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Abstract We give a detailed analysis of the proportion of elements in the symmetric
group on n points whose order divides m, for n sufficiently large and m ≥ n with
m = O(n).
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1 Introduction

The study of orders of elements in finite symmetric groups goes back at least to the
work of Landau [7, p. 222] who proved that the maximum order of an element of the
symmetric group Sn on n points is e(1+o(1))(n logn)1/2

. Erdős and Turán took a prob-
abilistic approach in their seminal work in the area, proving in [4, 5] that, for a uni-
formly distributed random element g ∈ Sn, the random variable log |g| is normally
distributed with mean (1/2) log2 n and standard deviation 1√

3
log3/2(n). Thus most

permutations in Sn have order considerably larger than O(n). Nevertheless, permu-
tations of order O(n), that is, of order at most cn for some constant c, have received
some attention in the literature. Let P(n,m) denote the proportion of permutations
g ∈ Sn which satisfy gm = 1, that is to say, |g| divides m. In 1952 Chowla, Herstein
and Scott [3] found a generating function and some recurrence relations for P(n,m)

for m fixed, and asked for its asymptotic behaviour for large n. Several years later,
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Moser and Wyman [10, 11] derived an asymptotic for P(n,m), for a fixed prime
number m, expressing it as a contour integral. Then in 1986, Wilf [17] obtained ex-
plicitly the limiting value of P(n,m) for an arbitrary fixed value of m as n → ∞, see
also the paper [15] of Volynets. Other authors have considered equations gm = h, for
a fixed integer m and h ∈ Sn, see [2, 6, 8, 9].

However in many applications, for example in [1], the parameters n and m are
linearly related, so that m is unbounded as n increases. For the special case where
m = n, Warlimont [16] showed in 1978 that most elements g ∈ Sn satisfying gn = 1
are n-cycles, namely he proved that P(n,n), for n sufficiently large, satisfies

1

n
+ 2c

n2
≤ P(n,n) ≤ 1

n
+ 2c

n2
+ O

(
1

n3−o(1)

)

where c = 1 if n is even and c = 0 if n is odd. Note that the proportion of n-cycles in
Sn is 1/n and, if n is even, the proportion of elements that are a product of two cycles
of length n/2 is 2/n2. Warlimont’s result proves in particular that most permutations
satisfying gn = 1 are n-cycles. More precisely it implies that the conditional prob-
ability that a random element g ∈ Sn is an n-cycle, given that gn = 1, lies between
1 − 2cn−1 − O(n−2+o(1)) and 1 − 2cn−1 + O(n−2).

The main results of this paper, Theorems 1.1 and 1.2, generalise Warlimont’s re-
sult, giving a detailed analysis of P(n,m) for large n, where m = O(n) and m ≥ n.
For this range of values of n and m, we have rn ≤ m < (r + 1)n for some positive
integer r , and we analyse P(n,m) for m in this range, for a fixed value of r and
n → ∞. It turns out that the kinds of elements that make the largest contribution to
P(n,m) depend heavily on the arithmetic nature of m, for example, on whether m

is divisible by n or by r + 1. We separate out several cases in the statement of our
results. Theorem 1.1 deals with two cases for which we give asymptotic expressions
for P(n,m). The first of these reduces in the case m = n to Warlimont’s theorem [16]
(modulo a small discrepancy in the error term). For other values of m lying strictly
between rn and (r +1)n we obtain in Theorem 1.2 only an upper bound for P(n,m),
since the exact value depends on both the arithmetic nature and the size of m (see
also Remark 1.3).

Theorem 1.1 Let n and r be positive integers. Then for a fixed value of r and suffi-
ciently large n, the following hold.

(a) P(n, rn) = 1

n
+ c(r)

n2
+ O

(
1

n2.5−o(1)

)
where c(r) = ∑

(1 + i+j
2r

) and the sum

is over all pairs (i, j) such that 1 ≤ i, j ≤ r2, ij = r2, and both r + i, r + j

divide rn. In particular c(1) = 0 if n is odd, and 2 if n is even.
(b) If r = t ! − 1 and m = t !(n − t) = (r + 1)n − t · t !, then

P(n,m) = 1

n
+ t + c′(r)

n2
+ O

(
1

n2.5−o(1)

)

where c′(r) = ∑
(1 + i+j−2

2(r+1)
) and the sum is over all pairs (i, j) such that 1 <

i, j ≤ (r + 1)2, (i − 1)(j − 1) = (r + 1)2, and both r + i, r + j divide m.
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Theorem 1.2 Let n, m, r be positive integers such that rn < m < (r + 1)n, and δ

a real number such that 0 < δ ≤ 1/4. Then for a fixed value of r and sufficiently
large n,

P(n,m) ≤ α.(r + 1)

m
+ k(r)

n2
+ O

(
1

n2.5−2δ

)

where k(r) = 4(r+3)4

r2 and

α =
{

1 if r + 1 divides m and n − m
r+1 < m

2(r+1)(r+2)−1
0 otherwise.

Remark 1.3 (a) In Theorem 1.1(a), the leading term 1/n is the proportion of n-cycles,
while the proportion of permutations containing an (n − t)-cycle is 1

n−t
= 1

n
+ t

n2 +
O( 1

n3 ), which contributes to the first two terms in Theorem 1.1(b). The terms c(r)

n2

and c′(r)
n2 correspond to permutations in Sn that have two long cycles, and these

have lengths m
r+i

and m
r+j

, for some (i, j) satisfying the conditions in Theorem 1.1
(a) or (b) respectively, (where m = rn in part (a)).

(b) In Theorem 1.2, if r + 1 divides m and n − m/(r + 1) < m
2(r+1)(r+2)−1 , then

the term (r +1)/m comes from elements containing a cycle of length m/(r +1). The
term k(r)

n2 corresponds to permutations with exactly two ‘large’ cycles. More details
are given in Remark 3.4.

Our interest in P(n,m) arose from algorithmic applications concerning finite sym-
metric groups. For example, n-cycles in Sn satisfy the equation gn = 1, while ele-
ments whose cycle structure consists of a 2-cycle and a single additional cycle of odd
length n − t , where t = 2 or 3, satisfy the equation g2(n−t) = 1. For an element g of
the latter type we can construct a transposition by forming the power gn−t . In many
cases the group Sn is not given as a permutation group in its natural representation,
and, while it is possible to test whether an element g satisfies one of these equations,
it is often impossible to determine its cycle structure with certainty. It is therefore
important to have lower bounds on the conditional probability that a random element
g has a desired cycle structure, given that it satisfies an appropriate equation. Using
Theorem 1.1, we obtained the following estimates of various conditional probabili-
ties.

Corollary 1.4 Let r , n be positive integers and let g be a uniformly distributed ran-
dom element of Sn. Then for a fixed value of r and sufficiently large n, the following
hold, where c(r) and c′(r) are as in Theorem 1.1.

(a) The conditional probability P that g is an n-cycle, given that |g| divides rn,
satisfies

1 − c(r)

n
− O

(
1

n1.5−o(1)

)
≤ P ≤ 1 − c(r)

n
+ O

(
1

n2

)
.
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(b) If r = t ! − 1, then the conditional probability P that g contains an (n − t)-cycle,
given that |g| divides t !(n − t), satisfies

1 − c′(r)
n

− O

(
1

n1.5−o(1)

)
≤ P ≤ 1 − c′(r)

n
+ O

(
1

n2

)
.

We note that Theorem 1.1 improves the upper bound of (1 + o(1))/n obtained
in [1, Theorem 3.7], while Corollary 1.4 improves the corresponding lower bound
of 1 − o(1) of [1, Theorem 1.3(a)]. These results have been developed and refined
further in [13] to derive explicit ‘non-asymptotic’ bounds that hold for all n and can
be applied directly to improve the recognition algorithms for Sn and An in [1].

Commentary on our approach Warlimont’s proof in [16] of an upper bound for
P(n,n) and the proof of [1, Theorem 3.7] by Beals and Seress of an upper bound
for P(n,m) for certain values of m, rely on dividing the elements of Sn into disjoint
unions of smaller sets. Warlimont divides the elements according to how many ‘large’
cycles a permutation contains. Fix a real number s such that 1/2 < s < 1. We say that
a cycle of a permutation in Sn is s-small if its length is strictly less than ns , and is
s-large otherwise. Beals and Seress divide the elements according to the number of
cycles in which three specified points lie. Both strategies are sufficient to prove War-
limont’s result or the slightly more general results of [1, Theorem 3.7]. However, nei-
ther is sufficient to prove the general results in this paper. In particular, Warlimont’s
approach breaks down when trying to estimate the proportion of elements with no
or only one large cycle, which is perhaps why no progress has been made since his
paper [16] towards answering Chowla, Herstein and Scott’s original question about
the asymptotic behaviour of P(n,m) for large n. One of the key ideas that allowed us
to generalise Warlimont’s work is the insight that the number of permutations which
contain no s-large cycles can be estimated by considering their behaviour on three
specified points. Another important strategy is our careful analysis of elements con-
taining only one large cycle by separating out divisors of m which are very close to n.

We regard Theorem 1.5 below as the main outcome of the first stage of our analy-
sis. It is used in the proof of Theorem 1.1 and is applied in further work of the authors
in [12]. The statement of Theorem 1.5 involves the number d(m) of positive divisors
of m, and the fact that d(m) = mo(1), see Notation 2.1(c). It estimates the proportion
P0(n,m) of elements of Sn of order dividing m and having no s-large cycles.

Theorem 1.5 Let n, m be positive integers such that m ≥ n, and let s be a positive
real number such that 1/2 < s < 1. Then, with P0(n,m) as defined above, there is
a constant c such that

P0(n,m) <
cd(m)m2s

n3
= O

(
m2s+o(1)

n3

)
.

Theorem 1.5 is proved in Section 2 and the other results are proved in Section 3.
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2 Proof of Theorem 1.5

In this section we introduce some notation that will be used throughout the paper, and
we prove Theorem 1.5. Note that the order |g| of a permutation g ∈ Sn divides m if
and only if the length of each cycle of g divides m. Thus P(n,m) is the proportion of
elements in Sn all of whose cycle lengths divide m. As indicated in the introduction,
we estimate P(n,m) by partitioning this proportion in various ways. Sometimes the
partition is according to the number of s-large cycle lengths, and at other times it is
defined in terms of the cycles containing certain points. We specify these partitions,
and give some other notation, below.

Notation 2.1 The numbers n, m are positive integers, and the symmetric group Sn

acts naturally on the set � = {1,2, . . . , n}.
(a) s is a real number such that 1/2 < s < 1. A divisor d of m is said to be s-large

or s-small if d ≥ ms or d < ms , respectively; D� and Ds denote the sets of all
s-large and s-small divisors d of m, respectively, such that d ≤ n.

(b) For g ∈ Sn with order dividing m, a g-cycle of length d is called s-large or
s-small according as d is an s-large or s-small divisor of m.

(c) d(m) denotes the number of positive divisors of m and δ and cδ are positive real
numbers such that δ < s and d(m) ≤ cδm

δ for all m ∈ N.
(d) The following functions of n and m denote the proportions of elements g ∈ Sn of

order dividing m and satisfying the additional properties given in the last column
of the table below.

P0(n,m) all g-cycles are s-small
P

(1)
0 (n,m) all g-cycles are s-small and

1,2,3 lie in the same g-cycle,
P

(2)
0 (n,m) all g-cycles are s-small and

1,2,3 lie in exactly two g-cycles
P

(3)
0 (n,m) all g-cycles are s-small and

1,2,3 lie in three different g-cycles
P1(n,m) g contains exactly one s-large cycle
P2(n,m) g contains exactly two s-large cycles
P3(n,m) g contains exactly three s-large cycles
P≥4(n,m) g contains at least four s-large cycles

With respect to part (c) we note, see [14, pp. 395–396], that for each δ > 0 there
exists a constant cδ > 0 such that d(m) ≤ cδm

δ for all m ∈ N. This means that the
parameter δ can be any positive real number and in particular that d(m) = mo(1).

Note that

P0(n,m) = P
(1)
0 (n,m) + P

(2)
0 (n,m) + P

(3)
0 (n,m) (1)

and

P(n,m) = P0(n,m) + P1(n,m) + P2(n,m) + P3(n,m) + P≥4(n,m). (2)

We begin by deriving recursive expressions for the P
(i)
0 (n,m).
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Lemma 2.2 Using Notation 2.1, the following hold, where we take P0(0,m) = 1.

(a) P
(1)
0 (n,m) = (n − 3)!

n!
∑

d∈Ds, d≥3

(d − 1)(d − 2)P0(n − d,m),

(b) P
(2)
0 (n,m) = 3(n − 3)!

n!
∑

d1,d2∈Ds

2≤d2, d1+d2≤n

(d2 − 1)P0(n − d1 − d2,m),

(c) P
(3)
0 (n,m) = (n − 3)!

n!
∑

d1,d2,d3∈Ds

d1+d2+d3≤n

P0(n − d1 − d2 − d3,m).

Proof We first compute P
(1)
0 (n,m), the proportion of those permutations g ∈ Sn of

order dividing m with all cycles s-small, for which the points 1, 2, 3 are contained in
one g-cycle, C say, of length d with d ∈ Ds and d ≥ 3. We can choose the remainder
of the support set of C in

(
n−3
d−3

)
ways and then the cycle C in (d − 1)! ways. The

rest of the permutation g can be chosen in P0(n − d,m)(n − d)! ways. Thus, for
a given d , the number of such elements is (n − 3)!(d − 1)(d − 2)P0(n − d,m). We
obtain the proportion P

(1)
0 (n,m) by summing over all d ∈ Ds with d ≥ 3, and then

dividing by n!, so part (a) is proved.
Next we determine the proportion P

(2)
0 (n,m) of those permutations g ∈ Sn of

order dividing m with all cycles s-small, for which one of the points 1, 2, 3 is con-
tained in a g-cycle C1, and the other two of these points are contained in a different
g-cycle C2. Let d1 and d2 denote the lengths of the cycles C1 and C2, respectively, so
d1, d2 ∈ Ds and d2 ≥ 2. Firstly we choose the support set of C1 in

(
n−3
d1−1

)
ways and

the cycle C1 in (d1 − 1)! ways. Secondly we choose the support set of C2 in
(
n−d1−2
d2−2

)
ways and the cycle C2 in (d2 − 1)! ways. Finally, the rest of the permutation g is
chosen in P0(n − d1 − d2,m)(n − d1 − d2)! ways. Thus, for a given pair d1, d2, the
number of these elements is (n−3)!(d2 −1)P0(n−d1 −d2,m). Since there are three
choices for C1 ∩ {1,2,3}, we have

P
(2)
0 (n,m) = 3(n − 3)!

n!
∑

d1,d2∈Ds

2≤d2, d1+d2≤n

(d2 − 1)P0(n − d1 − d2,m).

Finally we consider the proportion P
(3)
0 (n,m) of those permutations g ∈ Sn of order

dividing m with all cycles s-small, for which each one of the points 1, 2, 3 is contained
in a separate g-cycle, say Ci contains i and Ci has length di ∈ Ds . We can choose,
in order, the support set of C1 in

(
n−3
d1−1

)
ways and the cycle C1 in (d1 − 1)! ways, the

support set of C2 in
(
n−d1−2
d2−1

)
ways and the cycle C2 in (d2 − 1)! ways, the support

set of C3 in
(
n−d1−d2−1

d3−1

)
ways and the cycle C3 in (d3 − 1)! ways, and the rest of the

permutation in P0(n − d1 − d2 − d3,m)(n − d1 − d2 − d3)! ways. The expression for
P

(3)
0 (n,m) in part (c) now follows. �

Next we derive expressions for the Pi(n,m) and P≥4(n,m).
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Lemma 2.3 Using Notation 2.1, and writing P0(0,m) = 1,

(a) P0(n,m) = 1

n

∑
d∈Ds

P0(n − d,m),

(b) P1(n,m) =
∑
d∈D�

1

d
P0(n − d,m),

(c) P2(n,m) = 1

2

∑
d1,d2∈D�

1

d1d2
P0(n − d1 − d2,m), where the sum is over all or-

dered pairs (d1, d2) with d1 + d2 ≤ n.

(d) P3(n,m) = 1

6

∑
d1,d2,d3∈D�

1

d1d2d3
P0(n − d1 − d2 − d3,m), where the sum is over

all ordered triples (d1, d2, d3) with d1 + d2 + d3 ≤ n.

(e) P≥4(n,m) ≤ 1

24

∑
d1,d2,d3,d4∈D�

1

d1d2d3d4
P(n − d1 − d2 − d3 − d4,m), where the

sum is over all ordered 4-tuples (d1, d2, d3, d4) with d1 + d2 + d3 + d4 ≤ n.

Proof For each permutation in Sn of order dividing m and all cycles s-small, the
point 1 lies in a cycle of length d , for some d ∈ Ds . For this value of d there are(
n−1
d−1

)
(d − 1)! choices of d-cycles containing 1, and P0(n− d,m)(n− d)! choices for

the rest of the permutation. Summing over all d ∈ Ds yields part (a).
The proportion of permutations in Sn of order dividing m and having exactly one

s-large cycle of length d is
(
n
d

)
(d − 1)!P0(n − d,m)(n − d)!/n!. Summing over all

d ∈ D� yields part (b).
In order to find the proportion of elements in Sn of order dividing m and having

exactly two s-large cycles we count triples (C1,C2, g), where C1 and C2 are cycles of
lengths d1 and d2 respectively, d1, d2 ∈ D�, g ∈ Sn has order dividing m, g contains
C1 and C2 in its disjoint cycle representation, and all other g-cycles are s-small. For
a given d1, d2, we have

(
n
d1

)
(d1 − 1)! choices for C1, then

(
n−d1
d2

)
(d2 − 1)! choices

for C2, and then the rest of the element g containing C1 and C2 can be chosen in
P0(n − d1 − d2,m)(n − d1 − d2)! ways. Thus the ordered pair (d1, d2) contributes

n!
d1d2

P0(n − d1 − d2,m)(n − d1 − d2)! triples, and each element g with the properties
required for part (c) contributes exactly two of these triples. Hence, summing over
ordered pairs d1, d2 ∈ D� yields (c).

Similar counts are used for parts (d) and (e). For P3(n,m), P≥4(n,m) we count
4-tuples (C1,C2,C3, g) and 5-tuples (C1,C2,C3,C4, g) respectively, such that, for
each i, Ci is a cycle of length di for some di ∈ D�, g ∈ Sn has order dividing m, and
g contains all the cycles Ci in its disjoint cycle representation. The reason we have an
inequality for P≥4(n,m) is that in this case each g occurring has at least four s-large
cycles and hence occurs in at least 24 of the 5-tuples, but possibly more. �

We complete this section by giving a proof of Theorem 1.5. The ideas for its proof
were developed from arguments in Warlimont’s paper [16].
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Lemma 2.4 Let m ≥ n ≥ 3, and let s, δ be as in Notation 2.1. Then

P0(n,m) <
(1 + 3cδ + c2

δ )d(m)m2s

n(n − 1)(n − 2)
<

c′d(m)m2s

n3
= O

(
m2s+δ

n3

)

where, if n ≥ 6, we may take

c′ =
{

2(1 + 3cδ + c2
δ ) for any m ≥ n

10 if m ≥ c
1/(s−δ)
δ .

In particular Theorem 1.5 is true. Moreover, if in addition n ≥ ms + cna for some

positive constants a, c with a ≤ 1, then P0(n,m) = O

(
m2s+2δ

n1+3a

)
.

Proof First assume only that m ≥ n ≥ 3. Let Ds , and P
(i)
0 (n,m), for i = 1,2,3, be

as in Notation 2.1. By (1), P0(n,m) is the sum of the P
(i)
0 (n,m). We first estimate

P
(1)
0 (n,m). By Lemma 2.2(a), and using the fact that d < ms for all d ∈ Ds ,

P
(1)
0 (n,m) ≤ (n − 3)!

n!
∑
d∈Ds
d≥3

(d − 1)(d − 2) <
d(m)m2s

n(n − 1)(n − 2)
.

Similarly, by Lemma 2.2(b),

P
(2)
0 (n,m) <

3(n − 3)!
n!

∑
d1,d2∈Ds

(d2 − 1) ≤ 3d(m)2ms

n(n − 1)(n − 2)

and by Lemma 2.2(c),

P
(3)
0 (n,m) <

(n − 3)!
n!

∑
d1,d2,d3∈Ds

1 ≤ d(m)3

n(n − 1)(n − 2)
.

Thus, using the fact noted in Notation 2.1 that d(m) ≤ cδm
δ ,

P0(n,m) ≤ d(m)(m2s + 3d(m)ms + d(m)2)

n(n − 1)(n − 2)

≤ d(m)m2s(1 + 3cδm
δ−s + (cδm

δ−s)2)

n(n − 1)(n − 2)
<

c′d(m)m2s

n3
.

To estimate c′ note first that, for n ≥ 6, n(n − 1)(n − 2) > n3/2. Thus if n ≥ 6 then,
for any m ≥ n we may take c′ = 2(1 + 3cδ + c2

δ ). If m ≥ c
1/(s−δ)
δ , then cδm

δ−s ≤ 1
and so we may take c′ = 10. Theorem 1.5 now follows since d(m) = mo(1). Now
assume that n ≥ ms + cna for some positive constants c and a. By Lemma 2.3,

P0(n,m) = 1

n

∑
d∈Ds

P0(n − d,m).
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For each d ∈ Ds we have m > n − d ≥ n − ms ≥ cna , and hence applying Theo-
rem 1.5 (which we have just proved),

P0(n − d,m) <
c′d(m)m2s

(n − d)3
≤ c′d(m)m2s

c3n3a
.

Thus, P0(n,m) ≤ d(m)
n

(
c′d(m)m2s

c3n3a

) ≤ c′c2
δm

2s+2δ

c3n1+3a . �

3 Proof of Theorem 1.1

First we determine the ‘very large’ divisors of m that are at most n.

Lemma 3.1 Let r , m and n be positive integers such that rn ≤ m < (r + 1)n.

(a) If d is a divisor of m such that d ≤ n, then one of the following holds:
(i) d = n = m

r
,

(ii) d = m
r+1 so that r

r+1n ≤ d < n,

(iii) d ≤ m
r+2 < r+1

r+2n.

(b) Moreover, if d1, d2 are divisors of m for which

d1 ≤ d2 ≤ m

r + 1
and n ≥ d1 + d2 >

m(2r + 3)

2(r + 1)(r + 2)
,

then d1 = m
c1

, d2 = m
c2

, where c1, c2 divide m, and satisfy c2 ≤ 2r + 3, and either

r + 2 ≤ c2 ≤ c1 < 2(r + 1)(r + 2), or c2 = r + 1, c1 ≥ r(r + 1).

Proof As d is a divisor of m there is a positive integer t such that d = m
t

. Now
m
t

≤ n ≤ m
r

and therefore r ≤ t . If r = t then r divides m and d = m
r

≤ n, and since
also rn ≤ m it follows that d = m

r
= n and (i) holds. If t ≥ r + 2 then (iii) holds.

Finally, if t = r + 1, then d = m
r+1 and r

r+1n ≤ m
r+1 < n and hence (ii) holds.

Now we prove the last assertion. Suppose that d1, d2 are divisors of m which
are at most m

r+1 , and such that d1 ≤ d2 and n ≥ d1 + d2 >
m(2r+3)

2(r+1)(r+2)
. Then, as d1,

d2 divide m, there are integers c1, c2 such that d1 = m/c1 and d2 = m/c2. Since
di ≤ m/(r + 1) we have ci ≥ r + 1 for i = 1,2, and since d1 ≤ d2 we have c1 ≥ c2.
Now m/r ≥ n ≥ d1 + d2 >

m(2r+3)
2(r+1)(r+2)

, and hence 1/r ≥ 1/c1 + 1/c2 > 2r+3
2(r+1)(r+2)

.
If c2 ≥ 2(r + 2) then, as c1 ≥ c2, we would have 1/c1 + 1/c2 ≤ 1/(r + 2), which is
not the case. Thus r + 1 ≤ c2 ≤ 2r + 3. If c2 ≥ r + 2, then

1

c1
>

2r + 3

2(r + 1)(r + 2)
− 1

c2
≥ 2r + 3

2(r + 1)(r + 2)
− 1

r + 2
= 1

2(r + 1)(r + 2)

and hence c1 < 2(r + 1)(r + 2) as in the statement. On the other hand, if c2 = r + 1,
then

1

c1
≤ n

m
− 1

c2
≤ 1

r
− 1

r + 1
= 1

r(r + 1)

so c1 ≥ r(r + 1). �
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The next result gives our first estimate of an upper bound for the proportion
P(n,m) of elements in Sn of order dividing m. Recall our observation that the pa-
rameter δ in Notation 2.1(c) can be any positive real number; in Proposition 3.3 we
will restrict to δ ≤ s − 1

2 . Note that the requirement rn ≤ m < (r + 1)n implies that
n

r+1 ≤ n − m
r+1 ≤ m

r(r+1)
; the first case of Definition 3.2(b) below requires an upper

bound of approximately half this quantity.

Definition 3.2 Let r , m, n be positive integers such that rn ≤ m < (r + 1)n. Let
1/2 < s ≤ 3/4 and 0 < δ ≤ s − 1

2 .

(a) Let α =
{

1 if m = rn,
0 otherwise.

(b) Let α′ =
{

1 if (r + 1) divides m and n − m
r+1 < m

2(r+1)(r+2)−1 ,
0 otherwise.

(c) Let t (r,m,n) denote the number of divisors d of m with m
2r+3 ≤ d ≤ m

r+1 such
that there exists a divisor d0 of m satisfying
(i) d + d0 ≤ n and
(ii) m

2(r+1)(r+2)
< d0 ≤ d .

(d) Let k(r,m,n) = t (r,m,n)
2(r+1)(r+2)(2r+3)

r2 .

Proposition 3.3 Let r , m, n, s and δ be as in Definition 3.2. Then, for a fixed value
of r and sufficiently large n,

P(n,m) ≤ α

n
+ α′.(r + 1)

m
+ k(r,m,n)

n2
+ O

(
1

n1+2s−2δ

)
,

where α, α′, t (r,m,n) and k(r,m,n) are as in Definition 3.2. Moreover, t (r,m,n) ≤
r + 3 and k(r,m,n) ≤ 4(r+3)4

r2 .

Remark 3.4 (a) The term 1
n

, which occurs if and only if m = rn, corresponds to the
n-cycles in Sn, and is the exact proportion of these elements. We refine the estimate
for P(n, rn) in Theorem 3.6 below.

(b) The term r+1
m

, which occurs only if r +1 divides m and n− m
r+1 < m

2(r+1)(r+2)
,

corresponds to permutations with order dividing m and having either one or two
s-large cycles, with one (the larger in the case of two cycles) of length m

r+1 . The

proportion of elements of Sn containing a cycle of length m
r+1 is r+1

m
, and if there

exists a positive integer d ≤ n− m
r+1 such that d does not divide m, then some of these

elements have a d-cycle and hence do not have order dividing m. Thus r+1
m

may be
an over-estimate for the proportion of elements in Sn (where n − m

r+1 < m
2(r+1)(r+2)

)
having order dividing m, having exactly one s-large cycle of length m

r+1 , and possibly
one additional s-large cycle of length dividing m. However it is difficult to make
a more precise estimate for this term that holds for all sufficiently large m,n. In
Theorem 3.6 we treat some special cases where this term either does not arise, or can
be determined precisely.

(c) The term k(r,m,n)

n2 arises as follows from permutations that have exactly two
s-large cycles of lengths dividing m. For each of the t (r,m,n) divisors d of m
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as in Definition 3.2(c), let d0(d) be the largest of the divisors d0 satisfying Defi-
nition 3.2(c)(i),(ii). Note that d0(d) depends on d . Then k(r,m,n)/n2 is an upper
bound for the proportion of permutations of order dividing m and having two s-large
cycles of lengths d and d0(d), for some d satisfying m

2r+3 ≤ d ≤ m
r+1 . As in (b) this

term may be an over-estimate, not only for the reason given there, but also because
lower bounds for the cycle lengths d , d0(d) were used to define k(r,m,n). Indeed
in the case m = rn we are able to obtain the exact value of the coefficient of the 1

n2

summand.

Proof We divide the estimation of P(n,m) into five subcases. Recall that, by (2),
P(n,m) is the sum of P≥4(n,m) and the Pi(n,m), for i = 0,1,2,3, where these are
as defined in Notation 2.1. We will use the recursive formulae for P≥4(n,m) and the
Pi(n,m) in Lemma 2.3, together with the expressions for P0(n,m) in Theorem 1.5
and Lemma 2.4, to estimate these five quantities. Summing these estimates will give,
by (2), our estimate for P(n,m). We also use the information about divisors of m in
Lemma 3.1.

First we deal with P0(n,m). Since r is fixed, it follows that, for sufficiently large
n (and hence sufficiently large m), we have ms ≤ m

r+2 , which is less than (r+1)n
r+2 =

n− n
r+2 . Thus n > ms + n

r+2 , and applying Lemma 2.4 with a = 1, c = 1
r+2 , it follows

that

P0(n,m) = O

(
m2s+2δ

n4

)
= O

(
1

n4−2s−2δ

)
≤ O

(
1

n1+2s−2δ

)

since 4 − 2s − 2δ ≥ 1 + 2s − 2δ when s ≤ 3/4.
Next we estimate P3(n,m) and P≥4(n,m). By Lemma 2.3, the latter satis-

fies P≥4(n,m) ≤ 1
24

∑ 1
d1d2d3d4

, where the summation is over all ordered 4-tuples

of s-large divisors of m whose sum is at most n. Thus P≥4(n,m) ≤ 1
24

d(m)4

m4s =
O

( 1
n4s−4δ

)
. Also

P3(n,m) = 1

6

∑ 1

d1d2d3
P0(n − d1 − d2 − d3,m),

where the summation is over all ordered triples of s-large divisors of m whose sum
is at most n. For such a triple (d1, d2, d3), if each di ≤ m

4(r+1)
, then n − ∑

di ≥
n − 3m

4(r+1)
> n

4 , and so by Lemma 2.4, P0(n − ∑
di,m) = O

(
m2s+δ

n3

)
. Thus the con-

tribution of triples of this type to P3(n,m) is at most O
(

d(m)3m2s+δ

m3sn3

) = O
( 1

n3+s−4δ

)
.

For each of the remaining triples, the maximum di is greater than m
4(r+1)

and in partic-
ular there is a bounded number of choices for the maximum di . Thus the contribution
of the remaining triples to P3(n,m) is at most O

(
d(m)2

m1+2s

) = O
( 1

n1+2s−2δ

)
. It follows

that

P3(n,m) + P≥4(n,m) = O

(
1

nx3

)
,

where x3 = min{4s − 4δ,3 + s − 4δ,1 + 2s − 2δ} = 1 + 2s − 2δ (using the fact that
δ ≤ s − 1

2 ≤ 1
4 ).
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Now we estimate P2(n,m). By Lemma 2.3,

P2(n,m) = 1

2

∑ 1

d1d2
P0(n − d1 − d2,m),

where the summation is over all ordered pairs of s-large divisors of m whose sum is
at most n. We divide these pairs (d1, d2) into two subsets. The first subset consists
of those for which n − d1 − d2 ≥ nν , where ν = (1 + 2s + δ)/3. Note that ν < 1
since ν ≤ s + 1

6 < 1 (because δ ≤ s − 1
2 and s ≤ 3

4 ). For a pair (d1, d2) such that

n−d1 −d2 ≥ nν , by Lemma 2.4, P0(n−d1 −d2,m) = O
(

m2s+δ

n3ν

)
. Thus the total con-

tribution to P2(n,m) from pairs of this type is at most O
(

d(m)2m2s+δ

m2sn3ν

) = O
( 1

n3ν−3δ

) =
O

( 1
n1+2s−2δ

)
.

Now consider pairs (d1, d2) such that n− d1 − d2 < nν . Since each di < n ≤ m/r ,
it follows that each di ≤ m/(r + 1). Since ν < 1, for sufficiently large n (and hence
sufficiently large m) we have nν ≤ (

m
r

)ν
< m

2(r+1)(r+2)
. Thus, for each of the pairs

(d1, d2) such that n−d1 −d2 < nν , we have d1 +d2 > n−nν > m
r+1 − m

2(r+1)(r+2)
=

m(2r+3)
2(r+1)(r+2)

, and hence one of (d1, d2), (d2, d1) (or both if d1 = d2) satisfies the con-

ditions of Lemma 3.1(b). Thus, by Lemma 3.1(b), it follows that if d1 ≤ d2, then
either (d0, d) := (d1, d2) satisfies the conditions of Definition 3.2(c), or d2 = m

r+1
and d1 ≤ m

2(r+1)(r+2)
. Let P ′

2(n,m) denote the contribution to P2(n,m) from all the
pairs (d1, d2) where {d1, d2} = { m

r+1 , d0} and d0 ≤ m
2(r+1)(r+2)

.
For the other pairs, we note that there are t (r,m,n) ≤ r + 3 choices for the

larger divisor d . Consider a fixed d ≤ m
r+1 , say d = m

c
. Then each divisor d0 of m,

such that m
2(r+1)(r+2)

< d0 ≤ d and d + d0 ≤ n, is equal to m
c0

for some c0 such
that c ≤ c0 < 2(r + 1)(r + 2). Let d0(d) = m

c0
be the largest of these divisors d0.

By Lemma 3.1(b), the combined contribution to P2(n,m) from the ordered pairs
(d, d0(d)) and (d0(d), d) is (since d and d0(d) may be equal) at most

1

dd0(d)
<

2r + 3

m
· 2(r + 1)(r + 2)

m
= 2(r + 1)(r + 2)(2r + 3)

m2
.

(Note that 1
dd0(d)

≥ (r+1)2

m2 > 1
n2 .) If d0 = m

c′ is any other divisor of this type and
d0 < d0(d), then c0 + 1 ≤ c′ < 2(r + 1)(r + 2), and so n − d − d0 = (n − d −
d0(d)) + d0(d) − d0 is at least

d0(d) − d0 = m

c0
− m

c′ ≥ m

c0
− m

c0 + 1
= m

c0(c0 + 1)
>

m

4(r + 1)2(r + 2)2
.

By Lemma 2.4, the contribution to P2(n,m) from the pairs (d, d0) and (d0, d) is

O( 1
m2 · m2s+δ

m3 ) = O( 1
n5−2s−δ ). Since there are t (r,m,n) ≤ r + 3 choices for d , and

a bounded number of divisors d0 for a given d , the contribution to P2(n,m) from all
the pairs (d1, d2) such that n − d1 − d2 < nν is at most

P ′
2(n,m) + t (r,m,n)

2(r + 1)(r + 2)(2r + 3)

n2r2
+ O

(
1

n5−2s−δ

)
,



J Algebr Comb (2007) 26: 125–142 137

with P ′
2(n,m) as defined above. Thus

P2(n,m) ≤ P ′
2(n,m) + 2t (r,m,n)(r + 1)(r + 2)(2r + 3)

n2r2
+ O

(
1

nx2

)

= P ′
2(n,m) + k(r,m,n)

n2
+ O

(
1

nx2

)

with x2 = min{1 + 2s − 2δ,5 − 2s − δ} = 1 + 2s − 2δ. Note that

k(r,m,n) ≤ (r + 3)
2(r + 1)(r + 2)(2r + 3)

r2
= 4r2 + 30r + 80 + 90

r
+ 36

r2

which is less than 4(r+3)4

r2 .
Finally we estimate P1(n,m) + P ′

2(n,m). By Lemma 2.3, P1(n,m) =∑ 1
d
P0(n − d,m), where the summation is over all s-large divisors d of m such

that d ≤ n, and we take P0(0,m) = 1. Note that d ≤ n ≤ m
r

, so each divisor d = m
c

for some c ≥ r . In the case where m = rn, that is, the case where n divides m (and
only in this case), we have a contribution to P1(n,m) of 1

n
due to n-cycles. If d < n

then d = m
c

with c ≥ r + 1.
Next we consider all divisors d of m such that d ≤ m

r+2 . For each of these divi-

sors, n − d ≥ n − m
r+2 ≥ n − (r+1)n

r+2 = n
r+2 . Thus by Lemma 2.4, P0(n − d,m) =

O
(

m2s+δ

n3

) = O
( 1

n3−2s−δ

)
. The number of d satisfying d ≥ m

2(r+1)
is bounded in

terms of r (which is fixed), and hence the contribution to P1(n,m) from all the
divisors d satisfying m

2(r+1)
≤ d ≤ m

r+2 is at most O
( 1

m
1

n3−2s−δ

) = O
( 1

n4−2s−δ

)
. On

the other hand, if ms ≤ d < m
2(r+1)

, then n − d > n − (r+1)n
2(r+1)

= n
2 . Now since r

is fixed and s < 1, for sufficiently large n, we have ms < n
4 , and so n − d >

ms + n
4 . Then, by Lemma 2.4 (applied with a = 1 and c = 1

4 ), P0(n − d,m) =
O

(
m2s+2δ

(n−d)4

) = O
( 1

n4−2s−2δ

)
, and the contribution to P1(n,m) from all s-large di-

visors d < m
2(r+1)

is at most d(m)
ms O

( 1
n4−2s−2δ

) = O
( 1

n4−s−3δ

)
. Thus, noting that

min{4 − 2s − δ,4 − s − 3δ} ≥ 1 + 2s − 2δ, the contribution to P1(n,m) from all
s-large divisors d of m such that d ≤ m

r+2 is O
( 1

n1+2s−2δ

)
.

By Lemma 3.1, the only divisor not yet considered is d = m
r+1 and this case of

course arises only when r + 1 divides m. Suppose then that r + 1 divides m. We must
estimate the contribution to P1(n,m)+P ′

2(n,m) from elements containing a cycle of
length d = m

r+1 . The contribution to P1(n,m) + P ′
2(n,m) due to the divisor d = m

r+1

is r+1
m

P0(n − m
r+1 ,m) + r+1

m

∑
d0

1
d0

P0(n − m
r+1 − d0,m), where the summation is

over all s-large d0 ≤ m
2(r+1)(r+2)

. Suppose first that n − m
r+1 ≥ m

2(r+1)(r+2)−1 , so that
for each d0, n − m

r+1 − d0 > m

2(r+1)2(r+2)2 . Then, by Lemma 2.4, the contribution to

P1(n,m) + P ′
2(n,m) is at most

O

(
1

m
.
m2s+δ

m3

)
+ d(m)O

(
1

m1+s
.
m2s+δ

m3

)
= O

(
1

n4−2s−δ

)

and this is O
( 1

n1+2s−2δ

)
since 4 − 2s − δ ≥ 1 + 2s − 2δ. Finally suppose that n −

m
r+1 < m

2(r+1)(r+2)
. In this case we estimate the contribution to P1(n,m) + P ′

2(n,m)
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from d = m
r+1 by the proportion 1

d
= r+1

m
of elements of Sn containing a d-cycle

(recognising that this is usually an over-estimate). Putting these estimates together
we have

P1(n,m) + P ′
2(n,m) ≤ α

n
+ α′.(r + 1)

m
+ O

(
1

n1+2s−2δ

)
,

where α = 1 if m = rn and is 0 otherwise, and α′ = 1 if r+1 divides m and n− m
r+1 <

m
2(r+1)(r+2)−1 , and is 0 otherwise. The result now follows using (2) and the estimates
we have obtained for each of the summands. �

It is sometimes useful to separate out the results of Proposition 3.3 according to the
values of m,n. We do this in the theorem below, and also obtain in parts (a) and (b)
exact asymptotic expressions for P(n, rn) and P(n, t !(n− t)) where r , t are bounded
and n is sufficiently large. For this it is convenient to define two sets of integer pairs.

Definition 3.5 For positive integers r and m, define the following sets of integer
pairs:

T (r) = {(i, j)|1 ≤ i, j ≤ r2, ij = r2, and both r + i, r + j divide m}
and T ′(r) = {(i, j)|1 < i, j ≤ (r + 1)2, (i − 1)(j − 1) = (r + 1)2, and both r + i,
r + j divide m}.

Theorem 3.6 Let n,m, r be positive integers such that rn ≤ m < (r +1)n. Let 1/2 <

s ≤ 3/4 and 0 < δ ≤ s−1/2. Then, the following hold for r fixed and sufficiently large
n (where the sets T (r) and T ′(r) are as in Definition 3.5).

(a) If m = rn, then P(n,m) = 1

n
+ c(r)

n2
+ O

(
1

n1+2s−2δ

)
, where

c(r) =
∑

(i,j)∈T (r)

(
1 + i + j

2r

)
. In particular c(1) = 0 if n is odd, and 2 if n is

even.

(b) If r = t ! − 1 and m = t !(n − t) = (r + 1)n − t · t !, then

P(n,m) = 1

n − t
+ c′(r)

(n − t)2
+ O

(
1

n1+2s−2δ

)
, where

c′(r) =
∑

(i,j)∈T ′(r)

(
1 + i + j − 2

2(r + 1)

)
.

(c) If rn < m, then P(n,m) ≤ α′.(r + 1)

m
+ k(r,m,n)

n2
+ O

(
1

n1+2s−2δ

)
, where α′

and k(r,m,n) are as in Definition 3.2.

Proof Part (c) follows immediately from Proposition 3.3. Next we prove part (a).
Suppose that m = rn. If r + 1 divides m then we have n − m

r+1 = m
r(r+1)

>

m
2(r+1)(r+2)−1 . It follows from Proposition 3.3 that P(n,m) ≤ 1

n
+ k(r,m,n)

n2 +
O

( 1
n1+2s−2δ

)
. To complete the proof we refine the argument given in the proof of
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Proposition 3.3 for P2(n,m) which gave rise to the term k(r,m,n)

n2 . The elements con-
tributing to this term were those with exactly two s-large cycles, where one of these
cycles had length d = m

r+i
for some i such that 1 ≤ i ≤ r +3, and the other had length

d0(d) = m
r+j

for some j such that r + i ≤ r + j < 2(r + 1)(r + 2) and d +d0(d) ≤ n.

Moreover, for a given value of d , the value of d0(d) was the largest integer with these
properties. Since we now assume that m = rn we have

d + d0(d) = m(2r + i + j)

(r + i)(r + j)
≤ n = m

r

that is, r(2r + i + j) ≤ (r + i)(r + j), which is equivalent to r2 ≤ ij . If d + d0(d) is
strictly less than n, that is to say, if r2 < ij , and thus ij − r2 ≥ 1, then

n − d − d0(d) = n − rn(2r + i + j)

(r + i)(r + j)
= n(ij − r2)

(r + i)(r + j)
≥ n

(r + i)(r + j)
,

and since i ≤ r+3 and r+j < 2(r+1)(r+2) we have n
(r+i)(r+j)

≥ n
2(r+1)(r+2)(2r+3)

.

It now follows from Lemma 2.4 that the contribution to P2(n,m) from all or-
dered pairs (d, d0(d)) and (d0(d), d) with d, d0(d) as above and n > d + d0(d) is

O
( 1

n2
m2s+δ

n3

) = O
( 1

n5−2s−δ

) ≤ O
( 1

n1+2s−2δ

)
. Thus when m = rn, the only contributions

to the O
( 1

n2

)
term come from pairs

(
m

r+i
, m

r+j

)
such that r2 = ij and 1 ≤ i, j ≤ r2.

(Note that we no longer assume i ≤ j .) These are precisely the pairs (i, j) ∈ T (r).
For such a pair

(
m

r+i
, m

r+j

)
, the contribution to P2(n,m) is

1

2
· r + i

m
· r + j

m
= r2 + r(i + j) + ij

2n2r2
= 1

n2
(1 + i + j

2r
)

(since ij = r2). Thus P(n,m) ≤ 1
n

+ c(r)

n2 + O
( 1

n1+2s−2δ

)
. Moreover, for each

(i, j) ∈ T (r), each permutation in Sn having exactly two cycles of lengths m
r+i

and
m

r+j
is a permutation of order dividing m. Thus P(n, rn) ≥ 1

n
+ c(r)

n2 , and the main
assertion of part (a) is proved. Finally we note that, if r = 1 then the only possible
pair in T (1) is (1,1), and for this pair to lie in the set we require that r + 1 = 2
divides m = n. Thus c(1) is 0 if n is odd, and is 2 if n is even.

Finally we prove part (b) where we have r = t ! − 1 and m = t !(n − t). Then rn =
(t ! − 1)n = m + t · t ! − n which is less than m if n > t · t !. Also (r + 1)n = t !n > m.
Thus, for sufficiently large n, we have rn < m < (r + 1)n. Moreover, r + 1 divides
m and n − m

r+1 = n − (n − t) = t , which for sufficiently large n is less than n−t
3t ! <

m
2(r+1)(r+2)−1 . It now follows from part (c) that P(n, t !(n − t)) ≤ 1

n−t
+ k(r,m,n)

n2 +
O

( 1
n1+2s−2δ

)
. Our next task is to improve the coefficient of the O( 1

n2 ) term using
a similar argument to the proof of part (a). The elements contributing to this term have
exactly two s-large cycles of lengths d = m

r+i
and d0(d) = m

r+j
, with r + i, r + j ≤

(r + 1)(r + 2) and

d + d0(d) = m(2r + i + j)

(r + i)(r + j)
≤ n = m

r + 1
+ t.
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This is equivalent to (r + 1)(2r + i + j) ≤ (r + i)(r + j) + t (r+1)(r+i)(r+j)
m

, and
hence, for sufficiently large n (and hence sufficiently large m), (r + 1)(2r + i + j) ≤
(r + i)(r + j). This is equivalent to (i − 1)(j − 1) ≥ (r + 1)2. If (i − 1)(j − 1) >

(r + 1)2, then

n − d − d0(d) = (t + m

r + 1
) − m(2r + i + j)

(r + i)(r + j)

= t + m((i − 1)(j − 1) − (r + 1)2)

(r + 1)(r + i)(r + j)

>
rn

(r + 1)3(r + 2)2
.

As for part (a), the contribution to P2(n,m) from all pairs ( m
r+i

, m
r+j

) with

(i − 1)(j − 1) > (r + 1)2 is O
( 1

n1+2s−2δ

)
. Thus the only contributions to the O

( 1
n2

)
term come from pairs (d, d0(d)) = ( m

r+i
, m

r+j
) such that (r + 1)2 = (i − 1)(j − 1)

and 1 ≤ i, j ≤ (r + 1)2. These are precisely the pairs (i, j) ∈ T ′(r). For each of these
pairs we have r2 + 2r = ij − i − j and the contribution to P2(n,m) is

1

2dd0(d)
= (r + i)(r + j)

2m2
= r2 + r(i + j) + ij

2(r + 1)2(n − t)2

= (r + 1)(2r + i + j)

2(r + 1)2(n − t)2
= 1

(n − t)2

(
1 + i + j − 2

2(r + 1)

)
.

Thus P(n,m) ≤ 1
n−t

+ c′(r)
(n−t)2 +O

(
1

n1+2s−2δ

)
. On the other hand, each permutation in

Sn that contains an (n− t)-cycle has order dividing t !(n− t) = m, and the proportion
of these elements is 1

n−t
. Also, for each (i, j) ∈ T ′(r), each permutation in Sn having

exactly two cycles of lengths m
r+i

and m
r+j

, and inducing any permutation on the
remaining n− m

r+i
− m

r+j
= t points, is a permutation of order dividing m = t !(n− t),

and the proportion of all such elements is c′(r)
(n−t)2 . Thus P(n,m) ≥ 1

n−t
+ c′(r)

(n−t)2 , and
the assertion of part (b) is proved. �

It is a simple matter now to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2 The first theorem follows from Theorem 3.6(a) and (b)
on setting s = 3/4 and allowing δ → 0. Note that 1

n−t
= 1

n
+ t

n2 +O
( 1

n3

)
and 1

(n−t)2 =
1
n2 + O

( 1
n3

)
. For the second theorem, again we set s = 3/4 in Theorem 3.6(c). By

Proposition 3.3 we have k(r,m,n) ≤ 4(r+3)4

r2 . If we define k(r) = 4(r+3)4

r2 the result
follows. �

Finally we derive the conditional probabilities in Corollary 1.4.

Proof of Corollary 1.4 Let r , n be positive integers with r fixed and n ‘sufficiently
large’, and let g be a uniformly distributed random element of Sn. First set m = rn.
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Let A denote the event that g is an n-cycle, and let B denote the event that g has
order dividing m, so that the probability Prob(B) is P(n,m). Then, by elementary
probability theory, we have

Prob(A | B) = Prob(A ∩ B)

Prob(B)
= Prob(A)

Prob(B)
=

1
n

P (n,m)
.

By Theorem 1.1, 1
n

+ c(r)

n2 < P(n,m) = 1
n

+ c(r)

n2 + O
( 1

n2.5−o(1)

)
, and hence

1 − c(r)

n
− O

(
1

n1.5−o(1)

)
≤ Prob(A | B) ≤ 1 − c(r)

n
+ O

(
1

n2

)
.

Now suppose that r = t ! − 1 for some integer t ≥ 2, and let A denote the event
that g contains an (n − t)-cycle, so that Prob(A) = 1

n−t
. Then, with B as above for

the integer m := t !(n − t), we have

Prob(A | B) = Prob(A ∩ B)

Prob(B)
= Prob(A)

Prob(B)
=

1
n−t

P (n,m)
.

By Theorem 3.6(b), 1
n−t

+ c′(r)
(n−t)2 < P(n,m) = 1

n−t
+ c′(r)

(n−t)2 +O
( 1

n2.5−o(1)

)
, and hence

1 − c′(r)
n

− O

(
1

n1.5−o(1)

)
≤ Prob(A | B) ≤ 1 − c′(r)

n
+ O

(
1

n2

)
. �
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