± σ ∗
ε (T )

=
ε∏

i=1

(X − aq−ε+i − bq−ε+i T − cq−ε+i T
d − δq−ε+i (T )),

the coefficient of X ε− j T d( j−1)+s , j = 1, . . . , ε, is zero on the left hand side (i.e. the
coefficient of T d( j−1)+s in σ ∗

j , it can be seen by induction from (1∗) for instance), and
it is

σ j−1(�∗ \ {cq−ε+1})dq−ε+1 + σ j−1(�∗ \ {cq−ε+2})dq−ε+2 + · · · + σ j−1(�∗ \ {cq})dq

on the right hand side. Hence we have a system of homogeneous linear equations for
dq−ε+1, . . . , dq with the elementary symmetric determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

σ1(�∗ \ {cq−ε+1}) σ1(�∗ \ {cq−ε+2}) . . . σ1(�∗ \ {cq})
σ2(�∗ \ {cq−ε+1}) σ2(�∗ \ {cq−ε+2}) . . . σ2(�∗ \ {cq})

...

σε−1(�∗ \ {cq−ε+1}) σε−1(�∗ \ {cq−ε+2}) . . . σε−1(�∗ \ {cq})

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i< j≤ε

(cq−ε+i − cq−ε+ j ),
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which is non-zero as the ci ’s are pairwise distinct. Hence the unique solution is
dq−ε+1, . . . , dq = 0 and f j (T ) = a j + b j T + c j T d for each j = 1, . . . , q.

Our final and the last missing argument we need is that for j = 1, . . . , q the plane
E j intersects C in {(1, t, td , f j (t)) : t ∈ GF(q)} ∪ {(0, 0, 1, c j )}, so these intersections
are pairwise disjoint, E1, . . . , Eq is a flock of C . �
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