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Abstract Given two Schubert classes σλ and σμ in the quantum cohomology of a
Grassmannian, we construct a partition ν, depending on λ and μ, such that σν appears
with coefficient 1 in the lowest (or highest) degree part of the quantum product σλ � σμ.
To do this, we show that for any two partitions λ and μ, contained in a k × (n − k)
rectangle and such that the 180◦-rotation of one does not overlap the other, there is a
third partition ν, also contained in the rectangle, such that the Littlewood-Richardson
number cν

λμ is 1.

Keywords Quantum cohomology . Toric tableau . Littlewood-Richardson number

The purpose of this note is to establish the following fact about the product of classes
in the quantum cohomology of a Grassmann manifold:

Proposition 1. If d is the smallest or largest power of q appearing in the quantum
product σλ � σμ, then there exists a Schubert class σν such that the Gromov-Witten
invariant cν

λμ(d) is equal to 1.

In fact, we will explicitly construct such a class. The main idea is to use a result
of Postnikov (Corollary 8.4 in [5]), which equates these Gromov-Witten invariants to
certain classical Littlewood-Richardson numbers. The above proposition then follows
from a statement about classical cohomology (Proposition 3 below), which says that
whenever λ and μ are such that σλ · σμ �= 0, one can construct a partition ν such that
cν
λμ = 1. Moreover, we conjecture that the result holds for all powers of q appearing in

σλ � σμ. We conclude with a comment on an application of this fact to “real quantum
cohomology.”
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Before discussing Postnikov’s result and the construction of the class σν , we re-
call some basic definitions, notation, and results related to quantum cohomology of
Grassmannians. Let X = Grk(Cn) be the Grassmannian of k-planes in Cn . The coho-
mology ring H∗(X ; Z) is well-understood. It has a linear basis of Schubert classes σλ,
indexed by partitions whose Young diagrams fit inside the k-by-(n − k) rectangle; these
classes correspond to the Schubert varieties �λ of codimension |λ| = #(boxes in λ).
(Thus the class σλ has degree 2|λ|.) The structure constants for multiplication in this
basis are the Littlewood-Richardson numbers cν

λμ—that is,

σλ · σμ =
∑

ν

cν
λμ σν.

The (small) quantum cohomology ring QH∗(X ) is a module over the polynomial
ring Z[q], where q is a formal variable of degree n, with a corresponding Z[q]-basis
of Schubert classes σλ. The ring structure is given by quantum multiplication, denoted
by ‘�’, which has for structure constants the (three-point, genus 0) Gromov-Witten
invariants. That is,

σλ � σμ =
∑

d

qd
∑

ν

cν
λμ(d) σν,

where cν
λμ(d) is, by definition, the number of degree-d rational curves passing through

general translates of �λ, �μ, and �ν∨ ; by degree considerations, it is nonzero only
when |λ| + |μ| = |ν| + dn.

The ring Q H∗(X ) has been much-studied in recent years; we mention only a few
results most relevant to this note. Agnihotri showed that the quantum product σλ � σμ

is never zero (see [1], Section 5); Fulton and Woodward gave a characterization of the
lowest power of q appearing in σλ � σμ, and generalized this to all G/P [3]; Yong gave
an upper bound for the powers of q appearing in a quantum product and conjectured
that these powers form an unbroken sequence from lowest to highest; Postnikov refined
the results of [3] for type A, gave a formula for equating the Gromov-Witten invariants
cν
λμ(d) to Littlewood-Richardson numbers when d is the minimal or maximal power

of q appearing in σλ � σμ, and proved Yong’s conjecture [5].
Now we introduce some notation, following [5]. All partitions will lie inside the

k-by-(n − k) rectangle. If we draw the diagram of a partition λ inside the rectangle,
the border traces a path from the SW corner to the NE corner of the rectangle; the
01-word ω(λ) is the n-digit string which assigns a “0” to each step right, and a “1” to
each step up. Writing ω(λ) = (ω1, . . . , ωn), define a doubly infinite integer sequence
φ = φ(λ) = (φi )i∈Z by φi = ω1 + · · · + ωi for 1 ≤ i ≤ n, and φi+n = φi + k for all i .
Also, let λ∨ denote the complement of λ – that is, λ∨ = (n − k − λk, . . . , n − k − λ1)
– and let λ′ be the conjugate of λ. Here is an example, for k = 5 and n = 11:
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Define the cyclic rotation Si (λ) to be the partition whose 01-word is obtained from
ω(λ) by cyclically permuting i places to the left (or −i places to the right, if i is nega-
tive). For instance, with λ = (6, 5, 4, 2), we have ω(λ) = (1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1),
so ω(S2(λ)) = (0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0), and thus S2(λ) = (5, 5, 4, 3, 1). Finally,
given two partitions λ and μ, define integers Dmin and Dmax by

Dmin = − min
i

{φi (λ) + φ−i (μ)}
Dmax = − max

i
{φ−i (λ) + φi−(n−k)(μ)}.

Of course, it suffices to consider 1 ≤ i ≤ n in this definition, since the sequences
{φi (λ) + φ−i (μ)} and {φ−i (λ) + φi−(n−k)(μ)} are n-periodic.

The meaning of these definitions becomes clearer in the language of Postnikov’s
toric shapes. (We will not need these notions for the proof of Proposition 1, but we
will use them to formulate our conjecture for intermediate powers of q .) Consider the
lattice Z2 in the plane, with matrix coordinates; i.e., the point (i, j) is i steps down
and j steps right from the origin. Let Rkn be the rectangle with vertices (0, 0), (k, 0),
(0, n − k), and (k, n − k), and let the cylinder Ckn be the quotient Z2/Z · (−k, n − k).
(Thus the SW and NE corners of Rkn are identified in Ckn .) If λ is a partition inside Rkn ,
the cylindric loop λ[0] is the image of the border of λ in Ckn . The shifted cylindric loop
λ[d] is the translation of λ[0] by (d, d). We will often identify λ[d] with its preimage
in the plane; this is just the periodic continuation of the (translated) border of λ. See
Fig. 1.

A frame is any translation of Rkn in the plane, and the anchor of a frame is its
SW corner. If we move a frame so that its anchor lies on λ[0], then the part of λ[0]
contained inside the frame forms the border of a partition. In fact, if the anchor is
shifted i steps in the NE direction along λ[0], then the resulting partition is Si (λ).
Also, the number φi (λ) is the vertical distance traveled after i steps NE along λ[0] (so
the frame for Si (λ) is translated up by φi (λ) from Rkn , and right by i − φi (λ)). See
Fig. 2.

If λ and μ are partitions such that μ[d] is (weakly) right and below λ[0] in the plane,
so that the region between μ[d] and λ[0] forms a connected strip, then the image of
this region in Ckn is called a cylindric shape and denoted μ/d/λ. Let λ↓[0↓] denote
the translation of λ[0] by (k, 0). A cylindric shape μ/d/λ is toric if μ[d] lies between

Fig. 1 Cylindric loops, for λ = (6, 5, 4, 2)
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Fig. 2 Rotating the frame

Fig. 3 The toric shape μ/2/λ, for μ = (4, 3, 3, 2) and λ = (6, 5, 4, 2)

λ[0] and λ↓[0↓] (Fig. 3). It is not hard to see that the numbers Dmin and Dmax defined
above are the minimum and maximum values of d such that μ∨/d/λ is a toric shape.

Postnikov shows that qd appears in the quantum product σλ � σμ if and only if
μ∨/d/λ is a toric shape, and deduces that Dmin and Dmax are, respectively, the mini-
mum and maximum powers of q appearing in this product. By the definitions, there
are integers a and b such that Dmin + φa(λ) + φ−a(μ) = 0 and Dmax + φ−b(λ) +
φb−(n−k)(μ) = 0. (There may be more than one such a and b, but any choice will
do.) Set

λmin = Sa(λ),

μmin = S−a(μ),

λmax = Sb(λ∨), and

μmax = Sn−k−b(μ∨).

Then Postnikov proves the following:

Proposition 2 ([5], Corollary 8.4). Let ν be any partition in the k-by-(n − k) rectan-
gle. Then

cν
λμ(Dmin) = cν

λminμmin , and (1)

cν
λμ(Dmax) = cν∨

λmaxμmax . (2)
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In particular, the products σλmin · σμmin and σλmax · σμmax are nonzero in H∗(X ).
By substituting λ for λmin, and so on, this reduces Propostion 1 to the following:

Proposition 3. Let λ and μ be any partitions contained in the k-by-(n − k) rectangle,
such that σλ · σμ �= 0 in H∗(X ). Then there is a partition ν = ν(λ, μ), also contained
in the rectangle, such that cν

λμ = 1.

If we write μ180 for the 180◦-rotation of μ inside the k-by-(n − k) rectangle, note
that the condition σλ · σμ �= 0 is equivalent to requiring that λ and μ180 do not overlap.
(This notation should cause no confusion, as we will not discuss partitions with 180
parts.) Note that the boxes of μ180 form the complement of μ∨ inside the rectangle.

Proof: We will construct the partition ν, and use the following version of the
Littlewood-Richardson rule: The number cν

λμ is equal to the number of semistan-
dard Young tableaux of shape ν/λ with reading word of type μ.1 We will call such a
tableau on ν/λ a Littlewood-Richardson filling of type μ. (See [2] or [6, Appendix 1]
for more on the Littlewood-Richardson rule.)

Draw λ and μ180 inside the rectangle. Now slide the columns of μ180 up against λ,
and then left-justify all rows. The resulting shape is ν(λ, μ). Here is an example, with
k = 5, n = 11, λ = (4, 3, 1), and μ = (5, 4, 4). (The shape of λ is shaded, and that of
μ180 is filled by numbers.)

In this example, then, ν(λ, μ) = (6, 6, 6, 2, 1).
This sliding algorithm is reminiscent of the moves in Schützenberger’s jeu de taquin

[7] (see also [6, Appendix 1]). In fact, the bulk of the sliding described here can be
accomplished via jeu-de-taquin moves; however, as the above example shows, it is not
exactly the same as jeu de taquin. (In jeu de taquin, the ‘3’ in the bottom row would
slide up, and the final shape would be (6, 6, 6, 3).)

Numerically, let ρ be the partition formed by sorting

(k − λ′
1 − μ′

n−k, k − λ′
2 − μ′

n−k−1, . . . , k − λ′
n−k − μ′

1).

1 The reading word of a tableau is the integer string formed by reading the entries of the tableau from right
to left, starting at the top row. A word w = w1w2 · · · wp is of type μ if one can build the diagram of μ by
placing a box in row w1, then in row w2, etc., in such a way that one has a Young diagram at each step. The
condition that each stage be a Young diagram is equivalent to requiring that for each m ≤ p,

#(1’s in {w1, . . . , wm}) ≥ #(2’s in {w1, . . . , wm}) ≥ · · · ;

this is called the Yamanouchi condition.
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(These are the heights of the spaces between the columns of λ and μ180.) The slid-
ing construction described above leaves the shape (ρ ′)180 in the bottom right corner.
Indeed, sliding μ180 up leaves blank columns of heights (k − λ′

i − μ′
n−k+1−i ), and

left-justifying the filled space is the same as right-justifying blank space, which is
equivalent to sorting. Thus ν(λ, μ) = (ρ ′)∨. In the above example, ρ = (2, 2, 2, 2, 1),
so ρ ′ = ν∨ = (5, 4).

Now we must show that cν
λμ = 1. First, we exhibit a Littlewood-Richardson filling

of ν/λ, proving cν
λμ ≥ 1. In fact, the tableau produced in our running example is

a Littlewood-Richardson filling; we claim the procedure suggested there works in
general. Let us make this precise. Consider μ180 as a skew shape, and fill its boxes by
writing the numbers 1, 2, 3, . . . down columns, so that the r th column from the right
has entries 1, 2, . . . , μ′

r . Note that this is a Littlewood-Richardson filling of type μ.
Now slide the boxes as prescribed (first moving them up against λ, then left-justifying),
carrying their labels along. The result is, by definition, a tableau on the shape ν/λ.

We need to check that the result is actually a Littlewood-Richardson filling of type
μ. By construction, the tableau has entries corresponding to μ. The sliding operations
preserve weak increase along rows and strict increase down columns, so the tableau is
semistandard. It remains to verify the Yamanouchi condition; for this, we will consider
the intermediate shape θ formed by sliding μ180 up against λ, and the corresponding
filling of θ—this is obtained by filling the columns of θ just as was done with μ180, so
that the r th column from the right has entries 1, . . . , μ′

r . Note that the reading word
is unchanged by left-justification, so it suffices to show that the reading word of this
filling (of θ ) satisfies the Yamanouchi condition.

Let B be the mth box one reads when forming the reading word w. The letters
w1, . . . , wm are the entries appearing in rows strictly above B, or in the same row and
weakly right of B. In Fig. 4, B is the darkly shaded box, and the entries in question
are all those in the shaded region. Every entry in a given column is distinct, so the
number of i’s apearing in the shaded region is bounded by the number of columns in
the shaded region. There is a 1 at the top of each column, so we see that

#(1’s) = #(columns) ≥ #(i’s)

for each i > 1. If we remove the boxes filled with 1’s, we can repeat this argument on
the part of the shaded region that remains; this shows that the Yamanouchi condition
holds.

One can prove the reverse inequality cν
λμ ≤ 1 by pondering tableaux, but here is a

simpler way, pointed out to me by Sergey Fomin. Let ρ be the sorting of the numbers
(k − λ′

i − μ′
n−k+1−i ), as above. First, note that ρ ′

1 is the size of the (unique) largest

Fig. 4 Verifying the Yamanouchi condition
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Fig. 5 Setup for sliding, with λ = (6, 5, 4, 2) and μ = (6, 4, 3, 3, 2)

horizontal strip which can be added to λ without overlapping μ180 or spilling outside
the rectangle. Indeed, ρ ′

1 is the number of nonzero parts of ρ, which is the number of
columns (of the rectangle) in which there is space between λ and μ180. It follows (by
Pieri’s rule) that σλ · σρ ′

1
· σμ = σλ̃ · σμ, where λ̃ is the shape formed by adding this

longest horizontal strip to λ. If we write ρ̃ for the partition formed from the vertical
spaces between λ̃ and μ180, then ρ̃ ′

1 = ρ ′
2. Proceeding inductively, we see that

σλ · (σρ ′
1
· · · · · σρ ′

s
) · σμ = σμ∨ · σμ = 1 · [pt]. (3)

It follows that cα∨
λμ ≤ 1 for every partition α appearing in the Schubert expansion

of (σρ ′
1
· · · · · σρ ′

s
). Since ρ ′ is such a partition, and ν = (ρ ′)∨, we are done. �

We conclude by describing a conjectured algorithm for producing a class ν =
ν(λ, μ, d), for each d between Dmin and Dmax, such that cν

λμ(d) = 1. Begin by drawing
the paths λ[0] and μ∨[d]; mark the point on μ∨[d] which is the translation of the anchor
by (d, d). (See Fig. 5.) Consider the box formed by the union of two frames: one whose
anchor is at (d, d), and the other whose anchor is at the point of λ[0] directly above
(d, d). Perform the sliding algorithm described in the proof of Proposition 3 for the
shapes whose borders are the parts of λ[0] and μ∨[d] lying inside this box. Call the
partition produced by the sliding algorithm ν̃, and let ν(λ, μ, d) be the partition formed
by the last k parts of ν̃ (including zeroes). (This is the part of ν̃ lying inside the frame
whose anchor is at (d, d).)

For example, with k = 5, n = 11, λ = (6, 5, 4, 2), and μ = (6, 4, 3, 3, 2), the
algorithm produces ν(λ, μ, 2) = (6, 6, 1):
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One can check that c(6,6,1)
(6,5,4,2),(6,4,3,3,2)(2) = 1. We conjecture that this always works:

if ν = ν(λ, μ, d) is as described above, for Dmin ≤ d ≤ Dmax, then cν
λμ(d) = 1. In

particular, we expect the following generalization of Proposition 1 to hold:

Conjecture 4. If d is any power of q appearing in the quantum product σλ � σμ, then
there exists a Schubert class σν such that the Gromov-Witten invariant cν

λμ(d) is equal
to 1.

To summarize, we have seen that

cν(λmin,μmin)
λμ (Dmin) = cν(λmin,μmin)

λmin,μmin = 1

and

cν(λmax,μmax)∨
λμ (Dmax) = cν(λmax,μmax)

λmax,μmax = 1.

Of course, this implies that the mod 2 reduction of σλ � σμ is always nonzero. This
can be seen as an analogue of one of the main results of [3] for “mod 2 real quantum
Schubert calculus,” at least for Grassmannians.2 Similarly, a proof of Conjecture 4
would establish a real analogue of the stronger result that the powers of q appearing in
a quantum product form an unbroken sequence from Dmin to Dmax [5, Theorem 8.1].

I would like to thank William Fulton for suggesting this question and for comments
on the manuscript, and Sergey Fomin for a helpful discussion. Anders Buch’s
Littlewood-Richardson calculator3 proved invaluable for experimentation.
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