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Abstract We recall the root game, introduced in [8], which gives a fairly powerful
sufficient condition for non-vanishing of Schubert calculus on a generalised flag man-
ifold G/B. We show that it gives a necessary and sufficient rule for non-vanishing of
Schubert calculus on Grassmannians. In particular, a Littlewood-Richardson number
is non-zero if and only if it is possible to win the corresponding root game. More
generally, the rule can be used to determine whether or not a product of several Schu-
bert classes on Grl(Cn) is non-zero in a manifestly symmetric way. Finally, we give a
geometric interpretation of root games for Grassmannian Schubert problems.
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1 Prior work

In [8] we introduced the root game, a combinatorial game which can often determine
whether or not a given Schubert structure constant is zero in the cohomology ring of a
generalised flag manifold G/B. Our goal in this paper is to strengthen our earlier results
in the case where the group G is GL(n, C) and the Schubert classes are pulled back
from a Grassmannian. We begin by recalling the root game for Schubert intersection
numbers on the (ordinary) flag manifold Fl(n). Apart from the root game, most of the
relevant background material for this paper can be found in [3, 5].

Let G = GL(n). Let B and B− denote the Borel subgroups of upper and lower trian-
gular matrices respectively, and T = B ∩ B− the standard maximal torus, consisting
of invertible diagonal matrices.
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Recall that for each element of the symmetric group π ∈ Sn , there is a corresponding
T -fixed point π B on the flag manifold Fl(n) = G/B (here we view π as an element
of GL(n) via the standard representation of Sn), and an associated Schubert variety
Xπ = B− · π B. We denote its cohomology class in H∗(Fl(n)) by [Xπ ].

Our convention will be to write all permutations in one line notation

π = π (1)π (2) . . . π(n).

If 1 ∈ Sn denotes the identity element, and w0 = n . . . 321 ∈ Sn is the long word, then
the Schubert class [X1] is the identity element in H∗(G/B), and [Xw0

] ∈ H top(G/B)
is the class of a point. In general [Xπ ] is a class of degree 2�(π ), where �(π ) denotes
the length of π .

For π1, . . . , πm ∈ Sn , the Schubert intersection number∫
Fl(n)

[Xπ1
] · · · [Xπm ] (1)

is always a non-negative integer. The root game attempts to determine whether this
number is strictly positive.

The game is played on a set of squares S = {Si j | 1 ≤ i < j ≤ n}. In our diagrams,
we will arrange the squares Si j in an array, where i is the row index and j is the column
index. In each square we allow tokens to appear. Each token has a label k ∈ {1, . . . , m},
and no square may ever contain two tokens with the same label. A token labelled k is
called a k-token, and we write k ∈ Si j if a k-token appears in square Si j .

A position in the game is specified by two pieces of data:� The configuration of the tokens. Formally this is a map τ from S to subsets of
{1, . . . , m}, and our notation k ∈ S is shorthand for k ∈ τ (S); however, in this
paper we will wish to think of each token as a physical object which can be moved
from square to square.� A partition of the set of squares S = R1 � · · · � Rr . Each Ri is called a region.

The initial position of the game is as follows: there is a single region R1 = S, and
for i < j , a k-token appears in square Si j if and only if πk(i) > πk( j).

From the initial position we move the tokens in the manner prescribed in the next
paragraph. However, before each move we have the option of splitting regions into
multiple regions. We define an ideal subset of the squares to be a set A ⊂ S with the
property that if Si j ∈ A, i ′ ≥ i and j ′ ≥ j then Si ′ j ′ ∈ A. Given an ideal subset of the
squares we can break up a region R into two regions: R ∩ A and R \ A. We call this
splitting R along A, and we may repeat the process as many times as desired.

A move is specified by a region R, a token label k ∈ {1, . . . , m} and a pair (i, j)
with 1 ≤ i < j ≤ n. After choosing these data, we move tokens as follows:� For every h with j < h ≤ n, if Sjh and Sih are both in R and a k-token appears in

Sjh but not in Sih , we move the k-token from Sjh to Sih ;� For every h with 1 ≤ h < i , if Shi and Shj are both in R and a k-token appears in
Shi but not in Shj , we move the k-token from Shi to Shj .
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Fig. 1 On the left is the initial position of the root game for π1 = 3426175, π2 = 5162347, π3 =
1326754, after splitting into two regions. On the right is the position of the tokens after the move for
R = the unshaded region, k = 1, and (i, j) = (3, 4). Note that the rows are indexed by i = 1, . . . , 6, and
the columns by j = 2, . . . , 7, since 1 ≤ i < j ≤ 7

More succinctly put, within the region R we move k-tokens horizontally from column
i to column j and vertically from row j to row i , wherever possible. See Fig. 1.

In the play of the game we may make any sequence of moves in any order. The
game is won when there is exactly one token in each square.

Remark 1.1. It turns out to be advantageous to split along an ideal subset A if and
only if the total number of tokens in all squares in A equals |A|. We call the process
of finding all such A and splitting along them splitting maximally. Although in this
paper we won’t take full advantage of this fact by splitting maximally before every
move, we will never even consider the possibility of splitting along A if this condition
is not met.

The main result that we shall need is the following.

Theorem 1 ([8]). If the game for π1, . . . , πm can be won, then∫
Fl(n)

[Xπ1
] · · · [Xπm ] ≥ 1.

In general we do not know if the converse of Theorem 1 is true. When m = 3,
the Schubert intersection numbers (1) are structure constants for the ring H∗(Fl(n)),
and in this case the converse has been confirmed for n ≤ 7. It would certainly be
remarkable if it were true in general.

We can also use the game to study the cohomology rings of partial flag manifolds by
pulling back cohomology classes to the full flag manifold. In this paper, we investigate
this in some detail in the case of the Grassmannian. Our main result is a version of the
converse of Theorem 1 for Grassmannian Schubert calculus.
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When m = 3 and the classes come from a Grassmannian, the intersection num-
bers (1) are Littlewood-Richardson numbers. These numbers are also important in
representation theory and in the theory of symmetric functions—they are the struc-
ture constants for the representation ring of GL(n), and for the ring of symmetric
functions in the Schur basis. As such, they are well studied, and there are a number
of combinatorial rules, and geometric rules (e.g. [2, 10]) known for computing these
numbers.

Remark 1.2. An interesting and pleasant feature of root games is that the rules natu-
rally extend to any number Schubert classes in a way which is manifestly symmetrical
in these inputs: it is immediately clear from the definitions that reordering the in-
put permutations π1, . . . , πm does not affect whether or not the game can be won.
This property is not generally shared by other combinatorial or geometric rules for
Littlewood-Richardson numbers. Most of the known rules have no manifest symmetry.
Knutson-Tao puzzles [6] are perhaps the most manifestly symmetrical Littlewood-
Richardson rule, having a 3-cyclic symmetry when m = 3, but this is lost when one
attempts to generalise beyond beyond triple intersections.

The manifest symmetry of the root game on Fl(n), descends to the Grassmannian
case. In Section 2 we partially break this symmetry, but as we explain in Section 4,
the full symmetry is easily restored. To our knowledge, the only other manifestly
symmetrical rule in Grassmannian Schubert calculus is the Horn recursion (see the
survey article [4]), which, like the root game, does not explicitly compute Littlewood-
Richardson numbers and is only for determining which Schubert intersection numbers
are strictly positive.

2 Associating a game to a Grassmannian Schubert calculus problem

Definition 2.1. A 01-string is a string σ = σ 1 . . . σ n where each σ i ∈ {0, 1}. A 0m1l-
string is a 01-string σ = σ 1 . . . σ m+l , where exactly l of the σ i are equal to 1.

Schubert varieties in the Grassmannian Grl(n) are indexed by 0n−l1l-strings. Fix a
base flag

{0} = V0 � V1 � · · · � Vn = Cn

in Cn . The Schubert variety Yσ ⊂ Grl(n) corresponding to σ is

Yσ = {y ⊂ Cn | dim y ∩ Vi ≥ σ 1 + · · · + σ i }.

We denote its cohomology class in H∗(Grl(n)) by [Yσ ]. According to these conventions
[Y0...01...1] is the identity element in H∗(Grl(n)) and [Y1...10...0] ∈ H top(Grl(n)) is the
class of a point.
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Given a list of s + 2 0n−l1l-strings σ1, . . . , σs, μ, ν, we will wish to study the
Grassmannian Schubert intersection numbers∫

Grl (n)

[Yσ1
] · · · [Yσs ][Yμ][Yν].

We do so by investigating an equivalent problem on a full flag manifold. The most
obvious way to do this is to simply consider the product of the classes α∗([Yσi ]) etc.,
under the natural map α : Fl(n) → Grl(n), as in Lemma 2.2 below. However, our
purposes require that we do things in a somewhat less straightforward way.

Let N ≥ 0 be an integer, and let σ be a 0n−l1l-string. Let i1 < · · · < in−l denote
the positions of the zeroes in σ , and j1 < · · · < jl denote the positions of the ones.
We define three ways to associate a permutation to the 01-string σ :

π (σ, N ) = i1 . . . in−l j1 . . . jl(n + 1)(n + 2) . . . (n + N )

π ′(σ, N ) = (i1 + N ) . . . (in−l + N )12 . . . N ( j1 + N ) . . . ( jl + N )

π ′′(σ, N ) = in−l . . . i1(n + N ) . . . (n + 1) jl . . . j1.

From σ1, . . . , σs, μ, ν we produce a list of permutations, π1, . . . , πs+2 ∈ Sn+N :

π1 = π (σ1, N )

...

πs = π (σs, N )

πs+1 = π ′(μ, N )

πs+2 = π ′′(ν, N ).

Proposition 2.1.∫
Grl (n)

[Yσ1
] · · · [Yσs ][Yμ][Yν] =

∫
Fl(n+N )

[Xπ1
] · · · [Xπs+2

].

The proof is based on the following standard pullback calculations, whose proofs
we omit.

Lemma 2.2. Let α : Fl(n) → Grl(n) be the map which forgets all but the l-
dimensional subspace of the flag. Then α∗([Yσ ]) = [Xπ (σ,0)].

For a 01-string σ , let σ+ denote the string σ followed by N ones, and let +σ denote
the string σ preceded by N ones.
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Lemma 2.3. Let β : Grl(n) → Grl+N (n + N ) be the map V �→ V × CN ⊂ Cn ×
CN . Then β∗([Yσ+ ]) = [Yσ ]. If σ ′ is not of the form σ+ for some 0n−l1l -string σ

then β∗([Yσ ′ ]) = 0.

If F is a partial flag variety and h ∈ H∗(F) is a Schubert class, let h∨ denote
the opposite Schubert class, i.e. the unique Schubert class such that

∫
F h · h∨ =

1. For example [Xπ ]∨ = [Xw0π ], and [Yσ ]∨ = [Yσ rev ] where σ rev = σ n . . . σ 1 is σ

reversed.
If h1, . . . , hr ∈ H∗(F) are Schubert classes then the statement that

∫
F

h1 . . . hr = c (2)

is equivalent to the statement that

h1 · · · ĥi · · · hr = c h∨
i + · · · (3)

in the Schubert basis. We’ll call Eq. (3) the hi -special version of Eq. (2).

Proof of Proposition 2.1: Consider the equation in H∗(Grl+N (n + N )):

∫
Grl+N (n+N )

[Yσ1+ ] · · · [Yσs + ][Y+μ][Yν+ ] = c. (4)

If we take the [Y+μ]-special version of Eq. (4) and pull it back to Grl(n), we get
(using Lemma 2.3) the [Yμ]-special version of

∫
Grl (n)

[Yσ1
] · · · [Yσs ][Yμ][Yν] = c.

On the other hand, if we take the [Yν+]-special version of Eq. (4) and pull it back
to Fl(n + N ), we get (using Lemma 2.2) the [Xπs+2

]-special version of

∫
Fl(n+N )

[Xπ1
] · · · [Xπs+2

] = c.

�
3 Non-vanishing for Grassmannians

Let σ1, . . . , σs, μ, ν be 0n−l1l-strings (if s = 1, we’ll write σ instead of σ1). For any
given N ≥ 0, we associate permutations π1, . . . , πs+2 as before. Our goal in this
section is to prove the following theorem.
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Theorem 2. Take N suitably large (N ≥ l will always suffice). The root game corre-
sponding to π1, . . . , πs+2 can be won if and only if∫

Grl (n)

[Yσ1
] · · · [Yσs ][Yμ][Yν] ≥ 1.

Moreover, only moves involving tokens labelled 1, . . . , s are required.

Remark 3.1. The sufficient condition N ≥ l is not a sharp bound. This fact raises a
number of interesting questions, which will be discussed in Sections 4 and 5. In the
meantime the reader should not be alarmed by examples which use smaller values of
N .

We shall first consider what happens in the case where s = 1.
Recall the correspondence between 01-strings and Young diagrams. Our Young

diagrams will be in the French convention (the rows are left justified and increase in
length as we move down). If σ is a 01-string σ , let ri (σ ) denote the number of ones
before the i th zero. We associate to σ the Young diagram λ(σ ) whose i th row is ri (σ ),
where we are allowing the possibility that some rows may have length 0.

If λ is a Young diagram, let N + λ denote the Young diagram obtained by adding
N squares to each row of λ including those rows which contain 0 squares.

The initial positions of the 1-tokens are in the shape of the Young diagram λ1 =
λ(σ ). The initial positions of the 2-tokens are in the shape of a Young diagram λ2 =
N + λ(μ). The squares that do not contain a 3-token are also in the shape of a Young
diagram, which we’ll denote λ3̄; viewed upside down, λ3̄ is the complement to λ(ν)
inside an (n − l) × (l + N ) rectangle. The lower left corner of each of the Young
diagrams λ1, λ2, λ3̄ is in the square Sn−l,n−l+1. See Fig. 2 for an illustration of how
these shapes are generated.

If λ2 � λ3̄, then it is a basic fact that [Yμ][Yν] = 0 ∈ H∗(Grl(n)) (in fact this is a
necessary and sufficient condition). Therefore, we may assume that no square contains
both a 2-token and a 3-token. The squares which contain neither a 2-token nor a
3-token are empty squares—since N is suitably large the 1-tokens are all to the left of
these squares—and are in the shape of a skew-diagram λ3̄/λ2.

At the outset of the game, some immediate splitting can occur. We split in such a
way that each square containing a 3-token becomes a 1-square region of its own. (For
some choices of (σ, μ, ν) it may be possible to split beyond this, but our argument is
slightly simplified if we elect not to.) The remaining squares are those of λ3̄, which
form what we call the big region. The big region is the only region which is unsolved;
naturally, therefore, this will be the region in which all moves take place.

It is worth taking a moment to note how tokens move within the big region. A
priori, a move (i, j) will cause some k-tokens to move horizontally and others to move
vertically. However, since the rows of the big region are indexed by {1, . . . , n − l},
and the columns are indexed by the disjoint set {n − l + 1, . . . , n + N }, these cannot
both happen. If i < j ≤ n − l then k-tokens will move vertically from row j to row
i . If n − l + 1 ≤ i < j then k-tokens move horizontally from column i to column j .
No tokens move if i ≤ n − l < j .
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Fig. 2 Initial position of the game for σ = 1010101, μ = 1001011, ν = 0100111, with N = 3. Here
π1 = 24613578910, π2 = 56812347910, π3 = 43110987652

Definition 3.2 (Zelevinsky [11]). A picture between two (French) skew diagrams is
a bijection between their boxes with the property that if box A is weakly above and
weakly right of box B in one diagram, then the corresponding boxes A′ and B ′ are in
lexicographic order (i.e. Si j precedes Si ′ j ′ if i < i ′ or i = i ′ and j < j ′) in the other
diagram.

Now
∫

Grl (n)
[Yσ ][Yμ][Yν] is given by the Littlewood-Richardson coefficient cλ3̄

λ1λ2
,

which can be described as the number of pictures between λ1 and λ3̄/λ2 [11]. This is
a reformulation of the Littlewood-Richardson rule [7], closely related to the Remmel-
Whitney formula [9]. In particular, if this number is non-zero, there exists such a
picture. We pick one, and denote by f the map it defines from the squares of λ1 to the
squares of λ3̄/λ2. Note that all of these squares are in the big region of the game.

To show that the game can be won, we will give an algorithm—the Grassmannian
root game algorithm (GRGA)—which uses f to construct a sequence of moves that
transports each 1-token to a square of λ3̄/λ2.

Essential to the GRGA is the following numbering scheme. At each point in the
game we associate a number—called the readiness number—to each unplaced 1-token
(i.e. one which has not already reached its final destination) and each empty square of
λ3̄/λ2.

Definition 3.3. At any point in the game, let t be a 1-token whose initial square was
S ∈ λ1 and whose current square is Si j . Let Si ′ j ′ = f (S). Define the readiness number
of both the token t and the square Si ′ j ′ to be the number i − i ′. We say an empty
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square of λ3̄/λ2 or an unplaced 1-token is ready if its readiness number is 0. Tokens
which have reached their final destination and non-empty squares are not considered
ready.

The key properties of this numbering scheme are the following:

Lemma 3.1. Initially, the readiness numbers of the unplaced 1-tokens are
(a) weakly increasing along each row, and
(b) weakly decreasing down each column;

in λ3̄/λ2 the readiness numbers of empty squares are
(c) weakly decreasing along each row, and
(d) weakly increasing down each column.

Moreover, the GRGA, described below, preserves all of these properties.

Proof: (a) If A and B are squares of λ1 in the same row, and A is right of B, then by
Definition 3.2 f (A) is lexicographically before f (B). In particular, f (A) is weakly
above f (B), i.e. in the same row or a row above. Thus the readiness number of the
token in B ≤ the readiness number of the token in A.

(b) If A and B are squares of λ1, and A is one square above B, then again f (A) is
lexicographically before f (B). There are two cases. If f (A) is strictly above f (B),
then the readiness number of the token in B ≤ the readiness number of the token
in A. Otherwise, f (A) and f (B) are in the same row in λ3̄/λ2, with f (B) right of
f (A). But then by Definition 3.2, B must be lexicographically before A, which is a
contradiction.

Statements (c) and (d) are proved similarly. That the GRGA preserves all these
properties will be quite evident. �

Note that since the readiness number of the lower-leftmost token is at least 0, by
Lemma 3.1 parts (a) and (b) the readiness numbers are initially all non-negative.

The Grassmannian root game algorithm (GRGA). The algorithm assumes that the
tokens are in the initial positions of the root game for π1, π2, π3 (corresponding to
σ, μ, ν with N suitably large), that all 3-tokens have been split into their own one-
square region, and that we have a picture f between λ1 and λ3̄/λ2. All moves take
place in the big region.

1. If any of the 1-tokens are ready, go to Step 2. Otherwise, perform a sequence of
moves to shift all unplaced 1-tokens up one square. The reader can easily check
that the sequence of moves (1, 2), (2, 3), . . . , (n − l − 1, n − l) accomplishes this.
The assumption that N is sufficiently large ensures that the upward movement of
the 1-tokens is unobstructed. This step will decrease the readiness number of each
1-token by 1. Repeat this step until some 1-token is ready.

2. Scan through the columns of λ3̄/λ2, beginning with the rightmost column and
proceeding to the left. Within each column locate the topmost square that does not
already contain a 1-token. Let S be the first ready square which we encounter in
this way.
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3. Find a ready token t in the same row as the square S. Make the unique move which
causes t to move into S. This may cause other tokens to move as well. All tokens
which move here move to their final destination, so after this move, they and the
squares they occupy are no longer considered ready.

4. Repeat Steps 1 through 3 until every square of λ3̄/λ2 contains a 1-token.

Example 3.4. Figures 3 and 4 illustrate the GRGA, applied to the example from Fig. 2.
We now draw only the squares in the upper right 3 × 7 rectangle as these are the only
ones relevant to the movement of the 1-tokens. Moreover, only the 1-tokens are shown
in these diagrams, and the number on the token is the readiness number, not the token
label. To specify the picture f , each 1-token is given a shading and the corresponding
square under f in λ3̄/λ2 is shaded similarly. Each unshaded square actually contains
a 2-token. The two darkly shaded squares in the upper right corner contain 3-tokens,
as do each of the squares not shown in this diagram, but these squares are not part of
the big region.

We now show that the GRGA accomplishes what it claims to accomplish.

Lemma 3.2. Given a picture f between λ1 and λ3̄/λ2, the GRGA will win the game
for π1, π2, π3.

Proof: First note that after vertical movement from Step 1 is finished, the number of
ready tokens in any row equals the number of ready squares in that row: an empty
square S is ready if and only if the 1-token which began in the square f −1(S) is in the
same row as S. We show that this equality is preserved, by showing that the move in
Step 3 only ever causes ready tokens to move into ready squares.

Claim (i). A move from Step 3 causes only ready tokens to move. In particular the
number of ready tokens in a row always remains less than or equal to the number of
ready squares in a row. The only tokens that can conceivably move are those in the
same column as t . Because S is the top unfilled square in its column, no tokens above
t move. Because of Lemma 3.1 part (b), all tokens below t are ready.

Claim (ii). Only ready squares are filled. The algorithm attempts to fill the rightmost
squares first. If there is a ready square S′ in some column, the topmost empty square
in that column will also be ready, by Lemma 3.1 part (d); thus the algorithm will never
fill any square left of S′ before it fills S′. However, by Lemma 3.1 part (c) the ready
squares are rightmost in their row. Thus if a token moves into a non-ready square, it
means that there are no ready squares in its row. But since only ready tokens move, we
would have a row with at least one ready token and no ready squares. This, as noted
in Claim (i), is impossible.

Claim (iii). The move from Step 3 is always possible. Since only ready squares are
filled by ready tokens, the number of ready squares and ready tokens in any given row
is always equal. Thus there is a ready token t in the same row as the ready square S.
Because we assume N to be sufficiently large, t is to the left of S. If t is in column i
and S is in column j , the move (i, j) will take the token t into square S.
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Fig. 3 The Grassmannian root game algorithm. Here σ = 1010101, μ = 1001011, ν = 0100111, and
N = 3

Thus in Steps 2 and 3, every ready square eventually gets filled by a ready token:
by the argument in Claim (ii) no square is skipped. However, because the readiness
numbers are initially non-negative and Step 1 decreases the readiness number of each
square by 1, every square of λ3̄/λ2 is ready at some point; thus the algorithm puts a
1-token in each square of λ3̄/λ2, at which point the game is won. �
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Fig. 4 Continuation of Fig. 3

Proof of Theorem 2: ( =⇒ ) This follows from Proposition 2.1 and Theorem 1.
( ⇐= ) For s = 1 we use the GRGA, which wins the game by Lemma 3.2. For

s > 1, we proceed by induction. Suppose
∫

Fl(n+N )
[Xπ1

] · · · [Xπs+2
] �= 0. Then we can

write

[Xπ2
] · · · [Xπs+1

] = c[Xρ] + · · · (5)
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in the Schubert basis, where c > 0, and

∫
Fl(n+N )

[Xπ1
][Xρ][Xπs+2

] �= 0.

Since this is really a Grassmannian calculation, ρ will be necessarily be of the form
π ′(σ ′, N ) for some 0n−l1l-stringσ ′. By Lemma 3.2 we can win the game corresponding
to π1, ρ, πs+2, only moving 1-tokens. It is easy to see that exactly the same sequence
of splittings and moves can be made in the game for π1, π2, . . . , πs+1, πs+2, and
that it causes the 1-tokens to end up in exactly the same final positions. Note that
we end up with either a 1-token or an (s + 2)-token in every square which does not
correspond to an inversion of ρ, i.e. every square which does correspond to an inversion
of w0ρ.

This sequence of moves no longer wins the game; however, we can proceed in-
ductively, after two further small steps. First, we perform a sequence of splittings
so that every 1-token is in a one-square region of its own. Next, after splitting in
this way, we replace each 1-token by an (s + 2)-token. This second step is not a
legitimate play in the game, but it is completely harmless: because every 1-token
is sequestered in its own one-square region, it can have no effect whatsoever on
any possible subsequent moves of the game. But now we have precisely reached
the initial position of the game corresponding to π2, . . ., πs+1, w0ρ. This is again a
game associated to a Grassmannian problem, and by Eq. (5) the Schubert intersec-
tion number is non-zero. By induction, there is a sequence of moves to win this new
game. Thus by concatenating the two sequences of moves, we can win the original
game. �

4 Remarks

In Step 3 of the GRGA, there is a somewhat canonical choice for the token t , namely
the leftmost ready token in its row. If we use this choice of t , one can verify that the
algorithm actually transports the 1-token which is initially in square S to the square
f (S). On the other hand, if there is a way of winning the root game, there is generally
a plethora of ways, most of which do not arise by following the GRGA for any picture.
Theorem 2 tells us that the existence of any one way to win implies the existence of a
picture between λ1, and λ3̄/λ2. However, given a sequence of moves which wins the
game, it is not at all obvious how to construct such a picture. This is even unclear in
the the case where s = 1, and only 1-tokens are moved.

It is worth noting that the root game can be used to determine whether

[Yσ1
] · · · [Yσs ][Yμ][Yν] �= 0

even if the cohomological degree of the product is not dimR Grl(n). To do this, we
modify the game by changing the winning condition to read “the game is won if there
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is at most one token in each square”, rather than “exactly one token in each square”.
Once we do this, we have the following corollary of Theorem 2.

Corollary 4.1. Take N suitably large, and let π1, . . ., πs+2 be obtained from
σ1, . . ., σs, μ, ν as before. Then [Yσ1

] · · · [Yσs ][Yμ][Yν] �= 0 if and only if the root
game for π1, . . ., πs+2 can be won with the modified winning condition.

Proof: Assume [Yσ1
] · · · [Yσs ][Yμ][Yν] �= 0. Then there exists σ ′ such that

∫
Grl (n)

[Yσ ′ ][Yσ1
] · · · [Yσs ][Yμ][Yν] �= 0.

Let π ′ = π (σ ′, N ). Since we can win the unmodified game for π ′, π1, . . ., πs+2,
we can win the modified game for π1, . . ., πs+2 simply by omitting moves where
the token corresponds to π ′. The reverse direction follows from Proposition 2.1 and
[8, Theorem 5] (which generalises Theorem 1). �

There is a small catch: with this more general winning condition, our observation
in Remark 1.1 becomes invalid. There is no longer an easy necessary and sufficient
condition indicating when splitting is advantageous.

One of the unfortunate features of this presentation is the asymmetry in the way the
permutations π1, . . ., πs+2 are defined. The root game itself is manifestly symmetrical
in the permutations given. However, because πs+1 and πs+2 are produced in a different
way from π1, . . ., πs , the symmetry is broken for Grassmannians. Nevertheless, as
Theorem 2 is valid for any s, we can formulate a symmetrical game by takingσ1, . . ., σs

to be arbitrary, and ν = μ = 0 . . . 01 . . . 1, so that [Yν] = [Yμ] = 1 ∈ H∗(Grl(n)). To
see how this new formulation changes the initial position, contrast Fig. 5 with Fig. 2.

The only splitting which occurs in the proof of Theorem 2 is before the first move,
and in the inductive step. The GRGA itself does not split between moves. As noted in
Remark 1.1, it can never be harmful to split maximally between moves, and it turns
out that if one modifies the GRGA to split maximally between moves, things proceed
very much as before. However, in the next section, our proof of Theorem 3 will rely
on the fact that the GRGA involves no splitting.

It would be nice if we could take N = 0 in Theorem 2. Although we are not aware
of any example which proves that this cannot be done, the algorithm simply falls apart
if N is too small. There are several problems which occur with trying to follow a
similar approach. The most serious of these is that a token may be to the right of the
square for which it is supposedly destined according to the chosen picture. Again, this
highlights the fact that we do not know a straightforward two-way correspondence
between pictures and ways of winning the root-game. Instead, in the next section we
prove Theorem 3, a geometrical analogue of Theorem 2 which is valid for all N .
Theorem 3 suggests that it is not unreasonable to conjecture that Theorem 2 is true
for all N . We leave it as an open problem to determine whether or not this is in fact
the case.
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Fig. 5 Initial position of the game for σ1 = 1010101, σ2 = 1001011, σ3 = 0100111, μ = ν = 0001111,
with N = 3. Squares are shaded if they contain a 4-token or a 5-token. This is the symmetrical version of
the example in Fig. 2

5 Geometric interpretation

In [8] we give a complete description of the geometry underlying the root game. The
picture is quite different from those found in the geometric Littlewood-Richardson
rules of Vakil [10] and more recently Coskun [2], both of which study degenerations
of intersections of Schubert varieties inside a Grassmannian—we would be surprised
if there were any straightforward relationship. Our methods are based on studying
tangent spaces to Schubert varieties, and are more closely related to the approach used
by Belkale in his geometric proof of the Horn conjecture [1]. Here, we will recall only
the parts of the picture which are most relevant to our situation.

In this section we shall once again assume s = 1. Our notation changes slightly
from Section 1 in that we will be working with GL(n + N ) instead of GL(n).

Let x1, . . ., xn+N denote the standard basis of Cn+N . Let B denote the standard
Borel subgroup of GL(n + N ) (upper triangular matrices), and let B− denote its
opposite (lower triangular matrices). As before T = B ∩ B− will be the standard
maximal torus. For any complex vector space V let Gr (V ) be the disjoint union of all
Grassmannians Grd (V ), 0 ≤ d ≤ dim V .

Let R be a region in the game, and let

τ : R → subsets of {1, 2, 3}
Springer
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describe the configuration of the tokens within this region. In the underlying geometry
there is, assigned to the combinatorial pair (R, τ ), a corresponding geometric pair
(V, U ), where V is a B-module, and U = (U1, U2, U3) is a T 3-fixed point on Gr (V )3

(or equivalently the Uk are T -invariant subspaces of V ). As a T -representation, V is
multiplicity-free, and the distinct T -weights are

weights(V ) = {xi − x j | Si j ∈ R}.

The (distinct) T -weights of Uk correspond to the positions of the k-tokens inside R:

weights(Uk) = {xi − x j | k ∈ Si j }.

Thus the pair (V, U ) carries all relevant information about the region R and the
arrangement of the tokens with R.

The region R is solved when there is exactly one token in each square. In terms of
the pair (V, U ) this is occurs when

V = U1 ⊕ U2 ⊕ U3. (6)

We’ll call any U = (U1, U2, U3) which satisfies condition (6) transverse.
Assuming we do not split the region R, a move or a sequence of moves in the game

takes the pair (V, U ) to a new pair (V, U ′), where U ′ is in the B3-orbit closure through
U ∈ Gr (V )3. Thus if we solve a region starting from position (V, U ), we have located

a transverse T 3-fixed point U ′ ∈ B3 · U .

The importance of transverse points in B3 · U is seen in the following proposition.

Proposition 5.1 ([8]). Consider the position of the root game game for π1, π2, π3

which arises after splitting but before the first move is made. The tokens are in their
initial position, but there may be more than one region. To each region R there is an
associated pair (VR, UR). Then

∫
Fl(n)

[Xπ1
][Xπ2

][Xπ3
] ≥ 1

if and only if for every region R there exists a transverse point U ′ ∈ B3 · UR.

Note that the point U ′ in Proposition 5.1 is not necessarily T 3-fixed. The big
question, therefore, is how specialised can we make the point U ′ and still have Propo-
sition 5.1 be true. There are three levels of specialisation that we could request of this
transverse point U ′.
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1. U ′ is any transverse point in B3 · UR .

2. U ′ is a T 3-fixed transverse point in B3 · UR .

3. U ′ is a (T 3-fixed) transverse point in B3 · UR , where (VR, U ′) comes from applying
sequence of root game moves (but no splitting) to the position (VR, UR).

A priori, it is not clear that these three levels of specialisation are equivalent.
However, for Grassmannian Schubert calculus with N sufficiently large, Theorem 2
shows that they are all equivalent. The GRGA tells us exactly how to produce a
sequence of moves which gives the point U ′ at Level 3, which is the most specialised.
Note it is important here that splitting is never used in the GRGA—when a region is

split, the U ′ one is tempted to define need not be in B3 · UR .
Unfortunately, when N is small the GRGA can fail, and so we cannot claim that

all three levels of specialisation are equivalent for all N . Our goal in this section is to
show that even if N is too small for the GRGA to work, we can still get U ′ at Level 2;
i.e. Proposition 5.1 is still true for Grassmannian Schubert calculus if we demand that
U ′ be a T 3-fixed point.

To make matters more concrete, we now explicitly describe the initial pair (V, U )
for the big region R in the root game associated to σ, μ, ν. This is the only region that
we need to concern ourselves with, since all other regions are already solved.

Let M(n + N ) be the space of (n + N ) × (n + N ) matrices, having standard basis
{ẽi j }, and let B act on M(n + N ) by conjugation. Let W denote the B-submodule of
M(n + N ) generated by the entries in the upper right (n − l) × (l + N ) rectangle. Let
W ′ be the B-submodule of W generated by ẽi j such that Si j contains a 3-token. Then
V is the quotient B-module

V = W/W ′.

Note V has a basis {ei j := ẽi j + W ′ | Si j ∈ R}. The point U ∈ Gr (V )3 is described
as follows:

Uk = span{ei j | k ∈ Si j }.

Note that U3 = {0}, so we need not give it much further consideration.
Let U23 be the subspace of V whose T -weights correspond to λ3̄/λ2:

U23 = span{ei j | 2 /∈ Si j }

and let U ′ = (U23, U2, U3). Note that V = U23 ⊕ U2 ⊕ U3, so the point U ′ ∈ Gr (V )3

is transverse.

Springer



256 J Algebr Comb (2007) 25:239–258

Example 5.1. For the initial position shown in Fig. 2,

V = span{ẽi j | 1 ≤ i ≤ 3, 4 ≤ j ≤ 10} /
span{ẽ1 10, ẽ2 10}

= span{e14, e15, . . . , e19, e24, e25, . . . , e29, e34, e35, . . . , e39, e3 10},
U1 = span{e14, e24, e25, e34, e35, e36},
U2 = span{e14, e15, e16, e17, e24, e25, e26, e27, e34, e35, e36, e37, e38},

U23 = span{e18, e19, e28, e29, e39, e3 10}.

Theorem 3. For every N ≥ 0,∫
Grl (n)

[Yσ ][Yμ][Yν] ≥ 1

if and only if with (V, U ) and U23 as above, U23 ∈ B · U1.

Proof: ( ⇐= ) If U23 ∈ B · U1 then U ′ is transverse point in B3 · U . Hence this follows
from Propositions 2.1 and 5.1.

( =⇒ ) Assume
∫

Grl (n)
[Yσ ][Yμ][Yν] ≥ 1.

We know the result is true for N sufficiently large, since the GRGA tells us how
to get from the position (V, U ) to the position (V, U ′). We use this fact to deduce the
result for other values of N .

For any two choices of N , say N a and N b, we get different spaces V , U , etc. We
distinguish these notationally by using V a (resp. V b) to denote the space V corre-
sponding to N = N a (resp. N b), and likewise for any quantity depending on N . Note
that d = dim U1 is independent of N .

For any fixed N a and N b, let φ : V a → V b be the linear map given by

φ(ei j ) =
{

ei j ′ where j ′ = j + N b − N a, Si j ′ ∈ Rb

0 if Si j ′ /∈ Rb.

Let A be the dense open subset of Grd (V a),

A = {
X ∈ Grd (V a)

∣∣ X ∩ ker φ = {0}}.
Then φ induces a map φ∗ : A → Grd (V b)

φ∗(X ) = Image φ|X .

Observe that φ∗(U a
23

) = U b
23

. The idea is essentially to show that A ∩ Ba · U a
1

is dense in Ba · U a
1 , and that φ∗(A ∩ Ba · U a

1 ) ⊂ Bb · U b
1 . This implies that if

U a
23

∈ Ba · U a
1 , then U b

23
= φ∗(U a

23
) ∈ Bb · U b

1 . Hence if the result is true for N = N a,
then the result will be true for N = N b.
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We will only prove this in the case where N a = 0 and N b is arbitrary, and in the
case where N a is arbitrary and N b = 0. This is enough to give the result for all N .

The case where N a = 0 is the easier of the two. The map

[
An−l×n−l Bn−l×l

0 Cl×l

]
∈ Ba �→

⎡⎣An−l×n−l 0 Bn−l×l

0 I N b×N b

0
0 0 Cl×l

⎤⎦ ∈ Bb

allows us to view Ba as a subgroup of Bb, and φ∗ is a Ba-equivariant inclusion.

Moreover φ∗(U a
1 ) ∈ Bb · U b

1 . Thus φ∗ takes Ba · U a
1 into Bb · U b

1 .
For the case where N b = 0, we consider the B-orbit not through U1 ∈ Grd (V ),

but through a lifted point Ũ1 ∈ Grd (W ). Ũ1 is defined in the same way as U1: Ũ1 =
span{ẽi j | Si j contains a 1-token}. Let φ̃∗ be defined analogously to φ∗, taking a dense
subset of Grd (W a) to Grd (W b). It suffices to show that φ̃∗ takes a dense subset of
Ba · Ũ a

1 to a subset of Bb · Ũ b
1 .

Let L ∼= GL(n − l) × GL(l + N ) be the subgroup of GL(n + N ) of block diagonal
matrices of type (n − l, l + N ). Now L also acts on W , and Ũ1 is fixed by B− ∩ L .
Since (B ∩ L) · (B− ∩ L) is dense in L , it follows that the orbit B · Ũ1 = (B ∩ L) · Ũ1

is dense in L · Ũ1.
Thus in fact it suffices to show that φ∗ takes a dense subset of La · Ũ a

1 to a subset
of Lb · Ũ b

1 . But this is true, as

φ∗

([An−l×n−l 0 0
0 Bl×N a

Cl×l

0 DN a×N a

E N a×l

]
· Ũ a

1

)
=

[
An−l×n−l 0

0 Cl×l

]
· Ũ b

1

whenever both matrices are invertible. �

Although Theorem 3 is a geometric statement, our proof ultimately relies on the
combinatorics of the Littlewood-Richardson rule. The key non-geometric fact we use
is that

∫
Grl (n)

[Yσ ][Yμ][Yν] �= 0 if and only if there exists a picture between λ1 and
λ3̄/λ2. It would be an interesting project to find a purely geometric proof of this
theorem. The hope would be that a geometric proof of Theorem 3 might allow us to
see how to generalise some of the results in this paper beyond the Grassmannian.
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