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Abstract Dualizing the “extended bipartite double” construction for distance-regular
graphs, we construct a new family of cometric (or Q-polynomial) association schemes
with four associate classes based on linked systems of symmetric designs. The analysis
of these new schemes naturally leads to structural questions concerning imprimitive
cometric association schemes, some of which we answer with others being left as
open problems. In particular, we prove that any Q-antipodal association scheme is
dismantlable: the configuration induced on any subset of the equivalence classes in
the Q-antipodal imprimitivity system is again a cometric association scheme. Further
examples are explored.

Keywords Association scheme . Cometric . Q-polynomial . Imprimitive . Spherical
design . Linked system of symmetric designs

1 A census of cometric association schemes

Very few examples are known of association schemes that are cometric but not met-
ric. Much effort has been devoted to the study and classification of Q-polynomial
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distance-regular graphs, i.e., association schemes that are both metric and cometric,
since the most important families of distance-regular graphs enjoy the cometric prop-
erty. (See [1, 2, 18] for a good starting point in the substantial literature on this subject.)
The following list gives all examples of cometric association schemes known to us
(see [15] for details on spherical designs):

� Q-polynomial distance-regular graphs (this includes all symmetric 2-class
schemes);� duals of metric translation schemes (e.g., the subscheme induced on even-weight
codewords in the perfect binary Golay code);� bipartite doubles of Hermitian forms dual polar spaces [2 A2d−1(r )] [1, p. 315] (see
Section 3);� schemes arising from linked systems of symmetric designs (one infinite family
known [5], 3-class, Q-antipodal);� the extended Q-bipartite doubles of the above infinite family (4-class, Q-bipartite
and Q-antipodal);� the block schemes of the Witt designs 4-(11,5,1), 5-(24,8,1) and a 4-(47,11,8) design
arising from a quadratic residue code [9] (these are primitive 3-class schemes on 66,
759 and 4324 vertices, respectively);� the block schemes of the 5-(12,6,1) design and the 5-(24,12,48) design arising from
the extended Golay codes (these are Q-bipartite 4-class schemes on 132 and 2576
vertices, respectively);� the scheme determined by the shortest vectors in the Leech lattice, a tight spherical
11-design [10] in R24 (6-class, Q-bipartite, 196560 vertices) and five schemes carried
on subsets of this vertex set obtained by choosing only those points lying on certain
affine subspaces of codimension one or two (each of these spherical designs is a
“derived spherical design” of this one or of one of the others):

– a 3-class primitive scheme on 2025 vertices
– two 4-class Q-bipartite schemes on 2816 and 4600 vertices
– a 4-class primitive scheme on 7128 vertices
– a 5-class primitive scheme on 47104 vertices;

� three 4-class Q-bipartite schemes carried on the shortest vectors of the lattices E6,
E7 and E8 (72 vertices, 126 vertices, and 240 vertices, respectively)—this last one
corresponds to the Gosset polytope, a spherical 7-design [10] in R8;� the scheme on the vertices of the 24-cell, a spherical 5-design in R4 (4-class,
Q-bipartite, Q-antipodal, 24 vertices);� the antipodal quotient of the Leech lattice example (3-class, primitive, 98280 ver-
tices);� the shortest vectors of a lattice in R16 (4-class, Q-bipartite, 512 vertices), this is the
overlattice of the Barnes-Wall lattice;� a scheme arising from 275 lines through the origin in R22 with only two angles among
them, a spherical 5-design (5-class, Q-bipartite and Q-antipodal, 550 vertices);� the bipartite double of the above scheme on 47104 vertices (11-class, Q-bipartite,
94208 vertices);
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J Algebr Comb (2007) 25:399–415 401� three Q-antipodal schemes constructed below by “dismantling” larger schemes re-
lated to the Golay codes (a 4-class on 162 vertices, a 5-class on 486 vertices, and a
6-class on 1536 vertices).

(All parameters for the exceptional schemes listed above can be found on the web at
http://users.wpi.edu/∼martin/RESEARCH/QPOL/)

As we consider this list, we are reminded of the following

Conjecture 1.1 (Bannai/Ito [1, p. 312]). Every primitive cometric scheme of suffi-
ciently large diameter is metric as well.

1.1 Outline of the paper

The balance of the paper is structured as follows. In Section 2, we review the basic
definitions, introduce our notation and consider Suzuki’s Theorem on imprimitive
cometric association schemes. In Section 3, we introduce the extended Q-bipartite
double of a cometric association scheme. We discuss several known examples which
can be cast in this language and then construct a new infinite family of 4-class imprimi-
tive cometric schemes based on linked systems of symmetric designs, which we briefly
review.

Section 4 considers some structural questions about Q-bipartite and Q-antipodal
schemes. First, we review a result of Brouwer et al., showing that a Q-bipartite scheme
is necessarily an index two cover of its natural quotient. We derive some parameter
restrictions from this simple result. We conjecture that the number of equivalence
classes in any Q-antipodal imprimitivity system is bounded above by the first multi-
plicity in the Q-polynomial ordering and we prove this when d is odd. Two corollaries
follow, giving information about the graphs in such an association scheme. Finally,
we prove our main result which states that every Q-antipodal association scheme is
dismantlable: the configuration induced on any subset of w′ of the equivalence classes
in the Q-antipodal imprimitivity system is again a cometric association scheme, this
scheme being again Q-antipodal provided w′ > 1. We then use this result to give a
new proof of a theorem of van Dam which characterizes linked systems of symmet-
ric designs and we also construct new Q-antipodal association schemes from known
ones.

2 Background material

Let (X, A) be a symmetric d-class association scheme [1, 2, 13] on v vertices with
Schur idempotents A = {A0, . . . , Ad}, primitive (ordinary) idempotents E0, . . . , Ed ,
eigenmatrices P and Q = vP−1, valencies ki and multiplicities m j . When we say
(X, A) is cometric (or Q-polynomial), we imply that the ordering E0, E1, . . . , Ed is a
Q-polynomial ordering. That is, the Krein parameters qk

i j given by

Ei ◦ Ej = 1

v

d∑
k=0

qk
i j Ek
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(where ◦ denotes Schur—or entrywise—multiplication) satisfy� qk
i j = 0 whenever k < |i − j | or k > i + j , and� qi+ j
i j > 0 whenever i + j ≤ d .

The parameters of a cometric scheme (X, A) are entirely determined by its Krein
array

ι∗(X, A) = {b∗
0, b∗

1, . . . , b∗
d−1; c∗

1, c∗
2, . . . , c∗

d}

where b∗
j = q j

1, j+1, c∗
j = q j

1, j−1 and we also define a∗
j = q j

1 j = m − b∗
j − c∗

j where,
here and below, we write m instead of m1.

A cometric scheme is Q-bipartite if all a∗
j = 0. This is equivalent to the condi-

tion that qk
i j = 0 whenever i + j + k is odd. A cometric scheme is Q-antipodal if

b∗
j = c∗

d− j for all j except possibly j = � d
2
	.

An association scheme is imprimitive if some graph in the scheme is disconnected.
In the next theorem and henceforth, we will let Ir (or simply I ) denote the r × r
identity matrix and Jr (or J ) will denote the all ones matrix of order r × r .

Theorem 2.1 (see [1, 2, 13]). The following are equivalent:

(i) (X, A) is imprimitive;
(ii) for some j > 0, Ej has repeated columns;
(iii) for some subset I = {i0 = 0, i1, . . . , is} of {0, 1, . . . , d} and some ordering of

the vertices
∑s

h=0 Aih = Iw ⊗ Jr for some integers w and r with v = wr , 1 <

w, r < v;
(iv) for some subset J = { j0 = 0, j1, . . . , js} of {0, 1, . . . , d} and some ordering of

the vertices
∑s

h=0 E jh has form 1
r (Iw ⊗ Jr ) for some integers w and r with

v = wr , 1 < w, r < v.

The same scheme may have several such imprimitivity systems and our language
must distinguish them; for example, the vertex set of a scheme which is Q-antipodal
admits a partition into “Q-antipodal classes” and a scheme which is Q-bipartite has
a “Q-bipartite imprimitivity system” which partitions the vertices into “dual bipartite
classes”. In each case, we will use r for the size of a class and w = v/r for the number
of such classes in this partition. We will also continue to use I for the set of indices
0 ≤ i ≤ d for which Ai has all zeros on blocks indexed by distinct classes and J
for the set of indices 0 ≤ j ≤ d for which Ej has all columns indexed by any class
identical.

Theorem 2.2 (Suzuki [17]). Suppose (X, A) is an imprimitive cometric association
scheme. Then one of the following holds:� (X, A) is Q-bipartite and J = {0, 2, 4, . . .};� (X, A) is Q-antipodal and J = {0, d};� d = 4, ι∗(X, A) = {m, m − 1, 1, b∗

3; 1, c∗
2, m − b∗

3, 1} and J = {0, 3};� d = 6, ι∗(X, A) = {m, m − 1, 1, b∗
3, b∗

4, 1; 1, c∗
2, m − b∗

3, 1, c∗
5, m} (where a∗

2 =
a∗

4 + a∗
5 ) and J = {0, 3, 6}.
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Very recently, Cerzo and Suzuki [7] have shown that there are no association
schemes of the third type in the list. No examples are known of the last type.

We mention an earlier result of Dickie whose proof uses the same ideas as those
used in the proof of the above theorem.

Theorem 2.3 (Dickie [11]). In a cometric scheme, if a∗
1 �= 0, then a∗

j �= 0 for all
j < d.

If (X, A) is cometric with Q-polynomial ordering 0, 1, . . . , d, then the entries in
column 1 of the matrix Q are all distinct and we may define a natural ordering on the
relations by the requirement that Q01 > Q11 > · · · > Qd1. We will use this throughout
the paper.

3 The extended Q-bipartite double

In this section, we give a construction dual to the “extended bipartite double” con-
struction of [2, Sec. 1.11] and show how this gives rise to a new infinite family of
4-class cometric association schemes.

Let us first review the bipartite double of an arbitrary association scheme. If
we begin with any scheme with associate matrices Ai and primitive idempotents
Ej (0 ≤ i, j ≤ d), then the bipartite double has associate matrices

A+
i =

[
Ai 0

0 Ai

]
and A−

i =
[

0 Ai

Ai 0

]
and primitive idempotents

E+
j = 1

2

[
Ej Ej

Ej Ej

]
and E−

j = 1

2

[
Ej −Ej

−Ej Ej

]
.

A cometric scheme (X, A) is almost dual bipartite if a∗
j = 0 for j < d but a∗

d �= 0.
(These schemes admit a second Q-polynomial ordering of their idempotents.) Bannai
and Ito [1, p. 315] proved that the bipartite double of an almost dual bipartite cometric
scheme is cometric as well, with Q-polynomial ordering E+

0 , E−
1 , E+

2 , E−
3 , . . . , E−

0 .
As stated in the introduction, the Hermitian forms dual polar space graphs [2 A2d−1(r )]
give an infinite family of examples, with arbitrarily large diameter, where this bipartite
double is cometric but not metric. In this section, we examine a related construction
(Theorem 3.1(i)), called the extended Q-bipartite double.

Theorem 3.1. Let (X, A) be a d-class cometric association scheme on v vertices
with primitive idempotents Ej and Krein parameters a∗

j , b∗
j , c∗

j satisfying b∗
j + c∗

j+1 =
m + 1 for 0 ≤ j < d. Then

(i) there exists an association scheme (X̂ , Â) on 2v vertices where X̂ = X × {0, 1}
and

Â = {A+
0 , A+

1 + A−
d , A+

2 + A−
d−1, . . . , A−

0 }
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where A0, A1, A2, . . . is the natural ordering of Schur idempotents in the origi-
nal scheme. Moreover, this is a Q-bipartite cometric scheme with Q-polynomial
ordering

E+
0 , E−

0 + E−
1 , E+

1 + E+
2 , E−

2 + E−
3 , . . . , E±

d

where the last matrix is E+
d if d is odd and E−

d if d is even;
(ii) the idempotent E1 + E2 generates a cometric fusion scheme (X, Ā) of the original

scheme (X, A); this is the Q-bipartite quotient of the scheme (X̂ , Â).

Proof: From the viewpoint of C-algebras, the proof of (i) is equivalent to a proof of
Theorem 1.11.2(vi) in [2] and follows from direct computation:

(E−
0 + E−

1 ) ◦ (E+
j + E+

j+1)

= 1

2v
[b∗

j−1 E−
j−1+(a∗

j + b∗
j +1)E−

j +(a∗
j+1+ c∗

j+1 + 1)E−
j+1+c∗

j+2 E−
j+2]

= 1

2v
[b∗

j−1(E−
j−1 + E−

j ) + c∗
j+2(E−

j+1 + E−
j+2)].

Similarly,

(E−
0 + E−

1 ) ◦ (E−
j + E−

j+1) = 1

2v
[b∗

j−1(E+
j−1 + E+

j ) + c∗
j+2(E+

j+1 + E+
j+2)]

(E−
0 + E−

1 ) ◦ (E±
d−1 + E±

d ) = 1

2v
[b∗

d−2(E∓
d−2 + E∓

d−1) + (m + 1)E∓
d ]

(E−
0 + E−

1 ) ◦ E±
d = 1

2v
b∗

d−1(E∓
d−1 + E∓

d ).

The proof of (ii) follows by looking at the upper-lefthand block of each matrix on each
side of the above identities. �

Remark 3.2. Without proof, we note that the Krein array for the fusion scheme in part
(ii) is

ι∗(X, Â) =
{

m1 + m2,
b∗

1b∗
2

c∗
2

,
b∗

3b∗
4

c∗
2

, . . . ,
b∗

d−2b∗
d−1

c∗
2

; 1,
c∗

3c∗
4

c∗
2

,
c∗

5c∗
6

c∗
2

, . . . ,
c∗

d (m1 + 1)

c∗
2

}
when d is odd and

ι∗(X, Â) =
{

m1 + m2,
b∗

1b∗
2

c∗
2

,
b∗

3b∗
4

c∗
2

, . . . ,
b∗

d−3b∗
d−2

c∗
2

; 1,
c∗

3c∗
4

c∗
2

,
c∗

5c∗
6

c∗
2

, . . . ,
c∗

d−1c∗
d

c∗
2

}
when d is even.

Example 3.3. If (X, A) is the association scheme of a strongly regular graph with
b∗

1 + c∗
2 = m + 1, then the extended Q-bipartite double is again a metric scheme. This
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is a distance-regular antipodal double cover of a complete graph, the complete graph
being the scheme arising in part (ii) of the theorem. This construction is well-known; it
works precisely when v = 2(2k − λ − μ), i.e., when the given strongly regular graph
belongs to the switching class of a regular two-graph [2, Theorem 1.5.6].

Example 3.4 (A. Munemasa, personal communication). The Soicher graph � for
M22 :2 is a distance-regular graph of diameter three having intersection array ι(�) =
{110, 81, 12; 1, 18, 90}. The underlying association scheme (X, A) is cometric with
Krein array ι∗(X, A) = {55, 49, 21; 1, 7, 35} so Theorem 3.1(i) applies. We then obtain
a 4-class scheme which is both metric and cometric. This distance-regular graph was
discovered by Meixner and has intersection array {176, 135, 24, 1; 1, 24, 135, 176}.
If A0, A1, A2, A3 are the distance matrices of the Soicher graph, then Munemasa
observed that the adjacency matrix of the Meixner graph can be expressed as

A+
1 + A−

3 =
[

A1 A3

A3 A1

]
as in part (i) of the theorem.

Several open parameter sets for diameter three cometric distance-regular graphs
also satisfy the conditions of Theorem 3.1. These include

v = 322 {60, 45, 8; 1, 12, 50}
v = 392 {69, 56, 10; 1, 14, 60}
v = 378 {78, 50, 9; 1, 15, 60}
v = 800 {119, 100, 15; 1, 20, 105}
v = 900 {174, 110, 18; 1, 30, 132}.

Example 3.5. The block scheme of the 4-(11, 5, 1) Witt design is a cometric
scheme with Krein array ι∗(X, A) = {10, 242

27
, 11

5
; 1, 55

27
, 44

5
}. Clearly the conditions of

Theorem 3.1(i) are met. But the extended Q-bipartite double of this scheme is already
well-known: it is the block scheme of the 5-(12, 6, 1) Witt design with Krein array
ι∗(X, A) ={11, 10, 242

27
, 11

5
; 1, 55

27
, 44

5
, 11}. By the same token, the induced association

scheme on the even subcode of the perfect binary Golay code (i.e., the dual scheme of
the coset graph of the perfect code), with Krein array ι∗(X, A) = {23, 22, 21; 1, 2, 3},
has as its extended Q-bipartite double the induced scheme on the extended binary
Golay code with Krein array ι∗(X, A) = {24, 23, 22, 21; 1, 2, 3, 24}.

3.1 Linked systems of symmetric designs

Our interest for the remainder of this section is to apply part (i) of Theorem 3.1 to the
association schemes of linked systems of symmetric designs, which we now briefly
review. (See [5, 14, 16] for information on these structures.)

A linked system of � symmetric (v, k, λ) designs is a graph G defined on a vertex
set

X = P1 ∪ P2 ∪ · · · ∪ P�+1
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where π = {P1,P2, . . . ,P�+1} is a partition of X into � + 1 sets of size v each,
enjoying the following properties:

1. partition π is a proper coloring of G: no edge of G has both ends in the same class
Pi ;

2. for any i �= j , the subgraph of G induced on Pi ∪ P j is the incidence graph of a
symmetric (v, k, λ) design;

3. for any three distinct classes Pi ,P j ,Pk , the number of common neighbors of a
vertex x in Pi and a vertex y in P j which lie in Pk depends only on whether x and
y are adjacent in G or not; it does not depend on the choice of x and y nor on the
choice of i , j and k.

Let σ denote the number of common neighbors in Pk of x in Pi and y, adjacent to x ,
in P j (i �= j �= k �= i). Let τ denote the same parameter for x and y non-adjacent in
G.

With the order k − λ of the designs denoted by n, one can show that we may always
assume that

σ = 1

v
(k2 − √

n(v − k)), τ = k

v
(k + √

n).

Note that this fixes τ − σ to be
√

n, and we can not assume 2k < v as is customary
in design theory.

Assume now that G is a linked system of � symmetric (v, k, λ) designs. Since σ is
an integer, � > 1 implies that the order n is a perfect square. We then obtain a 3-class
Q-antipodal association scheme (X, B) with associate matrices

B0 = I, B1 = A(G̃), B2 = A(G2), B3 = A(G)

where G2 is the union of the � + 1 complete graphs on the Q-antipodal classes Pi

and G̃ is the multipartite complement of G; this is a linked system of � symmetric
(v, v − k, v − 2k + λ) designs. We will not need the parameters of this association
scheme with the exception of the Krein array: ι∗(X, B) = {b∗

0, b∗
1, b∗

2; c∗
1, c∗

2, c∗
3} where

b∗
0 = c∗

3 = m = v − 1, b∗
1 = �c∗

2 = �

� + 1

(
v − 2+ 1√

n
(v − 2k)

)
, b∗

2 = c∗
1 = 1.

Such an association scheme is Q-antipodal and is not metric unless � = 1.
Let B = {B0, B1, B2, B3}be the associate matrices of the association scheme arising

from a linked system of symmetric designs on vertex set X with parameters

v = 16s2, n = 4s2, k = 2s(4s − 1), λ = 2s(2s − 1)

where s is a positive integer. (From above, for � > 1, we need the order n to be a square.
We will need v = 2k + 2

√
n in order to ensure b∗

1 + c∗
2 = m + 1. So our design must

satisfy v = 4n and n must be even for p1
11 to be integral when � is even.)
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Theorem 3.6. Let (X, B) be a linked system of symmetric designs with parameters
v = 16s2, k = 2s(4s − 1) and λ = 2s(2s − 1) and let Y = X × {0, 1}. Consider A =
{A0 = I, A1, A2, A3, A4} given by

A1 =
[

B3 B1

B1 B3

]
, A2 =

[
B2 B2

B2 B2

]
, A3 =

[
B1 B3

B3 B1

]
, A4 =

[
0 I

I 0

]
.

Then (Y, A) is a 4-class Q-antipodal Q-bipartite cometric association scheme.

Proof: This is the extended Q-bipartite double of the scheme (X, B), which is easily
seen to satisfy the conditions of Theorem 3.1. So it remains only to check that the
scheme is again Q-antipodal.

It is straightforward to verify that the intersection numbers are as follows: with
Lh = [pi

hj ]i, j , we have L0 = I ,

L1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 �v 0 0 0

1 2(� − 1)s(4s + 1) v − 1 2(� − 1)s(4s − 1) 0

0 2�n 0 2�n 0

0 2(� − 1)s(4s − 1) v − 1 2(� − 1)s(4s + 1) 1

0 0 0 �v 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

L2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 2(v − 1) 0 0

0 v − 1 0 v − 1 0

1 0 2(v − 2) 0 1

0 v − 1 0 v − 1 0

0 0 2(v − 1) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

L3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 �v 0

0 2(� − 1)s(4s − 1) v − 1 2(� − 1)s(4s + 1) 1

0 2�n 0 2�n 0

1 2(� − 1)s(4s + 1) v − 1 2(� − 1)s(4s − 1) 0

0 �v 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

L4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The Krein array is ι∗(Y, A) = {v, v − 1, � v
�+1

, 1; 1, v
�+1

, v − 1, v} which is both
Q-bipartite and Q-antipodal. �

One infinite family of linked systems of symmetric designs is known [5]. A de-
scription of these linked systems based on the Kerdock codes is cited in [5] as private
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communication from J. M. Goethals. The first published description is based on the
“Cameron-Seidel scheme” [6]. Our presentation is based on [6] as well as [4].

The Cameron-Seidel scheme corresponds to a system of � = 22t+1 − 1 linked sym-
metric (22t+2, 22t+1 − 2t , 22t − 2t ) designs, where t can be any positive integer. So,
by deleting Q-antipodal classes, we obtain a system of � such linked designs for
any � < 22t+1. Each of these systems has order n = k − λ = 22t an even square and
v = 4n. So the construction given in Theorem 3.6 applies and we have an infinite fam-
ily of 4-class Q-antipodal Q-bipartite cometric association schemes with s = 2t−1 in
the language above.

We note that the Krein parameters are easily computed from the second eigen-
matrix Q. Here, we give Q and only the matrix of Krein parameters L∗

1 = [qk
1 j ]k, j

corresponding to the first idempotent in the Q-polynomial ordering:

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
1 v (� + 1)(v − 1) �v �

1 2t+1 0 −2t+1 −1

1 0 −� − 1 0 �

1 −2t+1 0 2t+1 −1

1 −v (� + 1)(v − 1) −�v �

⎤⎥⎥⎥⎥⎥⎥⎦ ,

L∗
1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 v 0 0 0

1 0 v − 1 0 0

0 v
�+1

0 �v
�+1

0

0 0 v − 1 0 1

0 0 0 v 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

An important feature to note is that, unless � + 1 divides v, the Krein parameter
c∗

2 = q2
11 is non-integral. So these schemes cannot be duals of metric schemes in

general. Moreover, for � > 1, the schemes cannot be metric since they are Q-antipodal
with more than two Q-antipodal classes.

4 Structure of imprimitive cometric schemes

In this section, we explore the structure of imprimitive cometric association schemes,
treating the Q-bipartite case first and then the Q-antipodal case.

4.1 Basic results for the Q-bipartite case

A bipartite distance-regular graph obviously has w = 2 bipartite halves; the next
theorem is dual to this. In this proof, we consider the mapping u1 which projects each
elementary basis vector (or vertex) orthogonally into the eigenspace V1 = colsp(E1),
the column space of E1.
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Theorem 4.1 ([3]). If (X, A) is Q-bipartite with w dual bipartite classes of size r
each, then r = 2.

Proof: The entries of the second eigenmatrix satisfy Qi2 = f (Qi1) where f (t) =
1
c∗

2
(t2 − a∗

1 t − m). But a∗
1 = 0, so this is an even polynomial. Moreover, since 2 ∈ J ,

we must have Qi2 = m2 for all relations i ∈ I. But the only solutions to this equation
are Qi1 = ±m. So, assuming the natural ordering on relations, we must have I =
{0, d}. The desired result r = 2 will now follow from showing that kd = 1.

Let x ∈ X . Recall that the (x, y)-entry of E1 is m
v

cos(θ ) where θ is the angle formed
by u1(x) and u1(y). If x̂ is d-related to x , then clearly u1(x̂) = −u1(x). The matrix E1

has no repeated columns (since it generates A under Schur products) so this vector x̂
is unique and kd = 1. �

A special case of this result has been known for some time: a Q-polynomial
antipodal distance-regular graph must be a double cover of its folded graph [2,
Theorem 8.2.4].

Still assuming the natural ordering on relations, in the Q-bipartite case with vertices
ordered so that dual bipartite pairs appear consecutively, this gives A0 + Ad = Iv/2 ⊗
J2. Moreover, the dual bipartite classes are mapped by u1 to opposing points on lines
through the origin in V1 (or in Rm). This observation gives us the following two
corollaries.

Corollary 4.2. Let (X, A) be a Q-bipartite cometric association scheme with the
natural ordering on relations. Then, for the first eigenspace, the sequence m = Q01 >

Q11 > · · · > Qd1 is symmetric about the origin. In particular, Q d
2
,1 = 0 whenever d

is even.

Corollary 4.3. Let (X, A) be a Q-bipartite cometric association scheme with natural
ordering on relations. Then the intersection numbers satisfy

pk
i j = pd−k

i,d− j

for all 0 ≤ i, j, k ≤ d.

Question. Let ρ : X → RPm−1 be a representation of the vertex set X of a cometric
association scheme (X, A) by lines through the origin in Rm in such a way that the
angle between lines ρ(x) and ρ(y) depends only on the relation joining x and y in
(X, A). What additional properties on ρ imply the existence of a Q-bipartite double
cover of the scheme?

4.2 The Q-antipodal case and dismantlability

Next, we move to the Q-antipodal case. In the study of linked systems of symmetric
designs, one is interested in maximizing the parameter � for given feasible values of
v, k and λ. More generally, we seek an upper bound on the number of Q-antipodal
classes. We believe that the first multiplicity in the Q-polynomial ordering is a valid
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upper bound, as we now prove in the case where d is odd. The dual result is due to
Gardiner (cf. [2, Prop. 4.2.2]): for any antipodal distance-regular graph of valency k,
the index r of the cover is bounded above by k.

Theorem 4.4. Let (X, A) be a d-class Q-antipodal association scheme with w

Q-antipodal classes of size r each. If d is odd, then w ≤ m. If d is even, then w ≤ m2.

Proof: From Theorem 2.2 and Theorem 2.1(iv), it is easy to deduce that

Ed = 1

v

⎡⎢⎢⎢⎢⎣
(w − 1)J −J · · · −J

−J (w − 1)J · · · −J
...

...
. . .

...

−J −J · · · (w − 1)J

⎤⎥⎥⎥⎥⎦
so that md = rankEd = w − 1. Using b∗

j = c∗
d− j for j �= � d

2
	 and b∗

j m j = c∗
j+1m j+1,

we then find md− j = (w − 1)m j for j < d/2.
First consider the case where d is odd. Let j = d−1

2
. Obviously,

E1 ◦ Ej = 1

v
[b∗

j−1 E j−1 + a∗
j Ej + c∗

j+1 E j+1]

and b∗
j−1, c∗

j+1 > 0. So the Absolute Bound gives

(w − 1)m d−1
2

= m d+1
2

< m d−3
2

+ m d+1
2

≤ mm d−1
2

⇒ w − 1 < m ⇒ w ≤ m.

Now if d is even, we at least obtain w ≤ m2 by applying the same analysis to the Schur
product E2 ◦ E d

2
−1. �

If we assume the natural ordering on relations, then a standard result about Sturm
sequences tells us that the final column of Q has d sign changes. But we just saw that
there are only two distinct entries in this column, namely w − 1 and −1. The relations
in I are therefore 0, 2, 4, . . .. From this, we obtain the following two corollaries.

Corollary 4.5. In any d-class Q-antipodal scheme, � d
2
	 non-trivial relations occur

between vertices in the same Q-antipodal class and � d
2
� relations occur between

classes. Namely, for i odd, the partition into Q-antipodal classes is a proper vertex
coloring of graph Gi and for i even, each component of Gi lies entirely within some
Q-antipodal class.

As Q-antipodal schemes include cometric bipartite distance-regular graphs, we expect
their intersection numbers to behave in a manner similar to that observed for bipartite
graphs.
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Corollary 4.6. Let (X, A) be a Q-antipodal cometric association scheme with rela-
tions ordered naturally. Then the intersection numbers satisfy

pk
i j = 0

unless either i + j + k is even or i jk is odd.

A Q-antipodal cometric association scheme with Q-antipodal classes X1, . . . , Xw is
dismantlable if, for any proper subset {Xi1

, . . . , Xiw′ } of its Q-antipodal classes the
set of induced graphs (Gi )Y×Y where 0 ≤ i ≤ d and Y = Xi1

∪ · · · ∪ Xiw′ is again
an association scheme. For w′ = 1, it is a standard result (originally due to Rao,
Ray-Chaudhuri and Singhi—see [2, Section 2.4]) that we find a subscheme on each
Xi and these all have the same parameters. (Here, we call this the local scheme.)

Theorem 4.7. Every Q-antipodal scheme is dismantlable. The subscheme induced
on any non-trivial collection of w′ Q-antipodal classes is cometric for w′ ≥ 1 and
Q-antipodal with d classes for w′ > 1.

Proof: Since any Q-antipodal class Xi has dual distribution ([2, p. 333]) aQ =
[r, 0, . . . , 0, r (w − 1)] it has strength t = d − 1 as a Delsarte design. From Corol-
lary 4.5, Xi has degree s = � d

2
	, so the result follows immediately in the case w′ = 1

using Delsarte’s Theorem [9, Theorem 5.25] which now implies that the local scheme
is cometric.

Now suppose, without loss, that Y = X1 ∪ · · · ∪ Xw′ for some 1 < w′ < w. We
apply the technique of Delsarte (cf. [2, p. 61–62]) to show that the submatrices Ē j

of Ej obtained by restricting to rows and columns indexed by vertices in Y span a
Bose-Mesner algebra.

Clearly the vector space Ā := {
M̄ : M ∈ A

}
of real symmetric matrices is closed

under entrywise multiplication and contains the identity and all-ones matrices. So, by
the classic theorem of Bose and Mesner, it remains to prove that Ā is closed under
matrix multiplication.

The dual distribution of Y has entries (aQ)0 = rw′, (aQ)d = r (w − w′) and
(aQ) j = 0 for j �= 0, d. Applying Eq. (9) on page 61 of [2], we then have

‖vEk�Y E� − |Y |δk,�Ek‖2 = qd
k,�r

2w′(w − w′)

for 0 ≤ k, � ≤ d where �Y is the diagonal matrix with a one in position y, y for
y ∈ Y and zeros elsewhere and ‖ · ‖ denotes the Hermitian norm. Since Ēk Ē� is a
submatrix of Ek�Y E�, qd

k,� = 0 implies Ēk Ē� = 0 for k �= � and qd
k,k = 0 implies

Ēk Ēk = |Y |Ēk . Since (X, A) is Q-antipodal, we have qd
k,� = 0 unless k + � = d or

k = � ≥ d/2. So it remains to prove that Ēk Ē� belongs to Ā in these cases.
For k ≤ d/2, we observe that

∑
j Ē j = I and Ēk I belongs to Ā showing that

Ēk Ēd−k = Ēk

(
I −

∑
j �=d−k

Ē j

)
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also belongs to Ā. Now the same trick works for k > d/2: we have just established
that Ēk Ēd−k lies in Ā so we may conclude that

Ēk Ēk = Ēk

(
I −

∑
j �=k

Ē j

)
belongs to Ā as well. Thus Ā is a Bose-Mesner algebra.

The Krein parameters are, up to a positive scalar multiple, the same as those for
the original scheme. So Ē0, Ē1, . . . , Ēd is a Q-polynomial ordering. The partition
{X1, . . . , Xw′ } is clearly an imprimitivity system and, using Suzuki’s Theorem, we
conclude that the subscheme is Q-antipodal for w′ > 1. �

Remark 4.8. We can view this theorem as formally dual to an unpublished result of
Godsil (personal communication) which states that, in an antipodal distance-regular
graph, any subset of an antipodal class is a completely regular code. While this does
not in itself guarantee the existence of a quotient scheme, see [2, Remark (iv), p.
385] for an interesting special case due to Hensel in which certain partitions of the
antipodal classes into completely regular codes give rise to quotient distance-regular
graphs which are also antipodal.

Example 4.9. The 24-cell in R4 is an instructive example. There are three Q-antipodal
classes of size eight and, in the polytope, the convex hull of any two of them yields a
Euclidean 4-cube.

Since there exist antipodal distance-regular graphs with index r = 2 which are not
Q-polynomial (e.g., the dodecahedron), we expect there to be Q-antipodal schemes
with w = 2 which are not metric. Indeed, consider the following examples.

Example 4.10. The coset graph of the shortened ternary Golay code, labeled (A17)
in [2, p. 365] has intersection array {20, 18, 4, 1; 1, 2, 18, 20}; this is an antipodal
distance-regular graph belonging to a translation scheme. The dual association scheme
is Q-antipodal on v = 243 vertices with w = 3 Q-antipodal classes. Removing one
of these, we obtain a Q-antipodal scheme on 162 vertices having w = 2 Q-antipodal
classes which is not metric. Note that this scheme has parameters

d = 4, v = 162, ι∗(X, A) = {20, 18, 3, 1; 1, 3, 18, 20}

formally dual to those of an unknown diameter four bipartite distance-regular graph,
but it is not realizable as a translation scheme.

Example 4.11. The same idea applied to graphs labeled (A16) and (A18) on page 365
of [2] yield new Q-antipodal schemes with parameters

d = 5, v = 486, ι∗(X, A) =
{

22, 20,
27

2
, 2, 1; 1, 2,

27

2
, 20, 22

}
, w = 2

d = 6, v = 1536, ι∗(X, A) = {21, 20, 16, 8, 2, 1; 1, 2, 4, 16, 20, 21}, w = 3.

On the same page of [2], the dual of this last scheme is ruled out.
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We briefly mention some more special cases of Theorem 4.7. A Q-polynomial
distance-regular graph is Q-antipodal if and only if it is bipartite. The Q-antipodal
classes are precisely the w = 2 bipartite color classes. The induced configuration on
either one of these classes has long been known to be a cometric association scheme
(see [2, Prop. 4.2.2] and preceding discussion). So the theorem is trivial in the metric
case. It clearly also holds (by definition) for any linked system of symmetric designs
and therefore also for the new family of 4-class schemes introduced in Section 3.1. For
an arbitrary Q-antipodal 3-class scheme, we can take w′ = 3 to obtain a new proof of
the following result, which was proved by Haemers in the case (v, k, λ) = (16, 6, 2):

Corollary 4.12 (van Dam [8, Theorem 5.8]). Every Q-antipodal 3-class cometric
association scheme arises from a linked system of symmetric designs.

Question. Is there an analogous characterization of 4-class cometric schemes which
are both Q-bipartite and Q-antipodal?

The octahedron is a Q-antipodal scheme with r = 2 and w = 3. In this case, m = 3
while m = 2 for any induced subscheme on w′ = 2 Q-antipodal classes. In spite of
this, for Q-antipodal schemes with three or more classes, these two multiplicities
coincide.

Theorem 4.13. For a Q-antipodal d-class association scheme with d ≥ 3 and w

Q-antipodal classes of size r , the first multiplicity m does not depend on w but only
on the parameters of the local scheme.

Proof: Let Ē j denote the submatrix of Ej with rows and columns restricted to one
Q-antipodal class Xi . Let r j = rankĒ j . Using results of Delsarte (see the proofs of
Theorem 5.25 and Corollary 5.26 in [9]), we know that Ē j is a positive scalar multiple
of the j th primitive idempotent in the Q-polynomial ordering for the local scheme.
It is also well-known that the local schemes all have the same parameters, so r j is
independent of Xi .

If j < d/2, then Ej + Ed− j is a block-diagonal matrix the blocks of which all have
the same rank r j . Hence rank(Ej + Ed− j ) = wr j . On the other hand,

rank(Ej + Ed− j ) = m j + md− j = m j + mdm j = wm j .

So r j = m j for all j < d/2, and rankĒ1 = m as desired. �

Many examples of Q-antipodal schemes are known with w < m; the natural ques-
tion arises as to whether these can be extended to Q-antipodal cometric schemes with
larger w. We now see, at least when d is odd, that the number of fibers in the larger
scheme is bounded above by the first multiplicity in the given scheme. So, for example,
if we look at any bipartite Q-polynomial distance-regular graph, we can ask if it can
be extended to a larger Q-antipodal scheme with w > 2. (E.g., as we have seen, this is
possible for the n-cube for n = 2, 4 and degenerately for n = 3.) For d odd, an upper
bound on w is the multiplicity of the first eigenvalue in the Q-polynomial ordering
for the bipartite graph.
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Having said this, we expect schemes with w = m to be extremely rare and to
have very nice structure. By analogy, each antipodal (n − 1)-fold cover of the com-
plete graph Kn gives rise to a Moore graph of valency n and diameter two [12]
and any antipodal k-fold cover of a complete bipartite graph Kk,k yields an affine
plane. We know of no other antipodal distance-regular graphs with r = k. Thus it
is natural to expect stronger bounds on w unless the parameters are particularly
nice.

Indeed, bounds much better than that given in Theorem 4.4 are known in the case
of linked systems of symmetric designs (i.e., d = 3). For example, we have the trivial
bound w ≤ 2 when n is not a square. Moreover, since m2 = (w − 1)m in this case,
we obtain

1 + m2 = 1 + (w − 1)m ≤ rank(E1 ◦ E1) ≤ 1

2
m(m + 1)

giving w ≤ m+2
2

. Mathon [14] and Noda [16] give stronger bounds for the number of
linked symmetric (v, k, λ) designs, but only in the case when the quantity (σ − τ )(v −
2k) is positive. For example, their bounds do not apply to the case v = 36, n = 9.

In the spirit of the Bannai-Ito Conjecture mentioned in our introduction, we expect
limd→∞ w = 2.
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