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Abstract A classification is given of finite graphs that are vertex primitive and 2-
arc regular. The classification involves various new constructions of interesting 2-arc
transitive graphs.
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1. Introduction

Let � be a finite undirected simple graph, and let G ≤ Aut�. The graph � is called
G-vertex primitive if G acts primitively on the vertex set V �. An s-arc is a sequence
(α0, . . . , αs) of s + 1 vertices such that, for all 1 ≤ i ≤ s, αi−1 is adjacent to αi , and for
all 1 ≤ i < s, αi−1 �= αi+1. A graph � is said to be (G, s)-arc transitive if G ≤ Aut�
is transitive on the set of t-arcs for each t ≤ s. A (G, s)-arc transitive graph � is called
(G, s)-arc regular if G acts regularly on the set of s-arcs of �, that is, no non-identity
element of G fixes an s-arc. The purpose of this paper is to classify graphs which are
vertex primitive and 2-arc regular.

The study of s-arc transitive graphs was initiated by a celebrated result of Tutte
[19] in 1949 when he proved that there exists no 6-arc transitive cubic graph. Since
then, this class of graphs has received lots of attention. For example, Weiss in [21]
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proved that there exists no 8-arc transitive graphs of valency at least 3; Praeger in [16]
started a general analysis of automorphism groups of 2-arc transitive graphs. Refer to
[2, 6, 8, 16] for more references.

Theorem 1.1. Let � be a graph of valency d such that a group G ≤ Aut� is vertex
primitive and 2-arc regular. Then one of the following holds:
(1) � is a complete graph Kd+1, and G is a sharply 3-transitive permutation group

of degree d + 1;
(2) G = Zn

2:H, where H is a sharply 2-transitive group of odd degree;
(3) G is almost simple, G � A := Aut�, and exactly one row of Table 1 appears, where

α is a vertex, and n(A) is the number of non-isomorphic G-vertex primitive 2-arc
transitive graphs with full automorphism group equal to A.

Remark on Theorem 1.1. Although for the four groups G = Fi24, M , 2 D4(3).2 or
2 F4(8).3, the precise number of corresponding graphs is not determined, the existence
for all groups is known. This solves the existence problem for several primitive per-
mutation groups that have a sharply 2-transitive subconstituent, which was unsettled
in [20]. In particular, it excludes part (3) of the Main Theorem of [20] regarding the
Baby Monster simple group and the Monster simple group.

Remark on Table 1. In the 9th row for G = Sp, k is the number of prime divisors of
p − 1. The entries under the “ref.” column refer to the lemmas where more detailed
information about the graphs is given.

One of the main motivations for studying 2-arc regular graphs is that they are closely
related to polygonal graphs, defined as follows: A graph � is called a near-polygonal
graph if there exists a number m and a collection C of cycles of length m in � such
that each 2-arc of � is contained in exactly one cycle in C. If m is the girth g(�)
of � then the graph is called polygonal. Polygonal graphs are intriguing and hard
to construct, refer to [14, 15] for references. By Corollary 1.2 of [10], a connected
2-arc regular graph � is near-polygonal provided that for an arc (α, β) there exists an
involution g ∈ G such that (α, β)g = (β, α), leading to the constructions of several
families of new polygonal graphs in [10]. A relation between 2-arc regular graphs and
near-polygonal graphs was also found by Zhou [22]. We believe that with the 2-arc
regular graphs constructed in this paper, more polygonal graphs can be produced.

This paper is organised as follows: Section 2 collects the notation and some pre-
liminary results; in particular, it contains a reduction for proving Theorem 1.1 to the
almost simple group case. In Section 3, all the candidates for the groups G are given
(in Table 2), and a series of technical lemmas are established. Finally, in Section 4, a
proof of Theorem 1.1 is presented.

2. Preliminaries

The notation used in this paper is standard (see, for example, [1] and [4]). For two
groups K and H , K .H is an arbitrary extension of K by H , while K :H stands for
a split one. Moreover, the notation K ◦ H stands for the central product of the two
groups. Sometimes, using the notation of the Atlas [1], by pa with p prime we mean
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Table 1 The almost simple case

G Gα d A = Aut� n(A) Conditions ref.

J1 7:6 7 J1 1

11:10 11 J1 1

J3.2 19:18 19 J3.2 1

O N .2 31:30 31 O N .2 3 4.1

J4 29:28 29 J4 1

Fi24 29:28 29 Fi24 1 or 3

M 41:40 41 M ≥1

A5 S3 3 S5 1

A6.2 (∼= M10) 5:4 5 Aut(A6) 1

2k−1 − 1∗ p ≡ 3 (mod 4) 4.2

Sp (p > 5) Z p :Z p−1 p Sp 2k − 1∗ p ≡ 5 (mod 8)

p is prime 2k+1 − 1∗ p ≡ 1 (mod 8)

Sz(8) 5:4 5 Sz(8) 1

Sz(8).3 7:6 7 Sz(8).3 1 4.1
3 D4(2).3 13:12 13 3 D4(2).3 1 or 3
2 F4(2) 13:12 13 2 F4(2) 1

2 F4(8).3 37:36 37 2 F4(8).3 ≥ 1 4.1

L3(4) 32:Q8 9 L3(4).D12 1

S4(4).4 17:16 17 S4(4).4 1 4.3

U3(4).4 13:12 13 U3(4).4 1

L2(q) PGL2(q) 1 ε = ±1

q is prime, A4 4 L2(q) (q − ε)/12 q ≡ ε (mod 4) [9]

q ≡ ±3 (mod 8), PGL2(q) 1 ε = ±1

�≡ ±1 (mod 10) L2(q) (q − ε − 2)/6 q �≡ ε (mod 4)

U3(2r ) 32:Q8 9 U3(2r ).S3 (2r−1 − 1)/r 4.4

r > 3 is prime

L3(q) L3(q) 1 q ≡ 3 (mod 4)

q is prime, 32:Q8 9 L3(q) 2 q ≡ 1 (mod 4) 4.5

q ≡ 4, 7 (mod 9) L3(q).S3 1

U3(q) U3(q).2 1 q ≡ 3 (mod 4)

q is prime, 32:Q8 9 U3(q).2 2 q ≡ 1 (mod 4) 4.6

q ≡ 2, 5 (mod 9) U3(q).6 1
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an elementary abelian group of order pa , by [n] for an integer n we mean an arbitrary
group of order n, and simply by n denote a cyclic group of order n.

Let � be a graph of valency d , and let G ≤ Aut� be vertex primitive and 2-arc
regular on �. Then for a vertex α, Gα acts sharply 2-transitively on �(α). Hence �

is an orbital graph of G acting on V �, and � corresponds to a sharply 2-transitive
subconstituent. By a result of the third author [20], we have the following lemma:

Lemma 2.1. Using the notation defined above, one of the following holds:
(i) G acts 2-transitively on V �, and � is a complete graph,

(ii) G is affine, that is, Zn
p � G � AGL(n, p), where p is a prime;

(iii) G is an almost simple group.

Next we treat parts (i) and (ii).

Lemma 2.2. If � is a complete graph or G is of affine type, then Theorem 1.1 holds.

Proof: Suppose first that � is a complete graph. Since G is transitive on the set of
2-arcs of �, it follows that G is transitive on the set of all triples of vertices of V �.
Hence G is 3-transitive on V �. Further, since G is regular on the set of 2-arcs of �,
it follows that G is regular on the set of triples of vertices of V �, so G is sharply
3-transitive on V �, as in part (1) of Theorem 1.1.

Assume next that G is affine, that is, Zn
p � G � AGL(n, p), where p is a prime.

Then G = N :H , where N = Zn
p, and H = Gα is irreducible on N . Since G is regular

on the set of 2-arcs, Gα is a sharply 2-transitive permutation group on �(α). Because
N is regular on V �, vertices of � may be identified with elements of N . Further, let
α be the vertex corresponding to the identity of N . Then the subset S := �(α) is such
that two vertices x, y are adjacent if and only if yx−1 ∈ S. In this identification, H
acts on V � = N by conjugation. Since H is 2-transitive on S, it follows that p = 2
and N is an elementary abelian 2-group, as in part (2) of Theorem 1.1. �

This reduces the proof of Theorem 1.1 to the case where G is an almost simple
group. To investigate this case, we need more notation.

For a group G and a core free subgroup H < G, G has a faithful transitive per-
mutation representation on the set of right cosets [G : H ] := {H x | x ∈ G} by right
multiplication. A coset graph

� = Cos(G, H, HgH ), where g ∈ G with g2 ∈ H

is defined as the graph with vertex set [G : H ] such that H x is adjacent to H y if and
only if yx−1 ∈ HgH , denoted by Cos(G, H, HgH ).

It follows from the definition that if 〈H, g〉 = G then � is connected. Label the
vertices corresponding to H and Hg to be α, β, respectively. Then the vertex stabilis-
ers Gα = H and Gβ = H g , and the arc stabiliser Gαβ = Gα ∩ Gβ = H ∩ H g . It is
easily shown that � is (G, 2)-arc transitive if and only if Gα is 2-transitive on the
neighborhood �(α). The following simple lemma then follows, refer to [2].

Lemma 2.3. A coset graph � = Cos(G, H, HgH ) is (G, 2)-arc transitive if and only
if H acts 2-transitively on the set of cosets [H : H ∩ H g].
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Table 2 The candidates for G

G H = K :L d Remark

J1 11:10 11

7:6 7

J3.2 19:18 19

O N .2 31:30 31

J4 29:28 29

Fi24 29:28 29

M 41:40 41

M10 5:4 5

Sp Z p :Z p−1 p p is prime

Sz(8) 5:4 5

Sz(8).3 7:6 7
3 D4(2).3 13:12 13
2 F4(2) 13:12 13
2 F4(8).3 37:36 37
2G2(27).3 19:18 19

L3(4) 32:Q8 32

S4(4).4 17:16 17

U3(4).4 13:12 13

U3(2r ) 32:Q8 9 r > 3 is prime

L3(q) 32:Q8 9 q ≡ 4, 7 (mod 9) is prime

U3(q) 32:Q8 9 (5 <) q ≡ 2, 5 (mod 9) is prime

3. Some technical lemmas

Let G be an almost simple group that acts on a graph � vertex primitively and 2-arc
regularly. We give a series of lemmas regarding the group G and its action. The first
lemma lists the candidates of G and Gα , where α is a vertex.

Lemma 3.1. Let � be a non-complete graph of valency d. Assume that G ≤ Aut� acts
on V � primitively and on the set of 2-arcs regularly. Assume further that G is almost
simple. Then one of the following holds:

(i) d = 3, G = A5, and � is the Peterson graph;
(ii) d = 4, G = P SL(2, p) with p prime such that p ≡ ±3 (mod 8), and 5 �= p �≡

±1 (mod 10); in this case there are exactly [(p + ε)/12] non-isomorphic graphs,
where ε = ±1 such that 3 divides p ± ε;

(iii) d ≥ 5, and (G, H, d) is one of the entries listed in Table 2; furthermore, for each
G in the list, the choice of H (up to G-conjugacy) is unique, where H = Gα is
the vertex stabiliser.

Proof: If d ≤ 4, this case is classified in [9] from which we have parts (i) and (ii).
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Assume next d ≥ 5. Since G is regular on the 2-arcs of �, the stabiliser H is faithful
and sharply 2-transitive on �(α). By the result of [20], we have one of the following:

(i) G = M or B M , and H is a maximal 2-local subgroup of G,
(ii) G = U3(8).6 or S4(8).S3, and H = 19:18 or (D14 × D14).2.S3, respectively;

(iii) or G is a group in Table 2.

In case (i), we must have H = Zt
2:L for some integer t ≥ 3. We claim that Zt

2 is a
Sylow 2-subgroup of G. If this is not the case then there is a Sylow 2-subgroup P
such that Zt

2 < P . Clearly, Zt
2 < NP (Zt

2). Set T := 〈NP (Zt
2), H〉. Then H is a proper

normal subgroup of T . Note that G is simple. Thus T < G, which contradicts the fact
that H is a maximal subgroup of G. On the other hand, by [1] we know that a Sylow
2-subgroup of G is not elementary abelian, which implies that G is neither M nor BM.

If G = U3(8).6, then H = K :L = 19:18. Computation shows that |NG(L)| = 54.
It follows that there is no 2-element g satisfying Lemma 2.3, and hence no graph
occurs in this case.

If G = S4(8).S3, then H = K :L = (D14 × D14).2.S3 and K = 72. It is clear that
there exists an involution in L which commutes with one of the two direct factors of
K . However, this contradicts the fact that L is regular on K . Hence no graph occurs
in this case. So (G, H, d) is one of the triples given in Table 2. �

The next lemma regards all 2-elements g that, together with (G, H ) given in Table 2,
give rise to required graphs.

Lemma 3.2. Let (G, H ) be one of the pairs in Table 2. Assume that the set

I (G, L) = {x ∈ NG(L)\L | x is a 2-element, and x2 ∈ L}
is not empty. Then Cos(G, H, HgH ) is G-vertex primitive and 2-arc regular if and
only if g ∈ I (G, L).

Proof: Let g ∈ I (G, L), and � = Cos(G, H, HgH ). Since NH (L) = L and g /∈ L ,
we have g �∈ H . Thus 〈H, g〉 = G since H is a maximal subgroup of G, and further,
since H is sharply 2-transitive on [H : L], � is (G, 2)-arc regular. Conversely, if
� = Cos(G, H, HgH ) is G-vertex primitive and 2-arc regular, then it follows from
Lemma 2.3 that g ∈ I (G, L). �

The next lemma is crucial for determining the full automorphism group Aut�.

G Gα = H F Fα |V �| |�(α)|

A6.2 5:4 S6 wr 2 S5 wr 2 36 5

S7 7:6 A9 L2(8):3 120 7

Sp Z p :Z p−1 Sp+1 L2(p):2 (p − 2)! p

L3(4) 32:Q8 U4(3) 31+4
+ :2S4 280 9

Sz(8).3 7:6 A65 S63 2080 7

Sz(8).3 7:6 Sp4(8) O+
4 (8) 2080 7
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Lemma 3.3. Let (G, H, L) be a triple given in Table 2, and let � = Cos(G, H, HgH )
for some g ∈ I (G, L), where I (G, L) is as defined in Lemma 3.2. Then G is normal
in Aut�, and Aut� ≤ Aut(G). Moreover, if G1 ≤ Aut� and G1

∼= G, then G1 = G.

Proof: Let A = Aut�, and let T = soc(G), the socle of G. Then T � G ≤ A ≤
Sym(V �). Suppose that G and A have different socles. It follows that there exist
groups F1 and F such that G ≤ F1 < F ≤ Sym(V �), soc(G) = soc(F1) �= soc(F),
and F1 maximal in F . Noticing that G is almost simple and primitive on V �, all the
possibilities for F1, F are listed in [11, Tables 2–6]. It then follows that one of the
entries in the following table holds, where α is a vertex:

Notice that, since G ≤ F ≤ Aut�, the overgroup F has a 2-transitive subconstituent
F�(α)

α of degree |�(α)|. It is then easily shown that only in row 4, Fα could have a
transitive permutation representation of degree |�(α)|. In this case, Fα = 31+4

+ :2S4

and F [1]
α = [33]. Now (F [1]

α )�(β) � F�(β)
αβ

∼= 2S4, which is not possible. Thus in all the
cases, we get a contradiction, so soc(A) = soc(G). Checking the groups listed in Table
2, it is easily shown that G � Aut(T ), so Aut(T ) = Aut(G). �

The following lemma deals with the isomorphism problem for our graphs.

Lemma 3.4. Suppose that (G, H, L) is a triple given in Table 2. Then, for any g, g′ ∈
I (G, L), Cos(G, H, HgH ) ∼= Cos(G, H, Hg′ H ) if and only if gσ ∈ g′L for some σ ∈
NAut(G)(H ) ∩ NAut(G)(L).

Proof: For g, g′ ∈ I (G, L), if there exists σ ∈ NAut(G)(H ) ∩ NAut(G)(L) such that gσ ∈
g′L , then Cos(G, H, HgH ) ∼= Cos(G, H, Hgσ H ) = Cos(G, H, Hg′ H ).

Conversely, let g, g′ ∈ I (G, L) be such that Cos(G, H, HgH ) ∼=
Cos(G, H, Hg′ H ). Then H ∩ H g = L = H ∩ H g′

. Let � = Cos(G, H, HgH ),
�′ = Cos(G, H, Hg′ H ), A = Aut� and B = Aut�′. Then A ∼= B, G ≤ A ∩ B, and
G, A and B are primitive permutation groups on [G : H ]. Let ϕ be an isomor-
phism from � to �′ such that Hϕ = H . Then ϕ is a permutation of [G : H ], and
A = ϕBϕ−1 ≥ ϕGϕ−1 ∼= G. By Lemma 3.3, ϕGϕ−1 = G, that is, ϕ normalises G.
Since G is primitive, the centraliser CSym(V �)(G) = 1, so ϕ may be viewed as an
automorphism of G.

Label the vertices H, Hg of � as α, β, respectively, and label the vertex Hg′

as β ′. Since � is G-arc transitive, we may assume that αϕ = α, and βϕ = β ′, that
is, Hϕ = H and (Hg)ϕ = Hg′. Also ϕ−1Gβϕ = Gβ ′ , that is, ϕ−1 H gϕ = H g′

. So
Lϕ = (H ∩ H g)ϕ = H ∩ H g′ = L . Hence ϕ ∈ NAut(G)(H ) ∩ NAut(G)(L).

Further, since ϕ fixes the vertex α, ϕ maps the neighborhood �(α) to the neighbor-
hood �′(α), Thus Hgϕ H = (HgH )ϕ = Hg′ H , so gϕ ∈ Hg′ H , that is, gϕ = h1g′h2

for some elements h1, h2 ∈ H . Let σ = ϕh1 ∈ Aut� ≤ Aut(G) (h1 acts on G by con-
jugation) and write h = h2h1. Then σ ∈ NAut(G)(H ) and

gσ = gϕh1 = g′h,

so g−1gσ = h ∈ H . Further, it is easily shown that

Lσ = (H ∩ H g)σ = Hσ ∩ (g−1 Hg)σ = H ∩ H g′ = L .
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So σ ∈ NAut(G)(L) and gσ ∈ NG(L). Since g′ ∈ NG(L), we have g−1gσ ∈ NG(L),
and as g−1gσ = h ∈ H , we obtain h = g−1gσ ∈ H ∩ NG(L) = NH (L) = L , so
gσ = g′h ∈ g′L .

�

Finally, we prove a lemma for determining the number of non-isomorphic vertex
primitive 2-arc regular graphs. By Lemma 3.4, we need only to consider those graphs
generated by the elements of I (G, L). Let

K = NAut(G)(H ) ∩ NAut(G)(L), � = {g = gL | g ∈ I (G, L)}.

For any α ∈ K and any g ∈ I (G, L), the image gα ∈ I (G, L). Thus K has a natural
action on the set � defined as

gσ = gσ , for σ ∈ K and g ∈ �.

Notice that, by the definition of I (G, L), each element g ∈ � is an involution of
NG(L)/L . Furthermore, we have the following lemma to count our graphs.

Lemma 3.5. Let (G, H, L) be one of the entries in Table 2. Let n be the number of
non-isomorphic graphs corresponding to the triple (G, H, L). Then
(1) n equals the number of K -orbits in �;
(2) if in addition G = Aut(G), then n equals the number of involutions in NG(L)/L.

Proof: Let g, g′ ∈ I (G, L). If Cos(G, H, HgH ) ∼= Cos(G, H, Hg′ H ), then by
Lemma 3.4, there is a σ ∈ K such that gσ = g′h for some h ∈ L . So gσ = gσ =
g′h = g′. Conversely, if g and g′ belong to the same K -orbit, that is, gσ = g′ for some
σ ∈ K , then gσ ∈ g′L . Thus by Lemma 3.4, Cos(G, H, HgH ) ∼= Cos(G, H, Hg′ H ).
Therefore, part (1) is true. If G = Aut(G), then as H is maximal in G, we have K =
NG(H ) ∩ NG(L) = H ∩ NG(L) = NH (L) = L . Thus n = |�|, equal to the number
of involutions in NG(L)/L . �

4. Proof of Theorem 1.1

As before, let � be a non-complete graph of valency at least 5, and assume that
G ≤ Aut� is an almost simple group such that G is primitive on V � and regular on
the set of 2-arcs of �. By Lemmas 3.1 and 3.2, we may assume that G is one of the
groups listed in Table 2, � = Cos(G, H, HgH ) where H = K :L is the corresponding
maximal subgroup of G and g ∈ I (G, L). Let A = Aut�, and let n(A) be the number of
non-isomorphic graphs with automorphism group A. Note that NG(L) is a subgroup of
some maximal subgroup of G containing L . We shall process our proof of Theorem 1.1
by analysing the candidates listed in Table 2 one by one.

Lemma 4.1. If soc(G) is a sporadic simple group or an exceptional simple group of
Lie type, then Theorem 1.1 holds.
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Proof: For G = J1, we have H = 7:6 or 11:10, and L = Z6 or Z10, respectively.
By [1], all cyclic subgroups of order |L| are conjugate, and so L is conjugate to a
subgroup of D6 × D10 < G. It follows that NG(L) ∼= Di × Z2 and NG(L)/L ∼= Z2,
where i = 6 or 10. By Lemma 3.3, we have G ≤ A ≤ Aut(J1) = J1, so A = J1. Then
by Lemma 3.5 (2), there is exactly one graph arising in each case, with valency 7 or
11, respectively.

For G = J3.2, we have H = 19:18 and L = Z18. By [1], all cyclic subgroups of
order 18 are conjugate. Since G contains only one conjugacy class of maximal sub-
groups L2(17) × Z2 which contain an element of order 18, there exists a subgroup
M = L2(17) × Z2 of G such that NG(L) ≤ M , which implies that NG(L) = NM (L).
Note that M has only one conjugacy class of maximal subgroups D18 × Z2 contain-
ing elements of order 18. Similarly we deduce that NG(L) is contained in a max-
imal subgroup of M isomorphic to D18 × Z2. It follows that NG(L) ∼= D18 × Z2

and NG(L)/L ∼= Z2. By Lemma 3.5 (2), there exists exactly one graph occur-
ring in this case. By Lemma 3.3, we have G ≤ A ≤ Aut(J3) = J3.2, so A = G =
J3.2.

For G = O N .2, we have H = 31:30, and L = Z30. By [1], all cyclic subgroups of
order 30 are conjugate. Since Z2 × D6 × D10 contains a cyclic subgroup of order 30 we
may assume L < Z2 × D6 × D10 = NG(L) < Z2 × J1 < G. Hence NG(L)/L ∼= Z2

2 .
By Lemma 3.3, we have A = G, and by Lemma 3.5 (2), there are exactly 3 graphs in
this case, that is, n(A) = 3.

For G = J4, we have H = 29:28, and L = Z28. It follows from the information
given in [1] that all cyclic subgroups of order 28 are conjugate. Since the subgroup
23+12.(S5 × L3(2)) contains a cyclic subgroup of order 28, we may assume that L <

23+12.(S5 × L3(2)) < G. Now CG(L) = L , and if a is an element of G of order 7,
then a is not conjugate to a−1. Thus, NG(L) = D8 × (Z7:Z3), and so NG(L)/L ∼= Z6.
By Lemma 3.5 (2), there exists exactly one graph occurring. Then by Lemma 3.3, the
automorphism group A = G = J4.

For G = Fi24, we get H = 29:28, and L ∼= Z28. Let x be an element of L of order
28. Then x = x1x2 such that o(x1) = 4 and o(x2) = 7. By [1], |CG(x2)| = 35280
or 2058. Since 4 does not divide 2058, we have |CG(x2)| = 35280, so a Sylow 2-
subgroup S of CG(x2) is of order 16. Hence NS(〈x1〉) > 〈x1〉. Let g ∈ NS(〈x1〉)\〈x1〉.
Then xg

1 ∈ 〈x1〉 and xg
2 = x2, so xg ∈ 〈x〉. Hence by Lemma 3.2, there exists at least

one graph. By Lemma 3.3, A = Fi24. Again by [1], CG(x) = 〈x〉 = L . Thus the
number of involutions of NG(L)/L is not greater than the number of involutions of
Aut(L) ∼= Z2 × Z6. Thus there are one or three graphs in this case, that is, n(A) = 1
or 3.

For the Monster simple group G = M , we have H = 41:40, and H = Z40. By
Lemma 3.3, if there exists a graph � in this case, the full automorphism group A = M .
By [1], we conclude that |CG(Z40)/Z40| = 10, 8 or 2. Thus there exists at least one
graph, that is, n(A) ≥ 1.

For the Suzuki group G = Sz(8), we get H = 5:4, and L = Z4. Let x be an element
of L of order 4. By [1], x is not conjugate to its inverse and NG(L) = CG(L) has size
16. Let Q be a Sylow 2-subgroup of G containing L = 〈x〉. By Lemma 1 of [18],
we have that Z (Q) = Z3

2. Thus NG(L) contains a subgroup Z3
2, and so NG(L) is not

isomorphic to Z2
4. It follows that NG(L) = CG(L) ∼= Z4 × Z2

2. Now F = NAut(G)(H ) ∩
NAut(G)(L) = Z4 × Z3. Further, Z3

∼= Out(G) fixes x2 and is semiregular on the set of
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the other 6 involutions of NG(L). Since Cos(G, H, HgH ) = Cos(G, H, Hgx2 H ), it
follows from Lemma 3.5 that exactly one graph occurs in this case, so that n(A) = 1.
By Lemma 3.3, it is easily shown that A = G = Sz(8).

For G = Sz(8).3, the subgroups H = 7:6 and L = Z6. By the information given
in [1], we obtain NG(L)/L ∼= Z2. Thus by Lemma 3.5, there is exactly one graph in
this case. Since G = Aut(G), we have Aut� = G by Lemma 3.3.

For the case G = 3 D4(2).3, the subgroups H = 13:12 and L = Z12. Let x be an
element of L of order 12. Then x = x1x2 such that o(x1) = 4 and o(x2) = 3. By [1],
we get |CG(x2)| = 12096 or 216. Thus a Sylow 2-subgroup S of CG(x2) is of order
8, and so NS(〈x1〉) > 〈x1〉. Let g ∈ NS(〈x1〉)\〈x1〉. Then xg

1 ∈ 〈x1〉, and xg
2 = x2. So

xg = xg
1 xg

2 ∈ 〈x〉 = L , and Lg = L . Since Aut(G) = G, by Lemma 3.3, if there exists
a graph for this case, the automorphism group A = G. Again by [1], CG(L) = L . Thus
the number of involutions of NG(L)/L is not greater than the number of involutions
of Aut(G) ∼= Z2 × Z2. By Lemma 3.5 (2), exactly 1 or 3 graphs occur in the case, that
is, n(A) = 1 or 3.

For G = 2 F4(2), we have H = 13:12, and L = Z12. It follows from the information
given in the Atlas [1] that all cyclic subgroups of G of order 12 are conjugate, and
so L < L2(25).2. Further analysis gives NG(L) = D24, and so |NG(L)/L| = 2. By
Lemma 3.5 (2), there exists exactly one graph for this case. Since Aut(G) = G, we
have A = G by Lemma 3.3.

For G = 2 F4(8).3, we have H = 37:36 and L = Z36. If � exists, its valency is 37,
and since Aut(G) = G, we have A = G by Lemma 3.3. Let σ be an automorphism
of T := 2 F4(8) induced by a field automorphism of order 3. Then G = 2 F4(8).〈σ 〉.
Write L = 〈x0〉 and x0 = x1x2 such that o(x1) = 9 and o(x2) = 4. Let x = x3

1 . Then
x ∈ T is of order 3. By [17] (or see the first four lines of [12, 1.2]), all elements of T
of order 3 are conjugate. By Proposition 1.2 and its corollary of [12], we have

〈x〉 × U3(8).2 = CT (x) < CG(x) = (〈x〉 × U3(8).2).〈σ 〉.

Now L ≤ CG(x) < (〈x〉 × U3(8).2).〈σ 〉. Since CG(L) ≤ CG(x), we obtain

x2 ∈ L � CG(L) ≤ CG(x) = (〈x〉 × U3(8).2).〈σ 〉.

Let S be a Sylow 2-subgroup of U3(8).2 containing x2. Then by the Atlas [1], S =
23+6:2 and Sx1 = S. Let

C = CS(x2), N = NS(〈x2〉).

Since Cx1 centralises x x1

2 = x2, we have Cx1 = C . Further, for u ∈ N , Cux1 = C and
hence N x1 = N . Let 	 = NS(〈x2〉)\〈x2〉. Assume first that x2 ∈ U3(8). Using GAP,
computation shows that |C | = 26 and |N | = 27. Then |	| = 27 − 4 = 124, not di-
visible by 3. Since x1 normalises both 〈x2〉 and N , we have that x1 fixes 	 set-
wise (by conjugation) and centralises at least one element of 	. Choose g to be
such an element such that g2 ∈ L . Then g normalises L , and g ∈ I (G, L). Assume
now that x2 ∈ U3(8).2\U3(8). Using GAP, computation shows that |C | = 27 = 128
and |N | = 28 = 256. Since x1 normalises C and |C\〈x2〉| = 124. Arguing as in the
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previous case, we get a 2-element g ∈ C\〈x2〉 ⊂ 	, which lies in I (G, L). Thus by
Lemma 3.2, there exists a graph �.

Finally, for the Ree group G = 2G2(27).3, we have H = 19:18 and L = Z18. From
the information given in the Atlas [1], it is easily shown that there is no 2-element
satisfying Lemma 2.3. So no graph occurs for this case. �

Lemma 4.2. If the socle of G is An for some n ≥ 5, then Theorem 1.1 holds.

Proof: For G = A6.2 = M10, we have H = 5:4 and L = Z4. It follows from [1] that
NG(L) = Q8, and so I (G, L) ⊆ Q8\L . On the other hand, since H = NG(H ) = K :L ,
we conclude that (Q8\L) ∩ NG(H ) = ∅. Thus I (G, L) = Q8\L . Since |Q8 : L| = 2,
we have that Lx = Ly for any x, y ∈ Q8\L = I (G, L). Hence |�| = 1, and so n(A) =
1. By [1], NAut(G)(H ) = H × Z2, so Aut� = Aut(G).

If G = Sp then H = Z p:Z p−1. It is easy to show that CG(Z p−1) = Z p−1 and
Aut(Z p−1) < Sp. Hence NG(Z p−1)/Z p−1 = Aut(Z p−1), and by Lemma 3.5 (2), n(A)
equals the number of involutions of NG(Z p−1)/Z p−1 = Aut(Z p−1). Let

p − 1 = pr1

1 pr2

2 . . . prk
k , where p1 = 2 and pi are distinct odd primes for i ≥ 2.

Then Aut(Z p−1) = Aut(Z2r1 ) × Aut(Z p
r2
2

) × · · · × Aut(Z p
rk
k

). A Sylow 2-subgroup T of
Aut(Z p−1) is isomorphic to Aut(Z2r1 ) × Z2s2 × · · · × Z2sk , where pi ≡ 1 (mod 2si ). Note
that T is normal in Aut(Z p−1) and Aut(Z2r1 ) = 1, Z2 or Z2 × Z2r1−2 depending on
r1 = 1, 2 or ≥ 3. All involutions of NG(Z p−1)/Z p−1 are in T . Thus n(A) = 2k−1 − 1,
2k − 1 or 2k+1 − 1. Since Aut(G) = G, we have Aut� = G. �

Lemma 4.3. If G = L3(4), S4(4).4, or U3(4).4, then Theorem 1.1 holds.

Proof: For G = L3(4), we have H = 32:Q8 and L = Q8. Using GAP, computation
shows that G has a unique self-paired 2-transitive subconstituent of length 9. Thus
n(A) = 1. By the information given in [1], NAut(G)(H ) = H.D12, and so Aut� = G.D12.

For G = S4(4).4, we have H = 17:16 and L = Z16. Using GAP, computation
shows that G has a unique self-paired 2-transitive subconstituent of length 17. Thus
n(A) = 1. Since G = Aut(G), by Lemma 3.3, Aut� = G.

Finally, for G = U3(4).4, we have H = 13:12 and L = Z12. Let x be an element of
L of order 12, and x = x1x2 such that o(x1) = 3 and o(x2) = 4. By [1], CG(L) = L .
Thus NG(L)/L ≤ Aut(L) ∼= Z4. So |NG(L)/L| = 1, 2 or 4. Again by [1] we know
that all cyclic subgroups of G of order 12 are conjugate in G and that there is a
maximal subgroup 52:(4 × S3). So we may assume that L < 4 × S3, which implies
that |NG(L)/L| �= 1. If |NG(L)/L| = 4, then the order of a Sylow 2-subgroup of NG(L)
is 16. Let T be a Sylow 2-subgroup of NG(L). It follows that L < T . Moreover there
are two distinct two elements x, y ∈ NG(L)\L such that T = 〈x2, x, y〉. Since 〈x1〉 is
a characteristic subgroup of L , 〈x1〉x = 〈x1〉y = 〈x1〉. On the other hand from [1] we
know that the order of a Sylow 2-subgroup of CG(〈x1〉) is 4 and hence 〈x2〉 is the Sylow
2-subgroup of CG(〈x1〉), which implies that x x

1 = x y
1 = x−1

1 . Thus x xy−1

1 = x1 and
hence xy−1 ∈ CG(〈x1〉) ∩ T = 〈x2〉 < L . Thus T = 〈L , x〉 and x2 /∈ L (for otherwise
|T | �= 16). However x x2

1 = x1 and hence x2 ∈ CG(〈x1〉) ∩ T = 〈x2〉 < L , which is a
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contradiction. Thus |NG(L)/L| = 2 and n(A) = 1 as expected. Since G = Aut(G),
Aut� = G. �

Lemma 4.4. Let G = U3(2r ) and H = Z2
3:Q8, where r > 3 is a prime. Then Aut� =

U3(2r ).S3, and the number of non-isomorphic graphs equals (2r−1 − 1)/r .

Proof: Now L ∼= Q8. First we determine I (G, L). It follows from [5, XI 13.9] that
the intersection of any two Sylow 2-subgroups is equal to the identity group. Thus
L is contained in a unique Sylow 2-subgroup S. If g ∈ I (G, L), then 〈L , g〉 ≤ S
and so I (G, L) ≤ S. By [5, VIII 7.10], S is a Suzuki 2-group with |S| = |Z(S)|3.
By [5, VIII 7.9], S′ = Z(S) consists of the identity and all involutions of S. It is clear
that Z(S) ≤ NS(L) and LZ(S)\L ≤ I (G, L). Conversely, assume that g ∈ I (G, L).
If g is an involution, then since g ∈ S, g ∈ Z(S) ⊂ LZ(S). If o(g) = 4, then g2 is
the unique involution of L . Suppose that L = 〈a, b〉 with o(a) = 4 = o(b). Assume
that g /∈ LZ(S). Since 〈a, b〉g = 〈a, b〉 and S′ = Z(S), ag = g−1aga−1a = ea where
e = g−1aga−1 ∈ Z(S). Since g−1ag, a−1 ∈ L , we have e ∈ L and so e = 1 or a2.
Thus ag = a or a−1. If ag = a then 〈a, g〉 is an abelian group and contains the unique
involution a2 = g2. By [4, III 8.2], 〈a, g〉 is cyclic and so g ∈ 〈a〉 as exp(S) = 4,
a contradiction. Thus ag = a−1. Similarly bg = b−1. It follows that 〈a, b, g〉 con-
tains the unique involution a2 = b2 = g2. Again by [4, III 8.2], 〈a, b, g〉 ∼= Q8 as
exp(S) = 4, so g ∈ 〈a, b〉, a contradiction. Thus we conclude that g ∈ LZ(S) and
I (G, L) = LZ(S)\L . By Lemma 3.2, all 2-arc transitive graphs obtained from G
satisfying our requirement are determined by Z(S)\{1, a2}. Now we consider the ac-
tion of F := NAut(G)(H ) ∩ NAut(G)(L) on Z(S). In the meaning of Aschbacher’s eight
subgroup collections (see [7, page 71, Table 3.5.B]), H = 32:Q8 is a member of C5.
Hence H = U3(2). It is clear that U3(2) � PGU3(2) < PGU3(2r ), which implies
that the diagonal automorphism of G normalizes H . Furthermore, the field automor-
phism of G induces an automorphism of order 2 on the ground field G F(22) on which
H = U3(2) is defined. Hence the field automorphism of G normalizes H . It follows that
NAut(G)(H ) = H :(Z3:Z2r ) = H :(S3 × Zr ) = Z2

3:
(
L:(S3 × Zr )

)
. Thus F = L:(S3 ×

Zr ) = (L:S3) × Zr . It is clear that NG(Z(S)) ≥ NG(S). By [4, II 10.12], NG(S) is max-
imal in G, so NG(Z(S)) = NG(S) = S:Z(22r −1)/3. Furthermore, it is not hard to verify
that CG(Z(S)) = S:Z(2r +1)/3. Hence NG(Z(S))/CG(Z(S)) ∼= Z2r −1. Similarly one can
prove that NAut(G)(Z(S)) = S:(Z22r −1:Z2r ) and CAut(G)(Z(S)) = S:(Z2r +1:Z2), which
implies that NAut(G)(Z(S))/CAut(G)(Z(S)) ∼= Z2r −1:Zr . Thus the kernel of F acting on
Z(S) is equal to L:S3. So F fixes a2 and acts semiregularly on the other involutions
of Z(S), namely, on Z(S)\{1, a2}. Since Cos(G, H, HgH ) = Cos(G, H, Hga2 H ), it
follows that n(A) = ( 2r −2

2
)/r = (2r−1 − 1)/r . Since S3 normalises H and fixes every

involution of Z(S), we have Aut� = G.S3. �

Lemma 4.5. Let G = L3(q), where q ≡ 4, 7 (mod 9) is a prime, and H = Z2
3:Q8.

Then

(Aut�, n) =
{

(G, 1), if q ≡ 3 (mod 4),,

(G, 2) or (Aut(G), 1), if q ≡ 1 (mod 4),

where n is the number of non-isomorphic corresponding graphs.
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Proof: All subgroups of L3(q) for odd q were determined by Mitchell [13]. Let
L = Q8 < H . It is to show that 16 divides |G| and so NG(L) > L . By checking the
subgroups determined in [13], we get NG(L) = Z(q−1)/3.S4 and [Z(q−1)/3, S4] = 1. Let
M be a Hall 2′-subgroup and 〈x〉 a Sylow 2-subgroup of Z(q−ε)/2. Since q ≡ 4, 7 (mod
9), 3 does not divide (q − ε)/3. It follows that NG(L) = M × (〈a〉.S4). Furthermore,
〈a〉.S4 = 〈a〉 ◦ (L .〈x, y〉) = (〈a〉 ◦ L).〈x, y〉, where 〈a〉 ∩ L = Z2, o(x) = 3, 〈x, y〉 =
S3 and L .〈x, y〉 = 2S4. It is not hard to write out all elements of I (G, L):

I (G, L) =
{{

y, yx , yx2}L
if o(a) = 2,{

y, yx , yx2

, b, by, byx , byx2}L
ifo(a) ≥ 4

where b is an element of 〈a〉 of order 4. Again by [11], we have NAut(G)(H ) =
(32:L).O = 32:(L .O), where O = S3 and L .O = 2S4, and NAut(G)(L) = Zq−1.S4.〈v〉
such that its center is Zq−1, where v is a graph automorphism of G of order 2. Thus O <

NAut(G)(L), no element of O centralizes L and O ∩ G = 1; Zq−1 = M × 〈a〉 × 〈u〉,
where 〈u〉 = Z3 and 〈u, v〉 = S3. So F := NAut(G)(H ) ∩ NAut(G)(L) = L .O . Since
Aut(S4) = S4, v acts on S4 trivially. It follows that

NAut(G)(L) = (M × 〈a〉 × 〈u〉).(S4 × 〈v〉)
= M × (〈u〉 × ((〈a〉 ◦ L).〈x, y〉)).〈v〉
= M × 〈u, v〉 × ((〈a〉 ◦ L).〈x, y〉).

Since S3 = O < NAut(G)(L), no element of O centralizes L , we have O = 〈uxl , vyl〉
where l ∈ L . We need to know the action of F = L .O on I (G, L). To do this, we need
only consider the action of Ol−1 = 〈ux, vy〉 on I (G, L). First suppose o(a) ≥ 4. Then

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yux = yx , (yx )ux = yx2

,
(
yx2)ux = y;

yvy = y, (yx )vy = yvxy = yxy = yyxy = yx2

,
(
yx2)vy = yx ;

bux = b, bvy = b;

(by)ux = byx , (byx )ux = byx2

,
(
byx2)ux = by;

(by)vy = by, (byx )vy = byx ,
(
byx2)vy = byx2

.

It follows from Lemma 3.5 that n(A) = 3, that there are exactly three non-isomorphic
graphs, which are generated by y, b and by respectively. By Lemma 3.3, if
� = Cos(G, H, H y H ) or Cos(G, H, Hby H ) then Aut� = G, so n(G) = 2; if � =
Cos(G, H, HbH ) then Aut� = G.S3 = Aut(G), so n(Aut(G)) = 1. If o(a) = 2, the
same argument leads to n(A) = 1 and A = Aut� = G. Note that o(a) ≥ 4 if and only
if 4 divides q − 1. This completes the proof of the lemma. �
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Lemma 4.6. Let G = U3(q), where q ≡ −4, −7 (mod 9) is a prime, and H = Z2
3:Q8.

Then

(Aut�, n) =
{

(G.2, 1), if q ≡ 3 (mod 4),

(G.2, 2) or (G.6, 1), if q ≡ 1 (mod 4).

Proof: The techniques and organization of the proof are similar to that of Lemma 4.5.
All subgroups of U3(q) for odd q were determined by Mitchell [13]. Let L = Q8 <

H . Clearly, 16 divides |G|, so NG(L) > L . By checking the subgroups determined
in [13], we get NG(L) = Z(q−1)/3.S4 and [Z(q−1)/3, S4] = 1. Similar to the proof of
Lemma 4.5, NG(L) = (M × 〈a〉).(Z2

2:〈x, y〉) = M × ((〈a〉 ◦ L).〈x, y〉), where M is
a Hall 2′-subgroup of Z(q−1)/3, 〈a〉 is a Sylow 2-subgroup of Z(q−1)/3, 〈a〉 ∩ L = Z2,
o(x) = 3, 〈x, y〉 = S3 and L .〈x, y〉 = 2S4. It is not hard to write out all elements of
I (G, L):

I (G, L) =
{

{y, yx , yx2}L if o(a) = 2,

{y, yx , yx2

, b, by, byx , byx2}L if o(a) ≥ 4

where b is an element of 〈a〉 of order 4. Again by [11], we have NAut(G)(H ) = (32:L).O ,
where O = Z6 and L .O = 2A4 × Z2, and NAut(G)(L) = Zq−1.S4.〈v〉 such that its cen-
ter is Zq−1 × Z2 and 〈v〉 = Z2. Thus O < NAut(G)(L), no element of order 3 of O cen-
tralizes L and O ∩ G = 1; Zq−1 = M × 〈a〉 × 〈u〉, where 〈u〉 = Z3 and 〈u, v〉 = Z6.
Since S4 is a complete group, the out-automorphism v of G of order 2 acts trivially
on S4. It follows that

NAut(G)(L) = (M × 〈a〉 × 〈u〉).(S4 × 〈v〉)
= M × (〈u〉 × ((〈a〉 ◦ L).〈x, y〉)).〈v〉
= M × 〈u, v〉 × ((〈a〉 ◦ L).〈x, y〉).

Now O = Z6 is a subgroup of NAut(G)(L). It follows that O = 〈uxl , v〉 where l ∈ L .
We need to know the action of NAut(G)(H ) ∩ NAut(G)(L) = L .O on I (G, L). Clearly we

need only consider the action of Ol−1 = 〈ux, v〉 on I (G, L). First suppose o(a) ≥ 4.
Then ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yux = yx , (yx )ux = yx2

,
(
yx2)ux = y;

yv = y, (yx )v = yvx = yx ,
(
yx2)v = yx2

;

bux = b, bv = b;

(by)ux = byx , (byx )ux = byx2

,
(
byx2)ux = by;

(by)v = by, (byx )v = byx ,
(
byx2)v = byx2

.

It follows from Lemma 3.5 that n(A) = 3, that there are exactly three non-isomorphic
graphs, which are generated by y, b and by. By Lemma 3.3, if � = Cos(G, H, H y H )
or Cos(G, H, Hby H ) then Aut� = G.2, so n(G.2) = 2; if � = Cos(G, H, HbH ) then
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Aut� = G.Z6 = Aut(G), so n(Aut(G)) = 1. If o(a) = 2, the same argument leads to
n(A) = 1 and Aut� = G. Note that o(a) ≥ 4 if and only if 4 divides q − 1. The lemma
is now proved. �

Finally, we summarize the arguments for proving Theorem 1.1.

Proof of Theorem 1.1: Let � be a graph, and assume that G ≤ Aut� acts primitively
on the vertex set V � and regularly on the set of 2-arcs of �.

By Lemma 2.1, there are three cases that we need to deal with, that is, � is a
complete graph, G is affine type, and G is almost simple. By Lemma 2.2, the first case
is as in Theorem 1.1 (1), and the second case is as in Theorem 1.1 (2). Thus we only
need to consider the case where G is an almost simple group.

By Lemma 3.1, if the valency of � is at most 4, then Theorem 1.1 holds by the
result of [9]. Thus assume that the valency of � is at least 5. Then all candidates for G
are listed in Table 2, see Lemma 3.1. So by Lemmas 4.1–4.6, for all the possibilities,
Theorem 1.1 holds. This completes the proof of Theorem 1.1.
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