ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Enumeration of non-positive planar trivalent graphs

Bruce W. Westbury
University of Warwick Mathematics Institute Coventry CV4 7AL UK

DOI: 10.1007/s10801-006-0041-4

Abstract

In this paper we construct inverse bijections between two sequences of finite sets. One sequence is defined by planar diagrams and the other by lattice walks. In [13] it is shown that the number of elements in these two sets are equal. This problem and the methods we use are motivated by the representation theory of the exceptional simple Lie algebra G 2. However in this account we have emphasised the combinatorics.

Pages: 357–373

Keywords: planar graphs; lattice paths; invariant tensors

Full Text: PDF

References

1. H. Bahn and S. Hong, “Isoperimetric inequalities for sectors on surfaces,” Pacific J. Math. 196(2) (2000), 257-270.
2. S. Doty, “Presenting generalized q-Schur algebras,” Represent. Theory 7 (2003), 196-213 (electronic), arXiv:math.QA/0305208.
3. I.B. Frenkel and M.G. Khovanov, “Canonical bases in tensor products and graphical calculus for Uq (sl2),” Duke Math. J. 87(3) (1997), 409-480.
4. Z. Gao and N.C. Wormald, “Enumeration of rooted cubic planar maps,” Ann. Comb. 6(3-4) (2002), 313-325.
5. M. Kashiwara, “Crystalizing the q-analogue of universal enveloping algebras,” Comm. Math. Phys. 133(2) (1990), 249-260.
6. M. Kashiwara, “On crystal bases of the q-analogue of universal enveloping algebras,” Duke Math. J. 63(2) (1991), 465-516.
7. M. Khovanov and G. Kuperberg, “Web bases for sl(3) are not dual canonical,” Pacific J. Math. 188(1) (1999), 129-153, arXiv:q-alg/9712046.
8. S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki, “Affine crystals and vertex models,” in Infinite Analysis, Part A, B (Kyoto, 1991), volume 16 of Adv. Ser. Math. Phys., World Sci. Publishing, River Edge, NJ, 1992, pp. 449-484.
9. S.-J. Kang and K.C. Misra, “Crystal bases and tensor product decompositions of Uq (G2)-modules,” J. Algebra 163(3) (1994), 675-691.
10. G. Kuperberg, “Spiders for rank 2 Lie algebras,” Comm. Math. Phys. 180(1) (1996), 109-151, arXiv:q- alg/9712003.
11. C. Lecouvey, “Schensted type correspondence for type G2 and computation of the canonical basis of a finite dimensional Uq (G2)-module”, arXiv:math.CO/0211443.
12. P. Littelmann, “A plactic algebra for semisimple Lie algebras,” Adv. Math. 124(2) (1996), 312-331.
13. K.R. Parthasarathy, R. Ranga Rao, and V.S. Varadarajan, “Representations of complex semi-simple Lie groups and Lie algebras,” Ann. of Math. (2) 85 (1967), 383-429.
14. N.J. Sloane, “The on-line encylopedia of integer sequences”, 2006. http://www.research.att.com/njas/ sequences/.
15. J.R. Stembridge, “Combinatorial models for Weyl characters,” Adv. Math. 168(1) (2002), 96-131.
16. W.T. Tutte, “A census of planar triangulations,” Canad. J. Math. 14 (1962), 21-38.
17. B.W. Westbury, “Invariant tensors for the spin representation of so(7)”, arXiv:math.QA/0601209.
18. S. Yamane, “Perfect crystals of Uq (G(1)),” J. Algebra 210(2) (1998), 440-486, arXiv:q-alg/9712012.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition