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Abstract We give a bijective proof of an identity relating primed shifted gl(n)-
standard tableaux to the product of a gl(n) character in the form of a Schur func-
tion and

∏
1≤i< j≤n(xi + y j ). This result generalises a number of well-known results

due to Robbins and Rumsey, Chapman, Tokuyama, Okada and Macdonald. An anal-
ogous result is then obtained in the case of primed shifted sp(2n)-standard tableaux
which are bijectively related to the product of a t-deformed sp(2n) character and∏

1≤i< j≤n(xi + t2x−1
i + y j + t2 y−1

j ). All results are also interpreted in terms of al-
ternating sign matrix (ASM) identities, including a result regarding subsets of ASMs
specified by conditions on certain restricted column sums.

Keywords Alternating sign matrices . Shifted tableaux . Schur P-functions

1 Introduction

The expression ∏
1≤i< j≤n

(xi + y j ) (1.1)

appears in a number of contexts in symmetric function theory. Given y =
(y1, y2, . . . , yn) and x = (x1, x2, . . . , xn), when y = −x, the expression (1.1) is just
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the Vandermonde determinant that appears in Weyl’s denominator formula

det
(
xn− j

i

) =
∏

1≤i< j≤n

(xi − x j ). (1.2)

For y = λx, the expression (1.1) becomes the subject of the λ-determinant formula
of Robbins and Rumsey [12]:

∏
1≤i< j≤n

(xi + λx j ) =
∑
A∈An

λSE(A)(1 + λ)N S(A)
n∏

i=1

x N Ei (A)+SEi (A)+N Si (A)
i , (1.3)

where the exponents are various parameters associated with alternating sign matrices
and defined in Section 3. Robbins and Rumsey use different notation but do include
the square ice concepts, although they use different terminology. Bressoud [2] asked
for a combinatorial proof of (1.3). This was provided by Chapman [3] who generalised
it to:

∏
1≤i< j≤n

(xi + y j ) =
∑
A∈An

n∏
i=1

x N Ei (A)
i ySEi (A)

i (xi + yi )
N Si (A). (1.4)

For y = tx, there is also the t-deformation of a Weyl denominator formula for gl(n)
due to Tokuyama [17]:

n∏
i=1

xi

∏
1≤i< j≤n

(xi + t x j ) sλ(x) =
∑

ST ∈ST μ(n)

thgt(ST )(1 + t)str(ST )−n xwgt(ST ), (1.5)

where the sum is over semistandard shifted tableaux ST of shape μ = λ + δ with
δ = (n, n − 1, . . . , 1), and where hgt, str, and wgt are parameters associated with
semistandard shifted tableaux. They are defined in Section 2. Suffice to say, at this
stage, that wgt(ST ) is a vector w = (w1, w2 . . . , wn) and that, quite generally, xw =
xw1

1 xw2

2 · · · xwn
n . Note also that sλ(x), the Schur function specified by the partition

λ, with a suitable interpretation of the indeterminates xi for i = 1, 2, . . . , n, is the
character of an irreducible representation of gl(n) whose highest weight is specified
by the partition λ.

Here we present a general identity that unifies the results (1.2)–(1.5). This identity
is our first main result and is expressed in terms of a certain generalisation of Schur P-
functions and also in terms of the corresponding generalisation of Schur Q-functions.
These P and Q functions are defined combinatorially in Section 2.

Proposition 1.1. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a parti-
tion of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). In addition, let x = (x1, x2, . . . , xn)
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and y = (y1, y2, . . . , yn). Then

Pμ(x/y) = sλ(x)
n∏

i=1

xi

∏
1≤i< j≤n

(xi + y j ),

Qμ(x/y) = sλ(x)
∏

1≤i≤ j≤n

(xi + y j ),

(1.6)

where Pμ(x/y) and Qμ(x/y) are as defined in Section 2.

A bijective proof of this Proposition, along with a number of corollaries, is provided
in Section 3. The case x = y is an example of Macdonald [8] (Ex2, p259, 2nd Edition).
The case y = tx = (t x1, t x2, . . . , t xn) is equivalent to a Weyl denominator deforma-
tion theorem due to Tokuyama [17] for the Lie algebra gl(n) expressible in the form
(1.5), and given a combinatorial proof by Okada [10]. The case λ = 0 is equivalent
to an alternating sign matrix (ASM) identity attributed to Robbins and Rumsey [12]
and proved combinatorially by Chapman [3]. The connection with ASMs is provided
in Section 5, in which both (1.3) and (1.4) are shown to be simple corollaries of
Proposition 1.1.

It should be pointed out that the above Proposition is restricted to the case of a
strict partition μ of length �(μ) = n. Although a similar result applying to the case
�(μ) = n − 1 may be obtained from the above by dividing both sides by s1n (x) =
x1x2 · · · xn , there is no similar product formula for either Pμ(x/y) or Qμ(x/y) in the
case �(μ) < n − 1.

On the other hand, the above results may all be generalised to the case of certain
symplectic tableaux. The analogue of (1.1) in this setting turns out to be∏

1≤i< j≤n

(
xi + t2x−1

i + y j + t2 y−1
j

)
. (1.7)

When y = −x and t = −1 the expression (1.7) is a factor of the determinant that
appears in Weyl’s denominator formula for sp(2n),

det
(
xn− j+1

i − x−n+ j−1
i

) =
n∏

i=1

(
xi − x−1

i

) ∏
1≤i< j≤n

(
xi + x−1

i − x j − x−1
j

)
. (1.8)

More generally, for y = tx we have [4]

n∏
i=1

(
xi + t x−1

i

) ∏
1≤i< j≤n

(
xi + t2x−1

i + t x j + t x−1
j

)
spλ(x; t)

=
∑

ST ∈ST μ(n,n)

tvar(ST )+bar(ST ) (1 + t)str(ST )−n xwgt(ST ),

(1.9)

where the sum is over semistandard shifted symplectic tableaux of shape μ = λ + δ

with δ = (n, n − 1, . . . , 1), and where var, bar, str and wgt are defined in Section 2.
Here spλ(x; t), once again with a suitable interpretation of the indeterminates xi for i =
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1, 2, . . . , n, is a t-deformation of the character spλ(x) of the irreducible representation
of the Lie algebra sp(2n) whose highest weight is specified by the partition λ.

Our second main result then takes the form

Proposition 1.2. Let μ = λ + δ be a strict partition of length �(μ) = n,
with λ a partition of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). In addi-
tion, let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), with xi = x−1

i and yi = y−1
i for i = 1, 2, . . . , n. Then

Qμ(x/y; t) = spλ(x; t)
∏

1≤i≤ j≤n

(
xi + t2xi + y j + t2 y j

)
, (1.10)

where Qμ(x/y; t) is defined in Section 2.

Here Q(x/y; t) is a generalisation of Q(x/y) that associates factors of t2 with the
barred components of x and y. Although a similar generalisation P(x/y; t) of P(x/y)
exists, as we shall see, there does not exist a corresponding identity for P(x/y; t) that
is analogous to the identity (1.10) for Q(x/y; t).

Our paper is arranged as follows. In Section 2 the necessary background is intro-
duced regarding both the relevant semistandard, shifted and primed tableaux, and the
various P and Q functions and characters of gl(n) and sp(2n). For the gl(n) case,
Section 3 opens in Section 3.1 with a formal statement of the combinatorial identity
upon which the first main result, Proposition 1.1, is based. A bijective proof of this
identity is then provided. A detailed example appears in Section 3.2. In Section 3.3 a
number of corollaries are gathered together.

Turning to the sp(2n) case, the combinatorial identity necessary to establish the
second main result, Proposition 1.2, is stated, bijectively proved and exemplified in
Section 4. Once again two corollaries are supplied in Section 4.3, including a proof
of Proposition 1.2.

Finally, in Section 5 the connection is made with alternating sign matrices and
U-turn alternating sign matrices in the gl(n) and sp(2n) cases, respectively.

2 Background

2.1 gl(n) tableaux

Let λ = (λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be a partition of weight |λ| =
λ1 + λ2 + · · · + λp and length �(λ) = p, where each λi is a positive integer for all
i = 1, 2, . . . , p. Then λ defines a Young diagram Fλ consisting of p rows of boxes
of lengths λ1, λ2 . . . , λp left-adjusted to a vertical line.

A partition μ = (μ1, μ2, . . . , μq ) of length �(μ) = q is said to be a strict partition
if all the parts of μ are distinct; that is, μ1 > μ2 > · · · > μq > 0. A strict partition
μ defines a shifted Young diagram SFμ consisting of q rows of boxes of lengths
μ1, μ2, . . . , μq left-adjusted this time to a diagonal line.

For any partition λ of length �(λ) ≤ n let T λ(n) be the set of all semistandard
tableaux T obtained by numbering all the boxes of Fλ with entries taken from the
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set {1, 2, . . . , n}, subject to the usual total ordering 1 < 2 < · · · < n. The numbering
must be such that the entries are:

T1 weakly increasing across each row from left to right;
T2 strictly increasing down each column from top to bottom;
T3 each entry k may appear no lower than the kth row.

It will be noted that the condition T3 is redundant here, since it is implied by T2,
but it will be required later. The weight of the tableau T is given by wgt(T ) = w =
(w1, w2, . . . , wn), where wk is the number of times k appears in T for k = 1, 2, . . . , n.
For example in the case n = 6, λ = (3, 3, 2, 1, 1) we have

T =

1 2 3

3 5 5

4 6

5

6

∈ T 33211(6) with wgt(T ) = (1, 1, 2, 1, 3, 2). (2.11)

By the same token, for any strict partition μ of length �(μ) ≤ n, let ST μ(n) be
the set of all semistandard shifted tableaux ST obtained by numbering all the boxes
of SFμ with entries taken from the set {1, 2, . . . , n}, subject to the total ordering
1 < 2 < · · · < n. The numbering must be such that the entries are:

ST1 weakly increasing across each row from left to right;
ST2 weakly increasing down each column from top to bottom;
ST3 strictly increasing down each diagonal from top-left to bottom-right.

The weight of the tableau ST is again given by wgt(ST ) = w = (w1, w2, . . . , wn),
where wk is the number of times k appears in ST for k = 1, 2, . . . , n.

The rules ST1-ST3 serve to exclude any 2 × 2 blocks of boxes all containing the
same entry, and as a result, each ST ∈ ST μ(n) consists of a sequence of ribbon
strips of boxes containing identical entries. Any given ribbon strip may consist of a
number of disjoint connected components. Let str(ST ) denote the total number of
disjoint connected components of all the ribbon strips. Let hgt(ST ) be the height of
the tableaux, defined hgt(ST ) = ∑n

k=1(rowk(ST ) − strk(ST )), where rowk(ST ) is the
number of rows of S containing an entry k, and strk(ST ) is the number of connected
components of the ribbon strip of ST consisting of all the entries k.

By way of illustration, consider the case n = 6, μ = (9, 8, 6, 4, 3, 1) and the semi-
standard shifted tableau:

ST =

1 1 1 2 2 2 3 3 5

2 2 3 3 4 5 5 6

3 3 4 4 5 6

4 5 5 5

5 6 6

6

∈ ST 986431(6) with
wgt(ST)= (3, 5, 6, 4, 8, 5)

str(ST)=12, hgt(ST )=6.
(2.12)

Refining this construct, for any strict partition μ with �(μ) ≤ n, let PST μ(n)
be the set of all primed, or marked, semistandard shifted tableaux P ST obtained by
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numbering all the boxes of SFμ with entries taken from the set {1′, 1, 2′, 2, . . . , n′, n},
subject to the total ordering 1′ < 1 < 2′ < 2 < · · · < n′ < n. The numbering must be
such that the entries are:

PST1 weakly increasing across each row from left to right;
PST2 weakly increasing down each column from top to bottom;
PST3 with no two identical unprimed entries in any column;
PST4 with no two identical primed entries in any row;
PST5 with no primed entries on the main diagonal.

The weight of the tableau P ST is then defined to be wgt(P ST ) = (u/v) with u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn), where uk and vk are the number of times k
and k ′, respectively, appear in P ST for k = 1, 2, . . . , n.

The passage from ST μ(n) to PST μ(n) is effected merely by adding primes to the
entries of each ST ∈ ST μ(n) in all possible ways that are consistent with PST1-5 to
give some P ST ∈ PST μ(n). The only entries for which any choice is possible are
those in the lower left hand box at the beginning of each connected component of a
ribbon strip. Thereafter, in that connected component of the ribbon strip, entries in
the boxes of its horizontal portions are unprimed and those in the boxes of its vertical
portions are primed. It should be noted that all the boxes on the main diagonal are
necessarily at the lower left hand end of a connected component of a ribbon strip, but
their entries remain unprimed by virtue of PST5.

To illustrate this let us assign primes to those entries of ST in (2.12) for which it is
essential (that is, for every entry lying immediately above the same entry) and some
of those for which it is optional (those entries off the main diagonal that are at the start
of any continuous strip of equal entries). This gives, for example,

PST =

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

∈ PST 986431(6) with

wgt(PST) = (3, 4, 5, 2, 5, 3/0, 1, 1, 2, 3, 2). (2.13)

We may replace PST1-4 by identical conditions QST1-4, but discard PST5. This
serves to define corresponding primed shifted tableaux QST ∈ QST μ(n) that now
involve both primed and unprimed entries on the main diagonal.

Finally, in this gl(n) context, for fixed positive integer n, let δ = (n, n − 1, . . . , 1)
and let PDδ(n) be the set of all primed shifted tableaux, P D, of shape δ, obtained by
numbering the boxes of SF δ with entries taken from the set {1′, 1, 2′, 2, . . . , n′, n} in
such a way that:

PD1 each unprimed entry k appears only in the kth row;
PD2 each primed entry k ′ appears only in the kth column;
PD3 there are no primed entries on the main diagonal.
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The weight of the tableau P D is defined by wgt(P D) = (u/v) with u = (u1,

u2, . . . , un) and v = (v1, v2, . . . , vn), where uk and vk are the numbers of times k
and k ′, respectively, appear in P D for k = 1, 2, . . . , n. Typically for n = 6 we have

P D =

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3 4′ 3 3

4 5′ 6′

5 5

6

∈ PD654321(6) with

wgt(P D) = (2, 3, 3, 1, 2, 1/0, 1, 1, 2, 3, 2). (2.14)

Since the i th entry on the main diagonal is always i and for i < j the entry in the
(i, j)th position is either i or j ′, it is clear that

∑
P D∈PDδ (n)

(x/y)wgt(P D) =
n∏

i=1

xi

∏
1≤i< j≤n

(xi + y j ), (2.15)

where (x/y)(u/v) = xuyv = xu1

1 · · · xun
n yv1

1 · · · yvn
n .

By way of a small variation of the above, if we replace PD1-2 by identical condi-
tions QD1-2 and discard the condition PD3, the corresponding set QDδ(n) of primed
shifted tableaux Q D differs from PDμ(n) only in allowing primed entries on the main
diagonal. It follows that∑

Q D∈QDδ (n)

(x/y)wgt(Q D) =
∏

1≤i≤ j≤n

(xi + y j ). (2.16)

These formulae (2.15) and (2.16) offer a combinatorial interpretation of factors
appearing in the expansions (1.6) of Proposition 1.1. This will be exploited later in
Section 3.

2.2 sp(2n) tableaux

In order to establish a similar approach to Proposition 1.2 it is necessary to extend
our already copious list of tableaux to encompass certain tableaux associated with
the symplectic algebra sp(2n). As before it is helpful to start with definitions of the
various types of tableaux, both shifted and unshifted.

For any partition λ of length �(λ) ≤ n, let T λ(n, n) be the set of all semistandard
symplectic tableaux T obtained by numbering all the boxes of Fλ with entries from the
set {1, 1, 2, 2, . . . , n, n}, subject to the usual total ordering 1 < 1 < 2 < 2 < · · · n <

n. The entries are:

T1 weakly increasing across each row from left to right;
T2 strictly increasing down each column from top to bottom;
T3 k or k may appear no lower than the kth row.
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The weight of the symplectic tableau T is given by wgt(T ) = (w) = (w1, w2, . . . , wn),
with wk = nk − nk where nk and nk are the number of times k and k, respectively,
appear in T for k = 1, 2, . . . , n. The parameter bar(T ) is equal to the number of barred
entries in the tableau. For example in the case n = 5, λ = (4, 3, 3) we have

T =
1 1 2 4

3 4 4

4 4 4

∈ T 433(5, 5) with

wgt(T ) = (0, −1, 1, 0, 0)

bar(T ) = 5.

(2.17)

For any strict partition μ of length �(μ) ≤ n, let ST μ(n, n) be the set of all semis-
tandard shifted symplectic tableaux ST obtained by numbering all the boxes of SFμ

with entries taken from the set {1, 1, 2, 2, . . . , n, n}, subject to the total ordering
1 < 1 < 2 < 2 < · · · < n < n. The numbering must be such that the entries are:

ST1 weakly increasing across each row from left to right;
ST2 weakly increasing down each column from top to bottom;
ST3 strictly increasing down each diagonal from top-left to bottom-right;
ST4 with dk ∈ {k, k}, where dk is the kth entry on the main diagonal.

The weight of the shifted symplectic tableau ST is given by wgt(ST ) =
(w1, w2, . . . , wn), with wk = nk − nk where nk and nk are the number of times k
and k, respectively, appear in ST for k = 1, 2, . . . , n. Once again it is convenient, fol-
lowing [5], to introduce str(ST ) as the total number of disjoint connected components
of all ribbon strips of ST , and var(ST ) = ∑n

k=1(rowk(ST ) − strk(ST ) + colk(ST ) −
strk(ST )), where rowk(ST ) is the number of rows of ST containing an entry k, colk(ST )
is the number of columns containing an entry k, while strk(ST ) and strk(ST ) are the
number of connected components of the ribbon strips of ST consisting of all the entries
k and k, respectively, and bar(ST ) is equal to the total number of barred entries.

Typically, for n = 5 and μ = (9, 7, 6, 2, 1) we have

ST =

1 1 2 2 3 3 4 4 5

2 2 2 3 4 4 4

3 4 4 4 4 4

4 4

5

∈ ST 97621(5, 5) with

wgt(ST ) = (0, −1, 0, 4, 0)

bar(ST ) = 11, str(ST ) = 12, var(ST ) = 7.

(2.18)

Refining this construct, for any strict partition μ with �(μ) ≤ n, let PST μ(n, n)
be the set of all primed semistandard shifted symplectic tableaux P ST obtained

by numbering all the boxes of SFμ with entries taken from the set {1′
, 1, 1′, 1, 2

′
,

2, 2′, 2, . . . , n′, n, n′, n}, subject to the total ordering

1
′
< 1 < 1′ < 1 < 2

′
< 2 < 2′ < 2 < · · · < n′ < n < n′ < n. (2.19)
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The numbering must be such that the entries are:

PST1 weakly increasing across each row from left to right;
PST2 weakly increasing down each column from top to bottom;
PST3 with no two identical unprimed entries in any column;
PST4 with no two identical primed entries in any row;
PST5 with dk ∈ {k, k}, where dk is the kth entry on the main diagonal.

The weight of the tableau P ST is then defined to be wgt(P ST ) = (u/v) with u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn), where uk = nk − nk and vk = nk ′ − nk

′ ,
with nk , nk , nk ′ and nk

′ are the number of times k, k, k ′ and k
′
, respectively, appear

in P ST for k = 1, 2, . . . , n. In addition, let bar(P ST ) be the total number of barred
entries in P ST .

If we now replace PST1-4 by identical conditions QST1-4 and replace PST5 by:

QST5 with dk ∈ {k ′
, k, k ′, k}, where dk is the kth entry on the main diagonal.

Then once again the corresponding primed shifted tableaux QST ∈ QST μ(n, n) now
have primes allowed on the main diagonal.

Typically, for n = 5 and μ = (9, 7, 6, 2, 1) we have

QST =

1 1 2
′

2′ 3
′

3 4
′

4′ 5

2
′

2 2 3 4
′

4 4′

3′ 4
′

4′ 4 4 4

4′ 4

5
′

∈ QST 97621(5, 5) with

wgt(QST ) = (0, 0, 0, 3, 1/0, −1, 0, 1, −1),

bar(QST ) = 11.

(2.20)

To complete our set of sp(2n) tableaux, for fixed positive integer n, let δ =
(n, n − 1, . . . , 1) and let PDδ(n, n) be the set of all primed shifted tableaux, P D,
of shape δ, obtained by numbering the boxes of SF δ with entries taken from the set

{1′
, 1, 1′, 1, 2

′
, 2, 2′, 2, . . . , n′, n, n′, n} in such a way that

PD1 each unprimed entry k or k appears only in the kth row;

PD2 each primed entry k ′ or k
′
appears only in the kth column;

PD3 there are no primed entries on the main diagonal.

The weight of the tableau P D is defined by wgt(P D) = (u/v) with u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn), where uk = nk − nk and vk = nk ′ − nk

′ ,
with nk , nk , nk ′ and nk

′ are the number of times k, k, k ′ and k
′
, respectively, appear in

P D for k = 1, 2, . . . , n. In addition let bar(P D) be the total number of barred entries
in P D.

With this notation, since the entry in the i th position on the main diagonal is either

i or i while for i < j the entry in the (i, j)th position is either i , i , j ′ or j
′
, it is clear
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that

∑
P D∈PDδ (n,n)

t2bar(P D)(x/y)wgt(P D) =
n∏

i=1

(
xi + t2xi

) ∏
1≤i< j≤n

(
xi + t2xi + y j + t2 y j

)
.

(2.21)

Here the use of t2 as the key parameter is due to the fact that we will later need to set
y j = t x j in order to recover the factors appearing in (1.9).

By way of a small variation of the above, if we replace PD1-2 by identical condi-
tions QD1-2 and discard the condition PD3, the corresponding set QDδ(n) of primed
shifted tableaux Q D differs from PDμ(n) only in allowing primed entries on the main
diagonal.

Typically for n = 5 we have

Q D =

1 1 3
′

4′ 1

2 2 2 2

3
′

3 3

4′ 4

5
′

∈ QD54321(5, 5) with

wgt(Q D) = (−1, 2, 0, 1, 0/0, 0, −2, 2, −1),

bar(Q D) = 7.

(2.22)

It follows from our definition of QD(n, n) that

∑
Q D∈QDδ (n,n)

t2bar(Q D)(x/y)wgt(Q D) =
∏

1≤i≤ j≤n

(xi + t2xi + y j + t2 y j ). (2.23)

These formulae (2.21) and (2.23) have been introduced so as to offer a combinatorial
interpretation of factors appearing in the expansions (2.30) of Proposition 1.2. This
will be exploited later in Section 3.

2.3 Schur’s P and Q functions and their generalisations

Let x = (x1, x2, . . . , xn) be a vector of n indeterminates and let w = (w1, w2, . . . , wn)
be a vector of n non-negative integers. Then xw = xw1

1 xw2

2 · · · xwn
n . With this notation

it is well known that each partition λ of length �(λ) ≤ n specifies a Schur function
sλ(x) with combinatorial definition:

sλ(x) =
∑

T ∈T λ(n)

xwgt(T ) (2.24)
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Similarly, each strict partition μ of length �(μ) ≤ n specifies a Schur P-function
and a Schur Q-function whose combinatorial definitions take the form:

Pμ(x) =
∑

ST ∈ST μ(n)

2str(ST )−�(μ)xwgt(ST );

Qμ(x) =
∑

ST ∈ST μ(n)

2str(ST )xwgt(ST ).

(2.25)

Now let z = (x/y) = (x1, x2, . . . , xn/y1, y2, . . . , yn), where x and y are two vectors
of n indeterminates, and let w = (u/v) = (u1, u2, . . . , un/v1, v2, . . . , vn) where u
and v are two vectors of n non-negative integers. Then let zw = (x/y)(u/v) = xu yv =
xu1

1 · · · xun
n yv1

1 · · · yvn
n . With this notation each strict partition μ of length �(μ) ≤ n

serves to specify generalised Schur P and Q-functions defined by:

Pμ(x/y) =
∑

P ST ∈PST μ(n)

(x/y)wgt(P ST );

Qμ(x/y) =
∑

QST ∈QST μ(n)

(x/y)wgt(QST ).

(2.26)

Since the maps back from P ST ∈ PST μ(n) and from QST ∈ QST μ(n) to some
ST ∈ ST μ(n) are effected merely by deleting primes, and there are no primes on the
main diagonal in the case of P ST , it follows that

Qμ(x) = 2�(μ) Pμ(x) with Pμ(x) = Pμ(x/x) and Qμ(x) = Qμ(x/x) (2.27)

It might be noted that sλ(x), Pλ(x) and Qλ(x) are nothing other than the specialisa-
tions Pλ(x; 0), Pμ(x; −1) and Qμ(x; −1), respectively, of the Hall-Littlewood functions
Pμ(x; t) and Qμ(x; t).

Turning to the symplectic case, it is well known that each partition λ of length
�(λ) ≤ n specifies an irreducible representation of sp(2n) whose character spλ(x)
may be given a combinatorial definition:

spλ(x) =
∑

T ∈T λ(n,n)

xwgt(T ). (2.28)

This may be t-deformed to give

spλ(x; t) =
∑

T ∈T λ(n,n)

t2bar(T ) xwgt(T ). (2.29)
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In the case of a strict partition μ of length �(μ) = n the required generalisations of
Schur P and Q functions take the form:

Pμ(x/y; t) =
∑

P ST ∈PST μ(n,n)

t2bar(P ST ) (x/y)wgt(P ST );

Qμ(x/y; t) =
∑

QST ∈QST μ(n,n)

t2bar(QST ) (x/y)wgt(QST ).

(2.30)

With a slight abuse of notation we augment wgt(T ) = w = (w1, . . . , wn) with n
0′s to give wgt(T ) = (w/0) = (w1, . . . , wn/0, . . . , 0) wherever required. This means,
for example, that (x/y)wgt(T ) = xwgt(T ) = xw1

1 · · · xwn
n . More important, in what follows,

both wgt(P D) + wgt(T ) and wgt(Q D) + wgt(T ) are well defined.

3 The gl(n) bijection

3.1 Main result

The generalisations of the combinatorial definitions of Pμ(x) and Qμ(x) to Pμ(x/y) and
Qμ(x/y), respectively, together with those of sλ(x) and the product factors appearing in
(1.6), allow us to establish the validity of Proposition 1.1 by first proving the following:

Theorem 3.1. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a par-
tition of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). There exists a weight preserv-
ing, bijective map � from PST μ(n) to (PDδ(n), T λ(n)) and from QST μ(n) to
(QDδ(n), T λ(n)) such that for all P ST ∈ PST μ(n) and for all QST ∈ QST μ(n)

� : P ST �→ (P D, T ) with wgt(P ST ) = wgt(P D) + wgt(T ).

� : QST �→ (Q D, T ) with wgt(QST ) = wgt(Q D) + wgt(T ).
(3.31)

with P D ∈ PDδ(n), Q D ∈ QDδ(n) and T ∈ T λ(n).

Proof: We choose to tackle the P ST case first with the aim of describing a candidate
map � and showing that it is both weight preserving and bijective.

The technique is to apply the jeu de taquin [6, 8, 13, 14, 18] to the primed entries
k ′ of P ST taken in turn starting with any 1′s (actually there are none), then any 2′s
(at most one), then any 3′s (at most two) and so on. If for fixed k there is more than
one k ′ in P ST then these are dealt with in turn from top to bottom. The map � is thus
expressible in the form � = θn′ ◦ · · · ◦ θ2′ ◦ θ1′ .

We start by describing the map θk ′ . This involves sliding each k ′ in the north-west
direction by a sequence of interchanges with either its unprimed northern or western
neighbour until it reaches a position in the kth column either in the topmost row, or
immediately below another k ′, or immediately below some unprimed entry i in the i th
row.
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This amounts to playing jeu de taquin, treating k ′ to be strictly less than all the
unprimed entries. At every stage the conditions PD1-3 apply to all entries to the left
of the kth column, while PST1-4 apply to all entries, other than the moving k ′, that
are either in or to the right of the kth column. This implies that, ignoring all primed
entries, the unprimed entries must satisfy the semistandardness conditions T1 and T2.
In addition it is required that:

T3 each unprimed entry i may appear no lower than the i th row;
P3 each primed entry j ′ may appear no further to the left than the j th column.

Collectively, it is these conditions that ensure that each move made by k ′ is uniquely
determined, with T3 and P3 ensuring that the procedure terminates in the required
manner. It should be noted that they all, including both T3 and P3, apply to each initial
P ST ∈ PST μ(n) with μ a strict partition of length �(μ) = n. This is because the
conditions PST1-4 imply that i ′ and i cannot lie on the same diagonal, so that on the
main diagonal of length n the i th entry di is either i or i ′ for i = 1, 2, . . . , n, with
i ′ being excluded by PST5. As a further consequence of the conditions di = i and
PST1, if k ′ appears in the i th row of P ST , then i < k. This condition is maintained
under all interchanges of k ′ with unprimed entries, since each k ′ moves only north or
west.

Returning now to the jeu de taquin, consider first the situation illustrated by the
tableau T0 in (3.32) with k ′ not yet in the kth column. This is to be thought of as the
subtableau surrounding a particular k ′ at position (i, j) with j > k and as explained
above i < k, awaiting its next move. For the time being we assume that a, b, d are
unprimed, while c, e, f, g, h may be primed, or unprimed, or even absent if k ′ is
at or near either the main diagonal or the southern or eastern edge of the complete
diagram. However, all the unprimed entries amongst a, b, . . . , h must, by hypothe-
sis, satisfy the semistandardness conditions T1 and T2, as well as T3. In particular
d ≥ i .

Now for the jeu de taquin rules that define the map θk ′ . If d ≤ b then k ′ is to be
interchanged with b and if d > b then k ′ is to be interchanged with d, as shown
below. In the first case k ′ moves north and the resulting tableau TN satisfies T1-3 since
i ≤ d ≤ b ≤ c < e, while in the second, k ′ moves west. This is consistent with P3
since j > k, and the resulting tableau TW again satisfies T1-3 since b < d < f ≤ g,
with d ≥ i .

θk ′ :
T0 =

a b c

d k ′ e

f g h

k ′ at (i, j) with i < k < j

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TN =
a k ′ c

d b e

f g h

if b ≥ d;

TW =
a b c

k ′ d e

f g h

if b < d.

(3.32)

Here c, e, f, g, h may be primed or absent without affecting our conclusions. In the
case i = 1 the top row a b c of T0 must be absent, and T0 maps just to TW , again without
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its top row a b c. Of course any absences from T0 must leave a regular diagram, so that
for example if c is absent then so are e and h, while if g is present then so is f , unless
d and g are on the main diagonal. Such regularity conditions apply to all subsequent
diagrams. Here however, d and g cannot be on the main diagonal with f absent, since
i < j − 1.

On the other hand, if k ′ is already in the kth column, so that k ′ cannot be moved
westward by virtue of P3, the map θk ′ leaves T0 unaltered, that is k ′ has reached
its final resting place, unless k ′ lies in the i th row of the kth column with an un-
primed entry b ≥ i immediately above it. In such a case θk ′ acts on T0 as shown
below:

θk ′ :
T0 =

a b c

d k ′ e

f g h

k ′ at (i, k) with i < k

−→ TN =
a k ′ c

d b e

f g h

if b ≥ i. (3.33)

Yet again, the unprimed entries of TN satisfy T1-3, since we still have d = i ≤ b ≤
c < e. The fact that d = i is a consequence of the condition PD1 that applies to the
left of the kth column. This time f would be absent if i = k − 1.

Now we return to the possibilities that we had previously set aside, those cases for
which a, b or d are primed. Since the allowed moves of k ′ are only north or west, and all
primed entries l ′ with l > k are originally either south or east of each k ′, and no inter-
changes of primed entries occur, then we must have a, b, d ≤ k ′. The case of a primed
entry b ≤ k ′ cannot occur in the tableau T0 of (3.32), since it would have already been
moved leftwards to its own column before any attempt is made to move the central k ′.
The same is true of any primed entry b < k ′ in the tableau T0 of (3.33). This leaves as the
only possibility b = k ′, but if b = k ′ then the central k ′ has already arrived in the kth col-
umn immediately below another k ′. Then, as we have already pointed out in our original
description of θk ′ , no further move is required. In addition, any primed entries a, d < k ′

in the tableau T0 of (3.32) would have been moved leftwards to their own columns,
leaving just the cases a = k ′ and d = k ′ to consider, while in (3.33) whether or not a and
d are primed is irrelevant, since by PD2 this primed value must be (k − 1)′, and k ′ has
already reached its own column and any move north is unhindered by such a value of
a or d.

It follows that the only possible impediment to the movement of k ′ in a north-
westerly direction until it actually reaches the kth column, is the existence of another
k ′ to its immediate left, that is in T0 of (3.32) we have d = k ′, or in TN of (3.32) we
have a = k ′. That this cannot occur is a corollary of the fact that the path followed by
k ′ always remains column by column below (that is strictly south of) the path followed
by any preceding k ′. This latter path always starts south and at least as far east as the
initial position of the moving k ′ and extends westward as far as the kth column thereby
covering all columns through which the moving k ′ passes. To see that no horizontal
pairs k ′ k ′ may arise consider k ′ arriving, as shown below in the diagram on the left
of (3.34), at a position due south of an entry b which itself lies on the path of the

Springer



J Algebr Comb (2007) 25:417–458 431

preceding k ′.

θk ′ : p ··· a b ··· q

r ··· c k ′

b < c
−→

p ··· a b ··· q

r ··· k ′ c
(3.34)

If this path of the preceding k ′ moves north from b, then there is no problem since the
k ′ can follow the same path north or move west without violating the strictly south
condition. On the other hand the path of the preceding k ′ may move west along the
indicated boldface track from q to p. In doing so, it must at one stage have displaced
b from its original position at the site of a, immediately above c and satisfying the T2
condition b < c. This condition then ensures that the k ′ must itself move west as shown
in (3.34). It therefore stays south of the path of the preceding k ′ that passes through
the position of a. This implies that the path of k ′ must always stay strictly south of
the path of the preceding k ′, thereby excluding the possibility d = k ′ in (3.32) and
and also a = k ′ in (3.32). This ensures that each k ′ will eventually reach and ascend
the kth column by means of a sequence of moves of type (3.32)–(3.33). Furthermore,
since in the initial P ST its path starts strictly north of the kth row and it only moves
north or west it never reaches the main diagonal.

Following the action of θk ′ each unprimed entry k on the main diagonal of P ST
therefore remains fixed, and all k ′s are in the kth column along with distinct unprimed
entries j with 1 ≤ j ≤ k. If k ′ appears in the i th row, then i cannot appear above it,
since k ′ would then move north as in (3.33), and cannot appear below it by virtue of
T3. It follows that the unprimed entries j in the kth column do not include the row
numbers of k ′. Since they are distinct and 1 ≤ j ≤ k, they must include all the other
row numbers, and be arranged in strictly increasing order in accordance with T2. This
means that each unprimed entry in the kth column lies in its own row. Since the primed
entries in this column are all k ′s all the entries in the kth column satisfy PD1-3.

Iterating this procedure for all k = 1, 2, . . . , n results in all primed entries being
moved to the first k columns of SFμ along with some unprimed entries, collectively
satisfying PD1-3 in this region of shape SF δ , and leaving only unprimed entries, all
satisfying T1-3, in the right hand region of shape Fλ. In fact, with the absence of
primed entries in this region, T3 is redundant since it is implied by T2. Thus the
result of applying � to P ST ∈ PST μ is a semistandard tableau T ∈ T λ(n) of shape
λ juxtaposed to a primed tableau P D ∈ PDδ(n). This map is necessarily weight
preserving since every individual step is a simple interchange which does not alter the
number of ks or k ′s for any k.

To show that this map � is bijective it should be noted that each step may be
reversed. One starts by juxtaposing an arbitrary pair of tableaux P D ∈ PDδ(n) and
T ∈ T λ(n) to create a tableaux of shape SFμ with μ = λ + δ. Then for each k taken
in turn from n to n − 1 down to 1 one applies θ−1

k ′ to all the primed entries k ′; that is
to say one reverses the action of θk ′ by playing jeu de taquin in the reverse direction
with primed entries k ′ treated in turn from bottom to top, moving each one in a south-
easterly direction with k ′ now assumed to be larger than i for i = 1, . . . , k − 1 but
less than i for i = k, k + 1, . . . , n with the conditions T1-3 applying to all unprimed
entries at all times. For example in (3.35) if both e and g are unprimed and less than
k, this leads unambiguously from T0 to TE if e < g and from T0 to TS if e ≥ g, with
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all unprimed entries satisfying the semistandardness conditions T1 and T2 since in
addition b ≤ c < e < g in TE and d < f ≤ g ≤ e in TS .

θ−1
k ′ : T0 =

a b c

d k ′ e

f g h

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TE =
a b c

d e k ′

f g h

if e < g;

TS =
a b c

d g e

f k ′ h

if e ≥ g.

(3.35)

In addition, given that the entries of T0 satisfy T3 and P3, then so do those of TE and
TS since unprimed entries move north or west, while k ′ moves south or east.

More importantly, returning to the original jeu de taquin moves illustrated in (3.32),
this reversed jeu de taquin is such that if the conditions T1–T3 are satisfied by the
entries in T0, then the reverse process leads directly from TW to T0 since d < f and
from TN to T0 since b ≤ c. Thus the original steps along each of the k ′ paths are
retraced precisely. The same is true of the map (3.33).

The only task remaining is to show that the endpoints of these retraced paths results
in an element P ST of PST μ. If T0 is such that k ′ has reached its endpoint then neither
e nor g is unprimed and < k. If either e or g is absent, or primed or unprimed but
≥ k, then this poses no problem. The k ′ in T0 is simply stopped from moving east
or south, respectively. If g = k ′ there is again no problem since the rules PST1-5
allow two (or more) k ′s in the same column. It is only the case e = k ′ that produces
a violation, in this case of PST4. Fortunately this case is excluded by the following
argument analogous to that which led to the strictly south property of the original jeu
de taquin. Now we require a strictly north property. The argument goes as follows.
The fact that the strictly north property applies to the reverse jeu de taquin follows
from a consideration of the following diagram in which a k ′ south westerly path meets
a preceding west–east path, indicated by means of boldface entries, passing from p
to q through the positions of a and b. The existence of the latter requires that a must
initially have been immediately south of c, so that c < a. This in turn implies that k ′

moves eastwards staying strictly north of the preceding path as shown below:

θ−1
k : k ′ c ··· s

p ··· a b ··· q

a > c
−→

c k ′ ··· s

p ··· a b ··· q
(3.36)

Proceeding in this way, the process terminates when each k ′ has moved as far east
and south as the jeu de taquin allows. If in the above diagram q represents the final
position of the preceding k ′, then all elements to the right of q must necessarily be
greater than k ′. This means that although the higher k ′ may move to a column further
to the right than that of q, it always remains in a higher row than the preceding k ′.
This ensures that no two k ′s can appear in the same row. This is sufficient, when taken
together with T1-2 and the fact that each primed entry has reached its end point, to
show that the resulting primed shifted tableau satisfies PST1-4. Since we had already
noted that the diagonal entries are always unprimed, PST5 is also satisfied.
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It follows that �−1 is well defined and maps the juxtaposition of any pair of tableaux
P D ∈ PDδ(n) and T ∈ T λ(n) to a unique P ST ∈ PST μ(n). Thus the original map
� from PST μ(n) to (PDδ(n), T λ(n)) is indeed bijective. Since it is also weight
preserving, as argued earlier, this completes the proof of the P ST case in Theorem 3.1.

The only difference between the P ST and QST cases is the fact that in the latter
case primed entries are allowed on the main diagonal. This is reflected in the same
distinction between P D and Q D on the right of the above formulae. In fact it is
not difficult to see that the map � preserves the entries on the main diagonal in
both cases; that is, just as the main diagonal of P ST coincides with that of P D,
where � : P ST �→ (P D, T ), so the main diagonal of QST , complete with any
primes, coincides with that of Q D, where � : QST �→ (Q D, T ). This observation
is sufficient to complete the proof of Theorem 3.1. �

3.2 Example

This bijection is illustrated by the map from P ST of (2.13) to P D of (2.14) and T of
(2.11); that is,

P ST =

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

←→ P D =

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3 4′ 3 3

4 5′ 6′

5 5

6

, T =

1 2 3

3 5 5

4 6

5

6

(3.37)

The paths traced out by the primed entries k ′ of P ST as they move northwest as
far as but no further than the kth column are illustrated by means of boldface entries
in the tableaux shown below:

First moving the single 2′ under the map θ2′ gives:

1 1 1 2′ 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 1 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

(3.38)

Under θ3′ the only 3′ moves just one step west where it has, as required, reached
the 3rd column. It does not move north because the entry 1 immediately above already
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lies in its own row:

1 2′ 1 1 2 2 3 3 5

2 2 3′ 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 1 2 2 3 3 5

2 3′ 2 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

(3.39)

There are two 4′s. Under θ4′ the upper one must be moved first and then the lower
one:

1 2′ 1 1 2 2 3 3 5

2 3′ 2 3 4′ 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 1 2 3 3 5

2 3′ 2 2 3 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

=

1 2′ 1 4′ 1 2 3 3 5

2 3′ 2 2 3 5′ 5 6′

3 3 4′ 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 1 2 3 3 5

2 3′ 2 2 3 5′ 5 6′

3 4′ 3 4 5′ 6

4 5′ 5 5

5 6′ 6

6

(3.40)

There are three 5′s to deal with in turn from top to bottom using θ5′ , but the last of
these is already in the 3rd column and directly below a 3 in the 3rd row, and so does
not move:

1 2′ 1 4′ 1 2 3 3 5

2 3′ 2 2 3 5′ 5 6′

3 4′ 3 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 5′ 1 2 3 5

2 3′ 2 2 3 3 5 6′

3 4′ 3 4 5′ 6

4 5′ 5 5

5 6′ 6

6

=

1 2′ 1 4′ 5′ 1 2 3 5

2 3′ 2 2 3 3 5 6′

3 4′ 3 4 5′ 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 5′ 1 2 3 5

2 3′ 2 5′ 2 3 5 6′

3 4′ 3 3 4 6

4 5′ 5 5

5 6′ 6

6

(3.41)
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Then we deal with the two 6′s by applying θ6′ to give

1 2′ 1 4′ 5′ 1 2 3 5

2 3′ 2 5′ 2 3 5 6′

3 4′ 3 3 4 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 5′ 6′ 1 2 3

2 3′ 2 5′ 2 3 5 5

3 4′ 3 3 4 6

4 5′ 5 5

5 6′ 6

6

=

1 2′ 1 4′ 5′ 6′ 1 2 3

2 3′ 2 5′ 2 3 5 5

3 4′ 3 3 4 6

4 5′ 5 5

5 6′ 6

6

→

1 2′ 1 4′ 5′ 6′ 1 2 3

2 3′ 2 5′ 2 3 5 5

3 4′ 3 3 4 6

4 5′ 6′ 5

5 5 6

6

(3.42)

This results in the juxtaposition of P D from (2.14) and T from (2.11) as claimed:

1 2′ 1 4′ 5′ 6′ 1 2 3

2 3′ 2 5′ 2 3 5 5

3 4′ 3 3 4 6

4 5′ 6′ 5

5 5 6

6

≡

1 2′ 1 4′ 5′ 6′

2 3′ 2 5′ 2

3 4′ 3 3

4 5′ 6′

5 5

6

·

1 2 3

3 5 5

4 6

5

6

(3.43)

3.3 Corollaries

By associating xk and yk to each entry k and k ′, respectively, in the various tableaux
P ST , QST , P D, Q D and T appearing in Theorem 3.1 we immediately have the
following corollary.

Corollary 3.2. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a par-
tition of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1).

∑
P ST ∈PST μ(n)

(x/y)wgt(P ST ) =
∑

P D∈PDδ (n)

(x/y)wgt(P D)
∑

T ∈T λ(n)

xwgt(T ) ;

∑
QST ∈QST μ(n)

(x/y)wgt(QST ) =
∑

Q D∈QDδ (n)

(x/y)wgt(Q D)
∑

T ∈T λ(n)

xwgt(T ) .
(3.44)
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Thanks to the definitions of P(x/y) and Q(x/y) given in (2.26), the identities (2.15)
and (2.16) and the combinatorial definition of sλ(x) given in (2.24), the above result
is nothing other than our first main result, Proposition 1.1.

Other corollaries follow as special cases of these results. Setting λ = 0 we obtain

Pδ(x/y) = s1n (x)
∏

1≤i< j≤n

(xi + y j ) and Qδ(x/y) =
∏

1≤i≤ j≤n

(xi + y j ). (3.45)

Further specialisation to the case y = x leads to a result given by Macdon-
ald [8](Sec. III.8, Ex. 3 p 259):

Pδ(x) = sδ(x) and Qδ(x) = 2n sδ(x), (3.46)

where use has been made of the fact that

n∏
i=1

xi

∏
1≤i< j≤n

(xi + x j ) = s1n (x)
∏

1≤i< j≤n

(
x2

i − x2
j

)
(xi − x j )

= s1n (x)sδ/1n (x) = sδ(x), (3.47)

where the last step is true when, as here, x has n components x1, x2, . . . , xn .
More generally, if μ = λ + δ for any partition λ of length �(λ) ≤ n, but y = x we

have another result due to Macdonald [8](Sec. III.8, Ex. 2 p 259):

Pλ+δ(x) = sδ(x) sλ(x). (3.48)

where (3.47) and (2.27) have been applied directly to the y = x case of (1.6).
On the other hand the case y = tx = (t x1, t x2, . . . , t xn) of (1.6) is equivalent to

(1.5), the t-deformation of Weyl’s denominator formula for the Lie algebra gl(n) due
to Tokuyama [17]:

Corollary 3.3.

n∏
i=1

xi

∏
1≤i< j≤n

(xi + t x j ) sλ(x) =
∑

ST ∈ST μ(n)

thgt(ST )(1 + t)str(ST )−n xwgt(ST ), (3.49)

Proof: While there is a combinatorial proof of this result due to Okada [10], it follows
immediately from Theorem 3.1 by setting yk = t xk for all k = 1, 2, . . . , n, noting that
deleting primes from the entries k ′ in each P ST ∈ PST μ(n) gives a shifted tableaux
ST ∈ ST μ(n) with a factor of t arising from each primed entry of P ST , and observing
that these must occur in precisely those boxes contributing to hgt(ST ) and are optional,
thereby giving rise to a factor of (1 + t) in those str(ST ) − n boxes at the lower left
hand end of all continuous strips of identical entries other than those starting on the
main diagonal.

The remaining corollaries mentioned in the Introduction are the formulae (1.3) of
Robbins and Rumsey [12] and (1.4) of Chapman [3]. These require for their elucidation
a link with alternating sign matrices. This is provided in Section 5. �
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4 The sp(2n) bijection

4.1 Main result

The analogue in the symplectic case of Theorem 3.1 is the following:

Theorem 4.1. Letμ = λ + δ be a strict partition of length �(μ) = n, withλa partition
of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). There exists a weight and barred weight
preserving, bijective map � from QST μ(n, n) to (QDδ(n, n), T λ(n, n)) such that for
all QST ∈ QST μ(n, n)

� : QST �→ (Q D, T ) with

⎧⎨⎩ wgt(QST ) = wgt(Q D) + wgt(T )

bar(QST ) = bar(Q D) + bar(T )
(4.50)

and Q D ∈ QDδ(n, n) and T ∈ T λ(n, n).

Proof: The Theorem is proved by the identification of a suitable map � that it is both
weight preserving and bijective. The underlying procedure is the same as before, in
that the jeu de taquin is applied successively to all primed entries of QST dealing in
sequence with all entries k

′
and then k ′ for k = 1, 2 . . . , n. In the case of the k

′
s there

is no impediment to moving all these entries to the kth column by means of the jeu de
taquin, but something slightly more subtle is required in the case of the k ′s. It may be
necessary to invoke two new weight preserving transformations.

The structure of � is such that � = φn′ ◦ φn′ ◦ · · · ◦ φ2′ ◦ φ
2

′ ◦ φ1′ ◦ φ
1

′ . Here φk
′

differs from θk ′ only in that the jeu de taquin is played with k
′
s rather than the k ′s,

while φk ′ = χk ′ ◦ ψk ′ where ψk ′ differs from θk ′ only if the final step of the path of

k ′ into the i th row of the kth column is blocked by an entry k
′
. In such a situation

the horizontal pair of entries k
′
k ′ in the i th row is replaced by the horizontal pair i i .

Having moved all the k ′s into the kth column or annihilated them as above, there may
remain in the kth column vertical pairs i i . It is then necessary to invoke χk ′ . This
replaces the lowest such pair, for which i is necessarily in the i th row, by a vertical

pair k ′k
′
, and then moves the resulting k ′ north as far as possible whilst still satisfying

T3, and then acts in the same way on the next lowest vertical pair j j , replacing them

by another vertical pair k ′k
′
, and so on. Having removed all unprimed vertical pairs in

this way any remaining unbarred entries i or i , but not both, lie in their own i th row,
as required for consistency with QD1.

To demonstrate that these various maps are well defined, we exhibit the relevant
individual steps as below, first for the φk

′ case. The starting point is one in which the

action of φ(k−1)′ will have already left the conditions QD1-2 satisfied to the left of the
kth column, and QST1-5 satisfied in the kth column and to its right. It should be noted
that for the unprimed entries QST1-4 subsume T1-2. In addition, we require at every
stage that

T3 each unprimed entry i and i may appear no lower than the i th row;

P3 each primed entry j ′ and j
′
may appear no further to the left than the j th column.
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These conditions T3 and P3 apply automatically to each initial QST ∈ QST (n, n)
with μ a strict partition of length �(μ) = n, and it is important that they remain satisfied
at all subsequent stages since they ensure that the procedures terminate appropriately.

Notice also that thanks to QST5 and QST1, if k ′ or k
′

appears in the i th row of

QST , then i ≤ k. This condition is maintained under all interchanges of k ′ and k
′
with

unprimed entres since k ′ and k
′
move only north or west. In fact for k

′
, QST1 implies

that the case i = k only occurs if k
′
is on the main diagonal, otherwise i < k.

Turning then to the action of φk
′ , consider the tableau T0 in (4.51) below, with k

′

not yet in the kth column. Then T0 is to be thought of as the subtableau surrounding a

particular k
′
after the jeu de taquin has been applied to all k

′
s appearing initially above

the k
′
in question, moving them into the kth column. Some further steps of the jeu de

taquin may have already been applied to the central k
′
and the diagram is intended to

indicate under what conditions its next move is north or west, given that it currently
lies at position (i, j) with j > k and i < k.

Assume first that a, b and d are all unprimed, with d ≥ i by virtue of T3. If d ≤ b
then k

′
is to be interchanged with b and if d > b then k

′
is to be interchanged with d as

shown below. In the first case k
′
moves north and the resulting tableau TN satisfies T1-2

and T3 since i ≤ d ≤ b ≤ c < e, while in the second k
′
moves west and the resulting

tableau TW satisfies T1-2 and T3 since b < d < f ≤ g and i ≤ d. In addition, in both
TN and TW the condition P3 is satisfied, since j > k.

φk
′ :

T0 =
a b c

d k
′

e

f g h

k
′
at (i, j) with i < k < j

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TN =
a k

′
c

d b e

f g h

if d ≤ b

TW =
a b c

k
′

d e

f g h

if b < d

(4.51)

The case i = k has been excluded since this only arises if k
′
is on the main diagonal,

that is i = j , but j > k. Once again if i = 1 then the top row a b c of T0 is necessarily
absent and T0 just maps to TW without its top row. As in the case of (3.32), the maps
to TN and TW are unaffected if any one or more of c, e, f, g, h are primed or absent,
provided that the regularity of the diagram is maintained. The fact that i < k < j
precludes the absence of f .

If k
′
is already in the kth column, so that k

′
cannot move westward by virtue of P3,

the following illustrates the only allowed move of k
′
northwards:

φk
′ :

T0 =
a b c

d k
′

e

f g h

k
′
at (i, k) with i < k

−→ TN =
a k

′
c

d b e

f g h

if i ≤ b (4.52)
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Notice that in order to satisfy T3 the map from T0 to TN only takes place if b ≥ i ,

otherwise T0 is unaltered and k
′

occupies the site in the i th row of the kth column,
until disturbed by any incoming k ′s, as we shall see later. This time the case i = k is
excluded from (4.52) because in T0 we must have b < k = i , whilst the map from T0

to TN requires b ≥ i . In both T0 and TN the condition QD1 applies to the left hand
column. In T0 the conditions T1-3 apply to unprimed elements to the right of this
column. The same is then true of TN since we have i ≤ b ≤ c < e. The cases for
which a, b or d are primed may be dealt with precisely as in the θk ′ case of Section 3

with k ′ replaced by k
′
. This time the only possible impediment to the movement of k

′

in a north-westerly direction until it reaches the kth column is the existence of another

k
′

to its immediate left. However, by the same argument as that used in the θk ′ case,

this cannot occur because the path followed by k
′
always remains strictly south of the

path followed by all preceding k
′
s. As in the case of k ′s moving under the action of θk ′ ,

any k
′

that is not on the main diagonal in the initial QST cannot reach that diagonal
under the action of φk

′ since its path necessarily starts north of the kth row and it
subsequently moves only north or west. Of course in the initial QST, unlike any PST,

a primed entry k
′
may appear on the main diagonal.

Having completed the jeu de taquin moves for all k
′
s and moved them into and as

far north as possible in the kth column under the action of φk
′ , the conditions QD1-2

are satisfied to the left of the kth column, while, with the exception of the entries k
′
that

are already in the kth column, the conditions QST1-5 are satisfied by the remaining
entries in the kth column and to its right. As usual T3 and P3 apply to all entries.

It remains to deal with any k ′s in QST using φk ′ = χk ′ ◦ ψk ′ . The action of ψk ′

is carried out in the same way as before with the diagrams of (4.51) and (4.52) just

altered by changing k
′
to k ′, provided that d is unprimed. The only difference is that the

condition i < k now has to be replaced by i ≤ k. In the case of (4.51) these changes
give:

ψk ′ :
T0 =

a b c

d k ′ e

f g h

k ′ at (i, j) with i ≤ k < j

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TN =
a k ′ c

d b e

f g h

if d ≤ b

TW =
a b c

k ′ d e

f g h

if b < d

(4.53)

A new feature may arise in this case. If i = k = j − 1 then f is absent and in T0 the
entries d and g lie on the main diagonal of the full shifted diagram. It follows from

QST1 and QST5 that d ∈ {i ′, i, i ′} with i = k, and from QST5 that g ∈ { j
′
, j, j ′, j}

with j = k + 1. This means that if b < k then an unprimed entry d = k on the main
diagonal will be replaced by the primed entry k ′ under the map from T0 to TW . Notice
also that if i < k = j − 1 then f is present and if primed must be either k ′ or k ′ by

virtue of QD2. If d > b the map from T0 to TW then yields a vertical pair k ′ k ′ or k ′ k
′
,

respectively. The first case never causes any problem, but in the second it is important
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to realise that it will only occur if d ≤ i for otherwise d would have been exchanged

with f = k
′
in the (i + 1)th row of T0 as part of the action of φk

′ .
If d is primed then d �= k ′ since d = k ′ would give a horizontal pair k ′k ′, and this

cannot occur since the path of the second k ′ must stay strictly south of the path of the
first k ′. To deal with the case d = k

′
, the following map is required, whereby k ′ either

moves north to give TN or moves west, annihilating the neighbouring k
′
and creating

the horizontal pair i i , to give TW .

ψk ′ :
T0 =

a b c

k
′

k ′ e

f g h

k ′ at (i, k + 1) with i ≤ k

−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TN =
a k ′ c

k
′

b e

f g h

if i ≤ b

TH =
a b c

i i e

f g h

if b < i

(4.54)

The fact that the pair i i violates T1 in TH is not a problem because the i lies in the
kth column of what will become Q D and the i lies either in the (k + 1)th column of
Q D or the first column of T . In neither case does the condition T1 apply to both i and
i . If they are both in Q D they automatically satisfy the condition QD1, and if one is
in Q D and the other in T then i satisfies QD1 and i satisfies T3, with all elements to
its right satisfying QST1, as required. The i in Q D subsequently remains fixed, while
the i may move east along the same row under subsequent interchanges, but not south,
since it is constrained by T3. It might also be remarked that if i = k the map from
T0 to TH , with f necessarily absent, changes the main diagonal primed entry k

′
to an

unprimed k.
In (4.53), if b is primed then we must have b = j ′ ≤ k ′ in which case it would have

been moved into its own column to the left of the k ′ in T0 under the action of φ j
′ .

Thus b must be unprimed. Furthermore, if a is unprimed then a < i < i , since if this
were not the case the action of φk

′ would have required that a and k
′
be interchanged

in T0. The conditions a < i and b < i , with i and i in the i th row, then ensure that
TH satisfies both T2 and T3. Finally, if a is primed then a = k

′
or k ′, since otherwise

it would not have remained in the kth column. In the first case T0 may be mapped

to either TN or TH , as in (4.53) with a = k
′
, but in the second case T0 is necessarily

mapped to TH with a = k ′, since TN is ruled out by the strictly south property of k ′

paths.
If k ′ is already in the kth column, then thanks to P3 it cannot move westwards, and

(4.55) illustrates the only allowed move of k ′ northwards:

ψk ′ :
T0 =

a b c

d k ′ e

f g h

k ′ at (i, k) with i ≤ k

−→ TN =
a k ′ c

d b e

f g h

if i ≤ b, (4.55)
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with b < k unprimed. Notice that as a consequence of QD1 we must have d = i or
i , so that in the case d = i and b = i , we again obtain a horizontal pair i i , this time
in TN with both i and i in what is destined to become QD. Furthermore, in the case
i = k, so that d , f and g are all absent, if b = k then the primed entry k ′ on the main
diagonal is replaced by the unprimed entry k under the map from T0 to TN . If b were

to be primed it must already be in its own column with b = k
′
or k ′. In either case the

k ′ below b does not move.
Proceeding in this way all k ′’s are moved into and up the kth column as far as

possible by the action of ψk ′ . In the columns to the left of the kth, the conditions
QD1-2 apply, and in the kth column and to its right the conditions QST1-5 apply
along with T3. However in the kth column itself although QD2 applies, QD1 may
not yet apply, since one may still have one or more unprimed pairs say i and i , in the
kth column. Every such pair lies in consecutive rows. To see this it should be noted
that no unprimed entry can lie between i and i in the same column, by virtue of T2.

Furthermore, no primed entry can lie between i and i , since any such entries k ′ or k
′

will have been moved above i by means of the action of ψk ′ or φk
′ , as appropriate.

Such moves are always allowed since i lies in some row j , with j ≤ i by virtue of T3,
and there is no impediment to i moving down the kth column to the ( j − 1)th row by

means of interchanges with as many k ′s or k
′
s as necessary.

Having completed the action of ψk ′ we consider the action of χk ′ . It acts first on the
lowest of the above pairs, that is the pair with the highest value of i . This pair must be
such that i and i lie in the (i − 1)th and i th rows, respectively. To see this let them lie
in the ( j − 1)th and j th rows with j ≤ i by virtue of T3. Then following the action of
ψk ′ all unprimed entries below i are unpaired and must lie in their own row, whether
they are barred or unbarred, by virtue of the argument already given in the θk ′ case.

Thus the entry immediately below i is either j + 1, j + 1, k ′ or k
′
. In all four cases

the condition T2 and the rule for shifting k ′ and k
′

as far north as is consistent with
T3 imply that i ≤ j . Since j ≤ i it follows that j = i , as claimed. The action of χk ′ is

then to map this vertical pair i i in T0, with i in the i th row, to k ′ k
′
in TV :

χk ′ :
T0 =

a b c

d i e

f i h

i at (i, k) with i ≤ k

−→ TV =
a b c

d k ′ e

f k
′

h

(4.56)

In these diagrams c, e, f, g, h may be either unprimed, primed or absent. If present
e ≥ i and h ≥ i , thanks to QST1 applied to T0. Of course a violation of QST1 occurs
in TV if k ′ > e or k

′
> h, but this is no problem because the kth column will form part

of Q D and is only subject to the conditions QD1-2. It is important to recognise that TV

with its vertical pair k ′ k
′

can only be arrived at as shown, because if it were thought
to have arisen through an interchange of e and k ′ under the action of ψk ′ , as discussed
following (4.53), this could not be the case since the e in the kth column with e ≥ i
would have already been interchanged with the k

′
immediately beneath it through the

action of φk
′ . Notice that if i = k in (4.56) then f is absent and an unprimed entry k

on the main diagonal is replaced by a primed entry k
′
.
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Returning to the action of χk ′ , the k ′ k
′

pair created in the kth column, with k
′

in
the i th row may be such that the k ′ can move north without violating T3. This will be
the case if the entry b immediately above k ′ is unprimed and equal to either i − 1 or
i − 1, then the action of χk ′ is extended as shown below:

χk ′ :

TV =
a b c

d k ′ e

f k
′

h

k
′
at (i, k) with i ≤ k

−→ TN =
a k ′ c

d b e

f k
′

h

if b = i − 1 or i − 1 (4.57)

Recall from (4.57) that if e exists then e ≥ i . In addition c ≤ e thanks to QST2, so that
b ≤ e, thereby maintaining consistency with QST1 in TN . Notice that b ≤ c in TV , so
that TN cannot have arisen by interchanging k ′ and c. The restriction of b to just two
values comes about first, because of its origin in T0 of (4.56) for which T2 implies
b < i , and second, because T3 implies b ≥ i − 1 in TN . It should be noted that in both
the allowed cases the entry b has arrived in TN at its own, (i − 1)th row, and cannot

be moved lower. This means that the k
′

entry of any newly created vertical pair k ′ k
′

necessarily remains fixed, since it cannot be exchanged with the b in TN by virtue of
T3. On the other hand k ′, still under the action of χk ′ , may be moved further up the kth
column by means of interchanges with unprimed elements, constrained as usual by
the condition T2 and T3. Thus in (4.57) the symbols a, b, c may may be interpreted
as columns of entries as shown below:

χk ′ :

TV =

a1 b1 c1

a2 b2 c2

...
...

...

ar br cr

d k ′ e

f k
′

h

k
′
at (i, k) with i ≤ k

−→ TN =

a1 k ′ c1

a2 b1 c2

...
...

...

ar

... cr

d br e

f k
′

h

if br = i − 1 or i − 1 (4.58)

with each bs unprimed, but either barred or unbarred and subject to the QST1 condition
bs ≤ cs if cs is present, the T2 condition bs < bs+1 if s < r , as well as the T3 condition
i − 1 − r + s ≤ bs . As before, if e is present, then e ≥ i and br ≤ cr ≤ e. The final
resting place of the k ′ is either in the topmost row, or immediately below a primed

entry k ′ or k
′
, or in the lth row immediately below an unprimed entry b < l that is

prevented by the condition T3 from being interchanged with the moving k ′.
The process is then repeated for the next lowest vertical pair j j in the kth column

with j in the j th row, which could lie between k ′ and k
′

separated as in (4.58), until
all such pairs are eliminated. The final result is that every unprimed entry i or i in the

kth column lies in the i th row, with all other entries in this column equal to k ′ or k
′
.

Thus following the action of χk ′ all entries in the kth column and to its left satisfy the
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conditions QD1 and QD2, while all entries to the right of the kth column are subject
to QST1-5.

Repeating this procedure for all k = 1, 2, . . . , n results, as required, in the juxtapo-
sition of a primed tableau Q D ∈ PDδ(n, n) and an unprimed tableau T ∈ T λ(n, n). It
should be noted that each individual step of the maps constituting � is either a simple

interchange or a map from a horizontal pair k
′
k ′ to a horizontal pair i i , or a map from

a vertical pair i i to a vertical pair k ′k
′
. In each case the weight of each pair is zero,

and the number of barred entries is one. It follows that such steps are all weight and
barred weight preserving, so that (4.50) is always satisfied.

To show that the map � from QST ∈ QST μ(n, n) to (Q D, T ) with Q D ∈
PDδ(n, n) and T ∈ T λ(n, n) is bijective it is sufficient to note that each step of the
map � may be reversed and that if �−1 is defined by such a reversal of each step, then
the action of �−1 on the juxtaposition of any Q D ∈ PDδ(n, n) and any T ∈ T λ(n, n)
always leads to some QST ∈ QST μ(n, n).

To see this note that since � = φn′ ◦ φn′ ◦ · · · ◦ φ2′ ◦ φ
2

′ ◦ φ1′ ◦ φ
1

′ with φk ′ = χk ′ ◦
ψk ′ , then �−1 = φ−1

1
′ ◦ φ−1

1′ ◦ φ−1

2
′ ◦ φ−1

2′ ◦ · · · ◦ φ−1
n′ ◦ φ−1

n′ with φ−1
k ′ = ψ−1

k ′ ◦ χ−1
k ′ .

The action of the φ−1

k
′ is defined by the action of θ−1

k ′ illustrated in (3.35) with k ′

replaced by k
′
, while that of ψ−1

k ′ coincides precisely with that of θ−1
k ′ together with

additional transformations of the type

ψ−1
k ′ :

T0 =
a b c

i i e

f g h

i at (i, k) with i ≤ k

−→ TE =
a b c

k
′

k ′ e

f g h

if b < i (4.59)

where, as indicated, the pair i i lies in the i th row of the tableau T0, with i in the kth
column. The fact that we necessarily have b < i ensures that this is the exact inverse
of the map ψk ′ that takes T0 to TW in (4.53). It is important to note that when applying

ψ−1
k ′ , the map of any i i to k

′
k ′ in the i th row must be carried out before moving any

k ′s that may appear in the tableau higher than the i th row.
Similarly, the basic action of χ−1

k ′ , which must be applied before ψ−1
k ′ comes into

play, lowers k ′s in the kth column in accordance with the map

χ−1
k ′ :

T0 =
a k ′ c

d b e

f k
′

h

k
′
at (i, k) with i ≤ k

−→ TS =
a b c

d k ′ e

f k
′

h

(4.60)

if e ≥ i and b ≤ c and b = (i − 1) or i − 1. This is the precise inverse of (4.57). Once
again a, b, c may be replaced, as in (4.58), by certain vertical sequences of r entries
with each bs unprimed.
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Once the k ′ is adjacent to k
′
in the kth column, then χ−1

k ′ acts again as follows:

χ−1
k ′ :

TS =
a b c

d k ′ e

f k
′

h

k
′
at (i, k) with i ≤ k

−→ TI =
a b c

d i e

f i h

(4.61)

It is the fact that e ≥ i that ensures that the vertical pair k ′ k
′
is of the type created

by χk ′ , and is not to be confused with one created by ψk ′ . In fact if e < i then χ−1
k ′

cannot map as above, so it simply leaves TS unchanged, but then subject to ψ−1
k ′ which

acts as follows

ψ−1
k ′ :

TS =
a b c

d k ′ e

f k
′

h

k
′
at (i, k) with i ≤ k

−→ TE =
a b c

d e k ′

f k
′

h

(4.62)

In applying χ−1
k ′ as in (4.60) or (4.61) one starts the action with the most northerly

vertical pair, k ′ and k
′
, either simply adjacent as in TV of (4.56) or separated by a

sequence of unprimed entries as in TV of (4.58). This is in contrast to the subsequent
action of ψ−1

k ′ which acts on the most southerly k ′ first. Following the action of χ−1
k ′

it should be pointed out that ψ−1
k ′ can produce vertical pairs k ′ k

′
through a map of

the type (4.59) either with a = k ′ as it stands or with a subsequently replaced by k ′

as a result of the further action of ψk ′ on a higher k ′ in the kth column. In either case
(4.59) requires that b < i . This constraint precludes any confusion with a vertical pair
of the type created by χk ′ . That could only be removed using χ−1

k ′ as in (4.61), which
requires e ≥ i , where e in (4.61) is the counterpart of b in (4.59).

Finally, it is necessary to show that all k ′s and k
′
s are mapped by φ−1

k ′ and φ−1

k
′ to

endpoints consistent with the conditions QST1-4 and QST5 on all primed tableaux
QST ∈ QST μ(n, n). First it should be noted that QST3 and QST5 are satisfied
throughout the application of �−1. Furthermore, a violation of QST1 or QST2 by
any k ′ or k

′
simply means that application of φ−1

k ′ or φ−1

k
′ , respectively, has not been

completed. The argument used in Section 3 regarding reverse paths staying strictly
north of one another in any given column, is sufficient to ensure that no two identical
primed entries may appear in the same row, thereby ensuring that the final condi-
tion QST3 is always satisfied. Thus the image of �−1 of any pair (Q D, T ) with
Q D ∈ QDδ(n, n) and T ∈ T λ(n, n) is some QST ∈ QST μ(n, n).

This implies that the original map � is bijective. Since it is also both weight and
barred weight preserving, this completes the proof of Theorem 4.1. �

It should be pointed out that, unlike the gl(n) case, a corresponding result does
not apply to P ST ∈ PST μ(n, n) in the sp(2n) case because of the necessity of using
(4.53) and (4.56). In (4.53) if i = k = j − 1, d = k and b < k then k is replaced
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by k ′ on the main diagonal, while in (4.56) if i = k then k is replaced by k
′

on the
main diagonal. These transformations are in direct violation of PD3. Similarly, primed
entries on the main diagonal may be replaced by unprimed entries through the use of

(4.54) and (4.55). In (4.54) if i = k and b < k then k
′

is replaced by k on the main
diagonal, while in (4.55) if i = k and b = k then k ′ is replaced by k on the main
diagonal.

4.2 Example

The bijection � is illustrated by the following map for n = 5 and μ = (9, 7, 6, 2, 1):

QST =

1 1′ 2
′

2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→ Q D =

1′ 1 3
′

4′ 1

2
′

2 4′ 5′

3 4
′

3

4 4

5′

, T =
1 4 4 5

3 4 4

4 5 5

(4.63)

Once again we indicate by means of boldface entries both the paths traced out
by elements k

′
and k ′ as they move to the kth column under the action of φk

′ and
ψ ′

k , respectively, as well as annihilations and creation of k
′
k ′ pairs under ψk ′ and χk ′ ,

respectively.

There are no 1
′
s, so we first move the single 1′ under the action of ψ1′ as shown:

1 1′ 2
′

2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 1 2
′

2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

(4.64)

The application of φ′
2

then gives

1′ 1 2
′

2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 2
′

1 2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

(4.65)

where there is no possibility of moving the lower 2
′
. Then the application of ψ2′ on

the only 2′ involves first a transposition and then the replacement of the resulting
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horizontal pair 2
′
2′ in the first row by 1 1:

1′ 2
′

1 2′ 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 2
′

2′ 1 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

=

1′ 2
′

2′ 1 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 1 1 1 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

(4.66)

The single 3
′
is moved as shown to the 3rd column under the action of ψ3′ :

1′ 1 1 1 3
′

3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 1 3
′

1 1 3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

(4.67)

Next, the single 4′ is moved under φ4′ as follows:

1′ 1 3
′

1 1 3 4 4 5

2
′

2 3 3 4′ 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 3 3 3 4 4

3 3 4 5′ 5 5

4 4

5′

(4.68)

There are no 4
′
s. However, the 4th column contains the pair 3 3 which must be replaced

by 4′ 4
′
under the action of χ4′ :

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 3 3 3 4 4

3 3 4 5′ 5 5

4 4

5′

−→

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 4′ 3 3 4 4

3 4
′

4 5′ 5 5

4 4

5′

(4.69)

There are no 5
′
s and it is then important to notice that one does not replace the vertical

pair 4 4 in the 5th column by 5′ 5
′
under the action of χ5′ because one must first apply

ψ5′ to the two 5′s. In any case the premature action of χ5′ would lead to two 5′s in the
same row, which is forbidden. Instead, the algorithm dictates that one first acts on the
two 5′s with ψ5′ . The uppermost 5′ is moved into the 5th column and up that column
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until it is just below the entry 1 which cannot be moved into the second row. This
leaves both the 3 and 4 in their own rows in the 5th column, and no 4 4 pair.

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 4′ 3 3 4 4

3 4
′

4 5′ 5 5

4 4

5′

−→

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 4′ 5′ 3 4 4

3 4
′

3 4 5 5

4 4

5′

(4.70)

The second 5′ does not move under the action of ψ5′ since the 4 immediately above it
cannot move into the 5th row. The final result can then be seen to be, as claimed, the
juxtaposition of a primed tableaux Q D ∈ QD54321(5, 5) and an unprimed tableaux
T ∈ T 433(5, 5):

1′ 1 3
′

4′ 1 1 4 4 5

2
′

2 4′ 5′ 3 4 4

3 4
′

3 4 5 5

4 4

5′

≡

1′ 1 3
′

4′ 1

2
′

2 4′ 5′

3 4
′

3

4 4

5′

·
1 4 4 5

3 4 4

4 5 5

(4.71)

4.3 Corollaries

By associating xk , t2 xk , yk and t2 yk to each entry k, k, k ′ and k
′
, respectively, in the

various tableaux QST , Q D and T appearing in Theorem 4.1 we immediately have
the following corollary.

Corollary 4.2. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a par-
tition of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1).∑
QST ∈QST μ(n)

t2bar(QST )(x/y)wgt(QST ) =
∑

Q D∈QDδ (n)

t2bar(Q D)(x/y)wgt(Q D)
∑

T ∈T λ(n)

t2bar(T )xwgt(T ).

(4.72)

Thanks to the definition of Q(x/y; t) given in (2.30), the identity (2.23) and the
combinatorial definition of the t-deformation spλ(x; t) of symplectic characters given
in (2.29), the above result is precisely our second main result Proposition 1.2.

Other corollaries follow as special cases of these results. Setting λ = 0 we obtain

Qδ(x/y; t) =
∏

1≤i≤ j≤n

(
xi + t2 xi + y j + t2 y j

)
. (4.73)

On the other hand the case y = tx = (t x1, t x2, . . . , t xn) of (1.10) is equivalent to
the t-deformation of Weyl’s denominator formula (1.9) for the Lie algebra sp(2n)
derived elsewhere [4, 5] by much more circuitous means.
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Corollary 4.3.

n∏
i=1

(xi + t x i )
∏

1≤i< j≤n

(xi + t2 xi + t x j + t x j ) spλ(x; t)

=
∑

ST ∈ST μ(n,n)

tvar(ST )+bar(ST )(1 + t)str(ST )−n xwgt(ST ).

(4.74)

Proof: First it should be noted that∏
1≤i≤ j≤n

(xi + t2 xi + t x j + t x j )

=
n∏

i=1

(1 + t) (xi + t x i )
∏

1≤i< j≤n

(xi + t2 xi + t x j + t x j ) , (4.75)

which includes a factor (1 + t)n .
Then it suffices to recognise that deleting primes from the entries k ′ and k

′
in

QST ∈ QST μ(n, n) gives a symplectic shifted tableau ST ∈ ST μ(n, n) with a fac-
tor of t arising from each primed entry since yk = t xk and t2 y−1

k = t x−1
k . Additional

factors of t2 arise from each barred entry k since these are associated with t2x−1
k .

Compulsorily primed entries in each primed shifted tableau QST corresponding to
a fixed shifted tableau ST appear once and only once in each row of each connected
strip of identical entries, whether barred or unbarrred, while the leftmost lowest en-
try of each connected strip may each be primed or unprimed. To summarise, each
connected component of a k-strip gives rise to a factor (1 + t) t rowk−1, where rowk is
the number of rows of the k-strip component, and each component of a k-strip gives
rise to a factor of (1 + t−1) t2bark−rowk+1 = (1 + t) tbark+colk−1 where bark is the length
of the component of the k-strip, while rowk and colk are the numbers of rows and
columns, respectively, that it occupies, with bark = rowk + colk − 1. Combining all
these factors for k = 1, 2, . . . , n gives (1 + t)str(ST ) tvar(ST )+bar(ST ), as required, since
as defined earlier var(ST ) = ∑

(rowk + colk − 1) where the sum is over all connected
components of all k and k strips, for all k, and bar(ST ) = ∑

bark is the total number
of barred entries in ST . �

Another significant corollary involves a link with U-turn alternating sign matrices.
This is provided in Section 5.

5 Connection to alternating sign matrices

5.1 gl(n) case

In this section we show how to map from shifted tableaux, ST , to alternating sign
matrices. Using the analogous relationship for primed shifted tableaux, P ST , a result
of Chapman [3] is a straightforward consequence of Theorem 3.1.

Springer



J Algebr Comb (2007) 25:417–458 449

An alternating sign matrix (ASM) is an n × n matrix filled with 0′s, 1′s, and −1′s
such that the first and last nonzero entries of each row and column are 1′s and the
nonzero entries within a row or column alternate in sign. There is a famous formula,
conjectured by Mills, Robbins, and Rumsey [9] and proved by Zeilberger [19], that
counts the number of ASM of size n as

∏n−1
j=0 (3 j + 1)!

/
(n + j)!. See also Bressoud

[1].
We work with a generalisation of ASM called μ-ASM introduced by Okada [11]

that can be associated with semistandard shifted tableaux. The new feature here is that
the alternating sign matrix is no longer square. Its row sums are all 1 but its column
sums are 1 or 0 according as the column label is or is not a part of some partition μ.
To be more precise, given a partition μ with distinct parts and such that �(μ) = n and
μ1 ≤ m for some m ≥ n, the set Aμ(n) of μ-alternating sign matrices is the set of
n × m matrices A = (aiq )1≤i≤n,1≤q≤m that satisfy the following conditions:

ASM1 aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ n, 1 ≤ q ≤ m;
ASM2

∑m
q=p aiq ∈ {0, 1} for 1 ≤ i ≤ n, 1 ≤ p ≤ m;

ASM3
∑n

i= j aiq ∈ {0, 1} for 1 ≤ j ≤ n, 1 ≤ q ≤ m
ASM4

∑m
q=1 aiq = 1 for 1 ≤ i ≤ n;

ASM5
∑n

i=1 aiq =1 if q = μ j for some j ; or
∑n

i=1 aiq = 0 otherwise; for 1 ≤ q ≤ m.

In what follows we also require U-turn alternating sign matrices, UASMs, and their
generalisation μ–UASMs that are associated with semistandard shifted symplectic
tableaux [4, 5]. In fact the bijection between semistandard shifted tableaux ST ∈
ST μ(n) and μ–ASMs A ∈ Aμ(n) for any fixed m ≥ μ1, is a special case of a bijection
between semistandard shifted symplectic tableaux ST ∈ ST μ(n, n) and μ–UASMs
A ∈ Aμ(n, n) [5] for the same m. In what follows we always fix m = μ1 so as to avoid
redundant columns of zeros at the extreme right of each alternating sign matrix.

Briefly, in the μ-ASM case, we associate to each semistandard shifted tableaux
ST ∈ ST μ(n) of shape μ with �(μ) = n and μ1 = m an n × m matrix M(ST ) filled
with the entries from ST together with zeros such that if there is an i on diagonal j
of ST (where the main diagonal is diagonal 1 and the last box in the first row is in
diagonal μ1 = m), then there is an i in row i , column j of the matrix. All other entries
are zero.

For example, in the case n = 6 and μ = (9, 8, 6, 4, 3, 1) a given semistandard
shifted tableau ST of shape μ yields a 6 × 9 matrix, M(ST ), as shown:

ST =

1 1 1 2 3 3 4 4 4

2 2 2 3 4 5 5 5

3 4 4 4 5 6

4 5 5 6

5 6 6

6

=⇒ M(ST ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0

2 2 2 2 0 0 0 0 0

3 0 0 3 3 3 0 0 0

4 4 4 4 4 0 4 4 4

5 5 5 0 5 5 5 5 0

6 6 6 6 0 6 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.76)
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A primed semistandard shifted tableau P ST ∈ PST μ(N ) yields a similar matrix
M(P ST ) in the same way:

P ST =

1 1 1 2′ 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

=⇒ M(P ST )=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0

2 2 2 2′ 0 0 0 0 0

3 0 0 3′ 3′ 3 0 0 0

4 4′ 4 4 4′ 0 4 4 4

5 5′ 5 0 5 5′ 5 5 0

6 6′ 6 6′ 0 6 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.77)

where as we shall see it is possible to distinguish various types of entry 0 as charac-
terised by their set of nearest non-vanishing neighbours.

Each of these matrices can be converted into a μ-alternating sign matrix by replacing
the rightmost entry of each continuous sequence of nonzero entries by a 1 and each
zero immediately to the left of a nonzero entry by −1, leaving all other entries 0. In
the case of the above example we obtain in this way

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1 0 −1 0 0 1 0 0 0

0 0 0 0 1 −1 0 0 1

0 0 1 −1 0 0 0 1 0

0 0 0 1 −1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ A986431(6) (5.78)

Square ice provides a further refinement of the relationship between shifted tableaux
and μ-ASM. Square ice is a directed graph that models the orientation of oxygen and
hydrogen molecules in frozen water. The vertices are laid out in an n × m grid and
each vertex has two incoming and two outgoing edges in a north, south, east, west
orientation. The square ice graph corresponding to (5.78) appears in Fig. 1.

Fig. 1 Square ice for Eq. (5.78)
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Fig. 2 Square ice and corresponding compass points and ASM entries. Figure adapted from Kuperberg [7]

At each vertex there are six possible orientations of the four directed edges (see
Fig. 2). These orientations may be specified by the pairs of compass points giving the
directions of the incoming edges. In this way the above square ice graph is specified
by a corresponding “compass points” matrix:

C M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N E N E W E N W N W N W N W N W N W

N E N E SE W E N W N W N W N W N W

W E N W N S SE N E W E N W N W N W

SE N E N E SE W E N S N E N E W E

SE N E W E N S SE N E N E W E SW

SE N E SE W E N S W E N W SW SW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.79)

The bijection between compass point matrices, square ice graphs and μ-ASMs is
provided by the following correspondences:

The horizontal orientation (with both horizontal edges directed in), W E , corre-
sponds to each entry +1 in A, and the vertical orientation (with both vertical edges
directed in), N S, corresponds to each entry −1 in A; the other four orientations, N E ,
SW , N W and SE correspond to the entries 0 in A. Accordingly there are northwest
zeros (with edges pointing in the north and west directions), southwest zeros, northeast
zeros, and southeast zeros. Northwest zeros are those whose nearest nonzero neigh-
bour to the right, if it has one, is −1, and whose nearest nonzero neighbour below,
if it has one, is 1. Southwest zeros are those whose nearest nonzero neighbour to the
right, if it has one, is −1, and whose nearest nonzero neighbour below, if it has one,
is −1. Northeast zeros are those whose nearest nonzero neighbour to the right is 1,
and whose nearest nonzero neighbour below, if it has one, is 1. Southeast zeros are
those whose nearest nonzero neighbour to the right is 1, and whose nearest nonzero
neighbour below, if it has one, is −1.

The compass points matrices C M can then be associated to the set of all primed
shifted tableaux P ST that may be obtained by adding primes to the entries of the
unprimed tableau ST . For example, the entries N E in the kth row are associated with
an entry k in P ST and correspondingly to a weight factor xk . The entries SE in the
kth row are associated with an entry k ′ in P ST and correspondingly to a weight factor
yk . The entries N S in the kth row are associated with the two possible labels k and k ′

of the first box of each connected component of strk(P ST ) other than the one starting
on the main diagonal. Correspondingly each N S in row k is associated with a weight
factor (xk + yk). It should be pointed out that the main diagonal is not included at
all in the compass points matrix so that the first column corresponds to the second
diagonal and indeed in general, column k of C M corresponds to diagonal k + 1 of
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P ST . This implies that the above weighting excludes the weight x1x2 · · · xn arising
from the entries 1, 2, . . . , n on the main diagonal of each P ST .

Combining the weight factors we have a total weight associated with each A ∈
Aμ(n) given by

n∏
k=1

x N Ek (A)
k ySEk (A)

k (xk + yk)N Sk (A) (5.80)

where N Ek(A), SEk(A) and N Sk(A) are the numbers of entries N E , SE and N S in
the kth row of the compass matrix C M(A) corresponding to A.

Thanks to the connection already made between P ST s and weighted ST s, the
following is then an immediate corollary of Proposition 1.1:

Corollary 5.1. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a parti-
tion of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). Then for all x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) we have∏

1≤i< j≤n

(xi + y j ) sλ(x) =
∑

A∈Aμ(n)

n∏
k=1

x N Ek (A)
k ySEk (A)

k (xk + yk)N Sk (A). (5.81)

This generalises a result of Chapman [3]. In his original paper he weights by column
instead of row so the parameters in his paper correspond to the transpose matrix. Now
setting λ = 0 so that μ = δ, and noting that Aδ(n) = A(n), the set of all n × n ASMs,
we have

Corollary 5.2 (Chapman [3]). For all x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
we have ∏

1≤i< j≤n

(xi + y j ) =
∑

A∈A(n)

n∏
k=1

x N Ek (A)
k ySEk (A)

k (xk + yk)N Sk (A). (5.82)

Corollary 5.1 has a further consequence:

Corollary 5.3. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a par-
tition of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). For any m for which m > n and
μ1 ≤ m, let A(n, m, μ) ⊆ A(m) be the subset consisting of those ASMs, C, whose top
n rows constitute an ASM, A, in Aμ(n). Then for all (x1, . . . , xn, xn+1, . . . , xm) and
(y1, . . . , yn, yn+1, . . . , ym) we have∏

1≤i< j≤n

(xi + y j ) sλ(x1, . . . , xn)
∏

n+1≤i< j≤m

(xi + y j ) sκ (yn+1, . . . , ym)

=
∑

C∈A(n,m,μ)

m∏
k=1

x N Ek (C)
k ySEk (C)

k (xk + yk)N Sk (C), (5.83)

where κ is the conjugate of the complement of λ with respect to the rectangular
partition ((m − n)n), that is κ = ((m − n)n/λ)′.
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Proof: Let the top n rows of C and the bottom (m − n) rows of C , reversed in order,
form the matrices A and B, respectively. Then the application of Corollary 5.1 to
A gives the contribution made by the top n rows of each C on the right hand side
of (5.83) in the form of the first two factors on the left hand side. Similarly, the re-
maining two factors on the left hand side arise from the contribution of the bottom
(m − n) rows of each C . To see this one applies Corollary 5.1 to B, but this time
with μ = λ + δ replaced by ν = κ + ε, where ε = (m − n, m − n − 1, . . . , 1), and
with (x1, . . . , xn) and (y1, . . . , yn) replaced by (ym, . . . , yn+1) and (xm, . . . , xn+1),
respectively. It only remains to relate λ and κ . Since the parts of μ and ν specify
those columns of A and B, respectively, whose column sums are 1, and A and B are
constructed from an ASM C , all these parts must be distinct and together constitute
(m, m − 1, . . . , 1). It follows that the union of {λi + n − i + 1 | i = 1, . . . , n} and
{κ j + (m − n) − j + 1 | j = 1, . . . , m − n} must be {1, . . . , m}. However, it is well
known [8]p3 that the complement of {λi + n − i + 1 | i = 1, . . . , n} in {1, . . . , m}
is {n + k − λ′

k | k = 1, . . . , m − n}. By setting k = m − n − j + 1 it can then be
seen that κ j = n − λ′

m−n− j+1 for j = 1, . . . , m − n, so that κ = (nm−n/λ′ = ((m −
n)n/λ)′, as claimed.

�

Alternatively, Corollary 5.3 may be proved bijectively by taking each primed shifted
tableau P ST specified by some C ∈ A(n, m, μ) and using the jeu de taquin, first as
described above, to move all entries k ′ with 1 ≤ k ≤ n north-west to the kth column,
and then in an analogous manner, to move all entries k with n + 1 ≤ k ≤ m south-east
to the kth row. The result is a pair of triangular subtableaux, both of type P D but with
all entries k and k ′ such that k ≤ n in one case and k > n in the other, together with
a pair of semistandard tableaux, one of shape λ with unprimed entries subject to the
order relation 1 < 2 < · · · < n and the other of shape κ with primed entries subject
to the order relation m ′ < (m − 1)′ < · · · < (n + 1)′.

By way of an example, let m = 6 and consider the following 6 × 6 ASM

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 1 −1 1 0 0

1 −1 1 0 0 0

0 0 0 0 1 0

0 1 0 0 −1 1

0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ A(6) . (5.84)

Taking n = 2, the top two rows of C constitute A, and the bottom four rows of C ,
reversed in order, constitute B, where:

A =
[

0 0 1 0 0 0

0 1 −1 1 0 0

]
∈ A4,2(2) and

B =

⎡⎢⎢⎢⎣
0 0 0 0 1 0

0 1 0 0 −1 1

0 0 0 0 1 0

1 −1 1 0 0 0

⎤⎥⎥⎥⎦ ∈ A6,5,3,1(4). (5.85)
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The superscripts on A4,2(2) and A6,5,3,1(4) specify those columns of A and B, respec-
tively, having column sums 1. They indicate that A ∈ A(2, 4, μ) with μ = (4, 2) so
that λ = (2, 1), while ν = (6, 5, 3, 1) so that κ = (2, 2, 1). This is in accordance with
the formula κ = (42/λ)′ = (3, 2)′ = (2, 2, 1).

The compass point matrix corresponding to C takes the form:

C M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N E N E W E N W N W N W

N E W E N S W E N W N W

W E N S W E SW N W N W

SE N E SE SE W E N W

SE W E SW SW N S W E

SE SE SE SE W E SW

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.86)

so that the contribution of C to the right hand side of (5.83) is

x2
1 x2 (x2 + y2) (x3 + y3) x4 y3

4 y5 (x5 + y5) y4
6 . (5.87)

The three factors (xk + yk) arise from three entries N S in C M , that themselves
arise from the three entries −1 in C . There must therefore be precisely 23 primed
shifted tableaux P ST corresponding to C . Choosing just one of these for illustrative
purposes, the use of the jeu de taquin to move all k ′s with k ≤ 2 north-west and all ks
with k > 2 south-east, gives the following bijective map:

P ST =

1 1 1 2′ 4′ 5

2 2 3 4′ 6′

3 4′ 4 6′

4 5′ 6′

5 6′

6

←→

1 2′ 1 1 4′ 6′

2 2 4′ 5′ 6′

3 4′ 3 6′

4 4 6′

5 5

6

(5.88)

The corresponding contribution to the left hand side of (5.83) is then given by

x2
1 x2 y2 x3 x4 y3

4 x5 y5 y4
6 = y2 · x2

1 x2 · x3 x4 y4 x5 y2
6 · y2

4 y5 y2
6 , (5.89)

where the arrangement of the terms on the right exhibits the contributions to each of
the four factors constituting the left hand side of (5.83). Both tableaux in (5.88) may
be displayed, as shown below, in terms of suitably re-oriented subtableaux involving
entries k and k ′, with all k ≤ 2 in one case, and all k > 2 on the other.

1 1 1 2′

2 2
·

6 6′ 6′ 6′ 6′ 5

5 5′ 4 4′ 4′

4 4′ 3

3

←→ 1 2′

2
· 1 1

2
·

6 5 6′ 6′

5 4 3

4 4′

3

·
6′ 6′

5′ 4′

4′

(5.90)

This illustrates the outcome of applying the jeu de taquin to primed shifted tableaux
corresponding to the submatrices A and B of the ASM C . The resulting contribution
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of the four final tableaux to the left hand side of (5.83) is then confirmed to be as given
on the right hand side of (5.89).

5.2 sp(2n) case

The symplectic case involves a modified alternating sign matrix called a U-turn μ-
ASM or μ-UASM. Informally, the U-turn condition means that two consecutive rows
and the U-turn between them must follow the μ-ASM summation rules, ASM2-5;
that is, the cumulative sum must be zero or one, and the total sum must be one. These
μ-UASM were first defined in Hamel and King [4] where they were called sp(2n)-
generalised alternating sign matrices. They are discussed at length in Hamel and King
[5]. A formal definition is as follows:

Let μ be a partition of length �(μ) = n, all of whose parts are distinct, and for
which μ1 ≤ m. Then the matrix A = (aiq )1≤i≤2n,1≤q≤m is said to belong to the set
UAμ(2n) of μ-alternating sign matrices with a U–turn boundary if its elements aiq

satisfy the conditions:

UA1 aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ 2n, 1 ≤ q ≤ m;
UA2

∑m
q=p aiq ∈ {0, 1} for 1 ≤ i ≤ 2n, 1 ≤ p ≤ m;

UA3
∑2n

i= j aiq ∈ {0, 1} for 1 ≤ j ≤ 2n, 1 ≤ q ≤ m.

UA4
∑m

q=1(a2i−1,q + a2i,q ) = 1 for 1 ≤ i ≤ n;

UA5
∑2n

i=1 aiq =
{

1 if q = μk for some k

0 otherwise
for 1 ≤ q ≤ m, 1 ≤ k ≤ n.

Again so as to avoid redundant columns of zeros at the extreme right of A we set
m = μn in what follows.

In the case μ = δ = (n, n − 1, . . . , 1) and m = n, for which UA5 becomes∑2n
i=1 aiq = 1 for 1 ≤ q ≤ n, this definition is such that the set of μ-UASM coincides

with the set of U–turn alternating sign matrices, UASMs, defined by Kuperberg [7].
As noted above, Hamel and King [5] established a bijection between μ-UASM and

semistandard shifted symplectic tableaux. An example of this association is illustrated
below in the case n = 5 and μ = (9, 7, 6, 2, 1):

1 1 2 2 3 3 4 4 5

2 2 2 3 4 4 4

3 4 4 4 4 4

4 4

5

=⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

2 2 2 0 0 0 0 0 0

0 0 2 2 0 0 0 0 0

0 0 0 0 3 3 0 0 0

3 0 0 3 0 0 0 0 0

0 4 0 0 4 4 4 0 0

4 4 4 4 4 4 4 4 0

5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 −1 0 1 0 0 0 0 0

0 0 0 −1 0 1 0 0 0

1 0 −1 1 0 0 0 0 0

−1 1 0 −1 0 0 1 0 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.91)

where the columns are labeled from left to right 1, 2, . . . , 9 = m = μ1, and the rows
from top to bottom 1, 1, 2, 2, . . . , 5, 5 = n.

The translation to square ice is also natural and just requires a modification of the
left boundary by the insertion of a U-turn. The square ice graph in Fig. 3 corresponds
to the above μ-UASM matrix. The same example appeared in Hamel and King [5].

In this symplectic case the bijection from the U-turn μ-ASMs to U–turn square ice
graphs is precisely as before, with entries +1 and −1 mapped to W E and N S vertex
orientations, and N E , SW , N W and SE entries 0 distinguished by their nearest non-
zero neighbouring entries. This map is encoded in the corresponding compass points

Fig. 3 Square ice with U-turn boundary
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matrix. For the above example, this takes the form:

C M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W E N W N W N W N W N W N W N W N W

N S W E N W N W N W N W N W N W N W

N E SE W E N W N W N W N W N W N W

N W N S SE W E N W N W N W N W N W

N W N W SW N S N E W E N W N W N W

W E N W N S W E N W SW N W N W N W

N S W E N W N S N E SE W E N W N W

N E SE N E N E N E SE SE W E N W

W E SW N W N W N W SW SW SW N W

SW SW N W N W N W SW SW N S W E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.92)

Then we can generate a weighting in the same manner as for the gl(n) case, with the
kth column of C M corresponding to the (k + 1)th diagonal of QST . In this case we
have unbarred entries corresponding to even rows and barred entries corresponding to
odd rows. An entry N E in row k is associated to an entry k in QST and correspondingly
to a weight factor xk . An entry SE in row k is associated to an entry k ′ in QST and
correspondingly to a weight factor yk . An entry N E in row k is associated to an
entry k in QST and correspondingly to a weight factor t2x−1

k . An entry SE in row

k is associated to an entry k
′

in QST and correspondingly to t2 y−1
k . An entry N S

in row k is associated to the two possible labels k or k ′ of the first box of each
connected component of strk(QST ) (other than one starting on the main diagonal)
and correspondingly to a weight (xk + yk), while an entry N S in row k is associated

to the two possible labels k or k
′

of the first box of each connected component of
strk(QST ) (other than one starting on the main diagonal) and correspondingly to a
weight t2(xk + yk). Combining the weight factors we have

n∏
k=1

x N Ek (A)
k

(
t2xk

)N Ek (A)
ySEk (A)

k

(
t2 yk

)SEk (A)(
xk +yk

)N Sk (A)(
t2xk +t2 yk

)N Sk (A)
(5.93)

where SEk(A), N Ek(A), N Sk(A) (resp. SEk(A), N Ek(A), N Sk(A)) are the num-
bers of entries SE, N E, N S in row k (resp. k) of the compass matrix C M(A).

We then have the following immediate corollary of Proposition 1.2:

Corollary 5.4. Let μ = λ + δ be a strict partition of length �(μ) = n, with λ a parti-
tion of length �(λ) ≤ n and δ = (n, n − 1, . . . , 1). Then for all x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) we have∏

1≤i< j≤n

(
xi + t2xi + y j + t2 y j

)
spλ(x; t)

=
∑

A∈UA(2n)

n∏
k=1

x N Ek (A)
k

(
t2xk

)N Ek (A)
ySEk (A)

k

(
t2 yk

)SEk (A)

× (xk + yk)N Sk (A)
(
t2xk + t2 yk

)N Sk (A)
. (5.94)
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This Corollary is a generalisation of Theorem 6.4 of Hamel and King [5]. This
Theorem 6.4 may be recovered from Corollary 5.4 by setting y = tx, exploiting the
bijection between compass point matrices C M(A) and the U-turn μ-ASM’s A, and
noting that the number of entries N S and W E in any row of C M are either the same or
differ by one according to the nature, barred or unbarred, of the corresponding entry
on the main diagonal of the associated semistandard shifted symplectic tableau ST .
Note also that Theorem 6.4 includes the weighting for the main diagonal on each side
of the equation, whereas Corollary 5.4 does not.
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