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Abstract We study quantum automorphism groups of vertex-transitive graphs having
less than 11 vertices. With one possible exception, these can be obtained from cyclic
groups Zn , symmetric groups Sn and quantum symmetric groups Qn , by using various
product operations. The exceptional case is that of the Petersen graph, and we present
some questions about it.
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Introduction

A remarkable fact, discovered by Wang in [18], is that the symmetric group Sn has a
quantum analogue Qn . For n ≥ 4 this quantum group is bigger than Sn , and fits into
Woronowicz’s formalism in [19].

The quantum groupQn is best understood via its representation theory: with suitable
definitions, it appears as the Tannakian realisation of the Temperley-Lieb algebra
([3]). This elucidates a number of questions regarding the Cayley graph, fusion rules,
amenability, etc. More generally, this puts Qn into the framework of free quantum
groups of Van Daele and Wang ([15]), where a whole machinery, inspired by work of
Gromov, Jones, Voiculescu, Wassermann, Weingarten is now available.
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The study of Qn , and of free quantum groups in general, focuses now on more
technical aspects: matrix models ([5, 6]), ergodic actions ([9, 13]), harmonic analysis
([14, 16]).

The other thing to do is to study subgroups of Qn . This was started independently
by the authors in [2, 3] and [7, 8], and continued in the joint paper [4]. The notion that
emerges from this work is that of quantum automorphism group of a vertex-transitive
graph.

In this paper we describe quantum automorphism groups of vertex-transitive graphs
having n ≤ 11 vertices, with one graph omitted. This enhances previous classification
work from [2–4], where we have n ≤ 9, also with one graph omitted.

Needless to say, in this classification project the value of n is there only to show
how far our techniques go.

The four main features of the present work are:

(1) Product operations. We have general decomposition results for Cartesian and
lexicographic products. These are motivated by the graphs Pr(C5), Pr(K5) and
C10(4), which appear at n = 10.

(2) The discrete torus. Here n = 9. We prove that its quantum group is equal to its
classical group, namely S3 � Z2. This answers a question left open in [3, 4], and
provides the first example of a graph having a usual wreath product as quantum
symmetry group.

(3) Circulant graphs. It is known from [2] that the n-cycle with n �= 4 has quantum
symmetry group Dn . This is extended in [3] to a bigger class of circulant graphs.
Here we further enlarge the list of such graphs, with an ad-hoc proof for C10(2),
which appears at n = 10.

(4) The Petersen graph. This appears at n = 10, and the corresponding quantum group
seems to be different from the known ones. Our other techniques do not apply
here: it cannot be written as a graph product, and is not a circulant graph. Neither
could we carry a direct analysis as in the torus case because of the complexity
of some computations. However we prove that the corresponding quantum group
is not isomorphic to Q5. In other words, we might have here a “new” quantum
group. However, we don’t have a proof, and the question is left open.

As a conclusion, we have two questions:

(I) First is to decide whether the Petersen graph produces or not a new quantum
group. If it does, this would probably change a bit the landscape: in the big table
at the end, based on work since Wang’s paper [18], all quantum groups can be
obtained from Zn, Sn,Qn .

(II) A good question is to try to characterize graphs having no quantum symmetry.
This paper provides many new examples, and we have found some more by
working on the subject, but so far we were unable to find a conceptual result here.

The paper is organized as follows. Sections 1, 2 are quite detailed preliminary
sections, the whole paper, or at least the ideas involved in it, being intended to be
accessible to non-specialists. Sections 3, 4, 5, 6 deal with different kinds of graphs,
once again in a quite self-contained way. In Section 7 we present the classification
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result, in the form of a big, independent table. In the last section we present a technical
result about the quantum group of the Petersen graph.

1 Quantum permutation groups

In this paper we use the following simplified version of Woronowicz’s compact quan-
tum groups [19], which is the only one we need when dealing with quantum symmetries
of classical finite spaces.

Definition 1.1. A Hopf C∗-algebra is a C∗-algebra A with unit, endowed with mor-
phisms

�: A → A ⊗ A
ε: A → C
S: A → Aop

satisfying the usual axioms for a comultiplication, counit and antipode, along with the
extra condition S2 = id .

The more traditional terminology for such an object is that of a “universal Hopf
C∗-algebra of Kac type”. The universality condition refers to the fact that the counit
and antipode are assumed to be defined on the whole C∗-algebra A (in full generality,
these are only defined on a dense Hopf ∗-subalgebra) and the Kac condition refers to
the condition S2 = id.

We warn the reader that the Hopf C∗-algebras we consider here are not Hopf algebras
in the usual sense (the tensor product in the definition is a C∗-tensor product). However,
they possess canonically defined dense Hopf ∗-subalgebras, from which they can be
reconstructed using the universal C∗-completion procedure. See the survey paper [12].

The first example is with a compact group G. We can consider the algebra of
continuous functions A = C(G), with operations

�( f ) = (g, h) → f (gh)
ε( f ) = f (1)
S( f ) = g → f (g−1)

where we use the canonical identification A ⊗ A = C(G × G).
The second example is with a discrete group �. We have here the algebra A =

C∗(�), obtained from the usual group algebra C[�] by the universal C∗-completion
procedure, with operations

�(g) = g ⊗ g
ε(g) = 1
S(g) = g−1

where we use the canonical embedding � ⊂ A.
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In general, associated to an arbitrary Hopf C∗-algebra A are a compact quantum
group G and a discrete quantum group�, according to the following heuristic formulae:

A = C(G) = C∗(�)

G = �̂

� = Ĝ

These formulae are made into precise statements in the first section of Woronowicz’
seminal paper [19]. They are pieces of Pontryagin duality for locally compact quantum
groups, whose latest version is given in [11].

The compact quantum group morphisms are defined in the usual manner: if A =
C(G) and B = C(H ) are Hopf C∗-algebras, a quantum group morphism H → G
arises from a Hopf C∗-algebra morphism C(G) → C(H ), and we say that H is a
quantum subgroup of G if the corresponding morphism C(G) → C(H ) is surjective.
We refer to [17] for more details on the compact quantum group language.

A square matrix u = (ui j ) ∈ Mn(A) is said to be multiplicative if

�(ui j ) =
∑

uik ⊗ ukj and ε(ui j ) = δi j

Multiplicative matrices correspond to corepresentations of the Hopf C∗-algebra A,
that is, to representations of the compact quantum group G with A = C(G). Such a
multiplicative matrix u will also be interpreted as a linear map Cn −→ Cn ⊗ A.

In this paper we are essentially interested in the following special type of multi-
plicative matrices.

Definition 1.2. A magic unitary matrix is a square matrix, all of whose entries are
projections and all of whose rows and columns are partitions of unity.

Here we say that a finite family of projections is a partition of unity if these projec-
tions are pairwise orthogonal and if their sum equals 1.

As a first example, consider a finite group G acting on a finite set X . The charac-
teristic functions

pi j = χ{σ ∈ G | σ ( j) = i}

form a magic unitary matrix, because the corresponding sets form partitions of G,
when i or j varies. We have the following formulae for C(G):

�(pi j ) =
∑

pik ⊗ pkj

ε(pi j ) = δi j

S(pi j ) = p ji

and therefore p = (pi j ) is a multiplicative matrix.
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In the particular case of the symmetric group Sn acting on {1, . . . , n}, the Stone-
Weierstrass theorem shows that entries of p generate C(Sn). This suggests the follow-
ing construction, due to Wang ([18]).

Definition 1.3. The C∗-algebra As(n) is the universal C∗-algebra generated by n2

elements ui j , with relations making u into a magic unitary matrix, and with morphisms

�(ui j ) =
∑

uik ⊗ ukj

ε(ui j ) = δi j

S(ui j ) = u ji

as comultiplication, counit and antipode, making it into a Hopf C∗-algebra.

This Hopf C∗-algebra was discovered by Wang [18]. The corresponding compact
quantum group is denotedQn and we call it the quantum permutation group or quantum
symmetric group. This is motivated by the fact that the algebra As(n) is the biggest
Hopf C∗-algebra coacting on the algebra Cn , which is to say that the quantum group
Qn is the biggest one acting on {1, . . . , n}. The coaction u: Cn −→ Cn ⊗ As(n) is
defined on Dirac masses by

u(δi ) =
∑

δ j ⊗ u ji

and verification of axioms of coactions, as well as proof of universality, is by direct
computation. See [18].

We have a surjective morphism of Hopf C∗-algebras

As(n) → C(Sn)

mapping ui j to pi j for any i, j . This morphism expresses the fact that the compact
quantum group corresponding to As(n) contains Sn .

This map is an isomorphism for n = 2, 3, as known from [3, 18], and explained in
Section 3 below. At n = 4 we have Wang’s matrix

u =

⎛⎜⎜⎝
p 1 − p 0 0

1 − p p 0 0
0 0 q 1 − q
0 0 1 − q q

⎞⎟⎟⎠
with p, q free projections, which shows that there exists an epimorphism As(4) →
C∗(Z2 ∗ Z2) and hence As(4) is not commutative and is infinite dimensional. The same
remains true for any n ≥ 4.

2 Quantum automorphism groups of graphs

Consider a finite graph X . In this paper this means that we have a finite set of vertices,
and certain pairs of distinct vertices are connected by unoriented edges.
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It is convenient to assume that the vertex set is {1, . . . , n}.

Definition 2.1. The adjacency matrix of X is the matrix

d ∈ Mn(0, 1)

given by di j = 1 if i, j are connected by an edge, and di j = 0 if not.

The adjacency matrix is symmetric, and has 0 on the diagonal. In fact, graphs
having vertex set {1, . . . , n} are in one-to-one correspondence with n × n symmetric
0–1 matrices having 0 on the diagonal.

The quantum automorphism group of X is obtained as an appropriate subgroup
of the quantum permutation group of {1, . . . , n}. At level of Hopf C∗-algebras, this
means taking an appropriate quotient of As(n).

Definition 2.2. Associated to a finite graph X is the C∗-algebra

A(X ) = As(n)/〈du = ud〉

where n is the number of vertices, and d is the adjacency matrix.

Since a permutation of the set X is a graph automorphism if and only if the cor-
responding permutation matrix commutes with the adjacency matrix, it is reasonable
to say that the quantum group corresponding to A(X ) is the quantum automorphism
group of X . In this way we have a commutative diagram of Hopf C∗-algebras

As(n) → A(X )
↓ ↓
C(Sn) → C(G)

where G = G(X ) is the usual automorphism group of X , with the kernel of the right
arrow being the commutator ideal of A(X ). Moreover, for a graph without edges we
get indeed As(n), and we have the formula

A(X ) = A(Xc)

where Xc is the complement of X . See [3, 4] for details.
The defining equations ud = du of A(X ) means that d , considered as a linear

map Cn → Cn , is a morphism in the category of corepresentations of A(X ), i.e. a
morphism in the category of representations of the quantum group dual to A(X ).
General properties of the representation category of a compact quantum group (see
e.g. [19]) now ensure that the spectral projections occurring in the spectral de-
composition of d are corepresentations morphisms, and hence the corresponding
eigensubspaces are subcorepresentations. This key fact will be used freely in the
paper.

The following notion will play a central role in this paper.
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Definition 2.3. We say that X has no quantum symmetry if

A(X ) = C(G)

where G = G(X ) is the usual automorphism group of X .

This is the same as saying that A(X ) is commutative, because by the above consid-
erations, C(G) is its biggest commutative quotient.

We are particularly interested in the case of graphs X having the property
that G acts transitively on the set of vertices. These graphs were called homo-
geneous in previous work [3, 4], but we use here the following more traditional
terminology.

Definition 2.4. The graph X is called vertex-transitive if for any two vertices i, j there
is σ ∈ G(X ) such that σ (i) = j .

Each section of the paper ends with a small table, gathering information about
vertex-transitive graphs having ≤11 vertices. These small tables are to be put together
in a single big table, at the end.

What we know so far is that we have

A(Kn) = As(n)

where Kn is the complete graph having n vertices. Moreover, we already mentioned
that for n = 2, 3 the arrow

As(n) → C(Sn)

is an isomorphism, and for n ≥ 4 it is not.
This information is summarized in the following table.

Order Graph Classical group Quantum group

2 K2 Z2 Z2

3 K3 S3 S3

n ≥ 4 Kn Sn Qn

Here in the right column Qn with n ≥ 4 is the compact quantum group associated
to As(n).

3 Circulant graphs

A graph with n vertices is called circulant if its automorphism group contains a cycle
of length n (and hence in particular a copy of the cyclic group Zn). We are particularly
interested in connected circulant graphs, which are the cycles with chords.
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Definition 3.1. The graph Cn(k1, . . . , kr ), where

1 < k1 < . . . < kr ≤ [n/2]

are integers, is obtained by drawing the n-cycle Cn , then connecting all pairs of vertices
at distance ki , for any i .

As basic examples, we have the n-cycle Cn , corresponding to the value r = 0, and
the 2n-cycle with diagonals, C+

n = C2n(n).
Observe that Kn is a cycle with chords as well.
The adjacency matrix of a cycle with chords, denoted as usual d , is a circulant

matrix. We use the following basic fact.

Proposition 3.1. We have d(ξ s) = 2 f (s)ξ s , where

f (s) =
r∑

i=0

cos

(
2ki sπ

n

)
(with k0 = 1)

and ξ is the vector whose coordinates are 1, ω, . . . , ωn−1 in the canonical basis of
Cn, with ω = e

2iπ
n .

This tells us that we have the following eigenspaces for d:

V0 = C1
V1 = Cξ + Cξ n−1

V2 = Cξ 2 + Cξ n−2

. . . . . .

Vm = Cξm + Cξ n−m

where m = [n/2] and all sums are direct, except maybe for the last one, which depends
on the parity of n.

The fact that these eigenspaces correspond or not to different eigenvalues depends
of course on f .

We use the following result from [3], whose proof is briefly explained, because
several versions of it will appear throughout the paper.

Theorem 3.1. If n �= 4 and the associated function

f : {1, 2, . . . , [n/2]} → R

is injective, then Cn(k1, . . . , kr ) has no quantum symmetry.

Proof: Since Cξ ⊕ Cξ n−1 is invariant, the coaction can be written as

v(ξ ) = ξ ⊗ a + ξ n−1 ⊗ b
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for some a, b. By taking powers and using n �= 4 we get by induction

v(ξ s) = ξ s ⊗ as + ξ n−s ⊗ bs

for any s, along with the relations ab = −ba and ab2 = ba2 = 0.
Now from v(ξ ∗) = v(ξ )∗ we get b∗ = bn−1, so (ab)(ab)∗ = abna∗ = 0. Thus ab =

ba = 0, so A(X ) is commutative and we are done. �

Corollary 3.1. The following graphs have no quantum symmetry:

1. The cycles Cn with n �= 4.
2. The cycles with diagonals C+

8 , C+
10.

3. The cycles with chords C9(3), C11(2), C11(3).

Proof: (1) follows from the fact that f is decreasing, hence injective. As for (2) and
(3), the corresponding 5 functions are given by

C+
8 : −0.29, 1, −1.7, 0

C+
10 : −0.19, 1.3, −1.3, 0.19, −2

C9(3) : 0.26, −0.32, 0.5, −1.43
C11(2) : 1.25, −0.23, −1.10, −0.79, −0.11
C11(3) : 0.69, −0.54, 0.27, 0.18. − 1.61

with 0.01 error, so they are injective, and Theorem 3.1 applies. �

The graphs in Corollary 3.1 have usual symmetry group Dn , where n is the number
of vertices. We don’t know if G = Dn with n �= 4 implies that the graph has no
quantum symmetry. However, we are able to prove this for n ≤ 11: graphs satisfying
G = Dn are those in Corollary 3.1, plus the cycle with chords C10(2), discussed below.

Theorem 3.2. The graph C10(2) has no quantum symmetry.

Proof: The function f is given by

f (s) = cos
( sπ

5

)
+ cos

(
2sπ

5

)
and we have f (1) = − f (3) � 1.11, f (2) = f (4) = −0.5 and f (5) = 0. Thus the list
of eigenspaces is:

V0 = C1
V1 = Cξ ⊕ Cξ 9

V2 = Cξ 2 ⊕ Cξ 4 ⊕ Cξ 6 ⊕ Cξ 8

V3 = Cξ 3 ⊕ Cξ 7

V5 = Cξ 5
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Since coactions preserve eigenspaces, we can write

v(ξ ) = ξ ⊗ a + ξ 9 ⊗ b

for some a, b. Taking the square of this relation gives

v(ξ 2) = ξ 2 ⊗ a2 + ξ 8 ⊗ b2 + 1 ⊗ (ab + ba)

and once again since v preserves eigenspaces, we get ab = −ba. Taking now the cube
of the above relation gives

v(ξ 3) = ξ 3 ⊗ a3 + ξ 7 ⊗ b3 + ξ ⊗ ba2 + ξ 9 ⊗ ab2

and once again since v preserves eigenspaces, we get:

ab2 = 0 = ba2

With the relations ab = −ba and ab2 = ba2 = 0 in hand, we get by induction the
formula

v(ξ s) = ξ s ⊗ as + ξ n−s ⊗ bs

and we can conclude by using adjoints, as in proof of Theorem 3.1. �

For graphs having n ≤ 11 vertices, results in this section are summarized in the
following table.

Order Graph Classical group Quantum group

n ≥ 5 Cn Dn Dn

8 C8, C+
8 D8 D8

9 C9, C9(3) D9 D9

10 C10, C10(2), C+
10 D10 D10

11 C11, C11(2), C11(3) D11 D11

As already mentioned, we don’t know if these computations are particular cases of
some general result.

4 Products of graphs

For a finite graph X , it is convenient to use the notation

X = (X, ∼)

where the X on the right is the set of vertices, and where we write i ∼ j when two
vertices i, j are connected by an edge.

Springer



J Algebr Comb (2007) 26:83–105 93

Definition 4.1. Let X, Y be two finite graphs.

1. The direct product X × Y has vertex set X × Y , and edges

(i, α) ∼ ( j, β) ⇐⇒ i ∼ j, α ∼ β.

2. The Cartesian product X�Y has vertex set X × Y , and edges

(i, α) ∼ ( j, β) ⇐⇒ i = j, α ∼ β or i ∼ j, α = β.

The direct product is the usual one in a categorical sense. As for the Cartesian
product, this is a natural one from a geometric viewpoint: for instance a product by a
segment gives a prism.

Definition 4.2. The prism having basis X is Pr(X ) = K2�X .

We have embeddings of usual symmetry groups

G(X ) × G(Y ) ⊂ G(X × Y )

G(X ) × G(Y ) ⊂ G(X�Y )

which have the following quantum analogues.

Proposition 4.1. We have surjective morphisms of Hopf C∗-algebras

A(X × Y ) −→ A(X ) ⊗ A(Y )

A(X�Y ) −→ A(X ) ⊗ A(Y ).

Proof: We use the canonical identification

C(X × Y ) = C(X ) ⊗ C(Y )

given by δ(i,α) = δi ⊗ δα . The adjacency matrices are given by

dX×Y = dX ⊗ dY

dX�Y = dX ⊗ 1 + 1 ⊗ dY

so if u commutes with dX and v commutes with dY , the matrix

u ⊗ v = (ui jvαβ)(iα, jβ)

is a magic unitary that commutes with both dX×Y and dX�Y . This gives morphisms as
in the statement, and surjectivity follows by summing over i and β. �
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Theorem 4.1. Let X and Y be finite connected regular graphs. If their spectra {λ}
and {μ} do not contain 0 and satisfy

{λi/λ j } ∩ {μk/μl} = {1}

then A(X × Y ) = A(X ) ⊗ A(Y ). Also, if their spectra satisfy

{λi − λ j } ∩ {μk − μl} = {0}

then A(X�Y ) = A(X ) ⊗ A(Y ).

Proof: We follow [3], where the first statement is proved. Let λ1 be the valence of
X . Since X is regular we have λ1 ∈ Sp(X ), with 1 as eigenvector, and since X is
connected λ1 has multiplicity one. Hence if P1 is the orthogonal projection onto C1,
the spectral decomposition of dX is of the following form:

dX = λ1 P1 +
∑
i �=1

λi Pi

We have a similar formula for dY :

dY = μ1 Q1 +
∑
j �=1

μ j Q j

This gives the following formulae for products:

dX×Y =
∑

i j

(λiμ j )Pi ⊗ Q j

dX�Y =
∑
i, j

(λi + μ j )Pi ⊗ Q j

Here projections form partitions of unity, and the scalar are distinct, so these are
spectral decomposition formulae. We can conclude as in [3]. The universal coactions
will commute with any of the spectral projections, and hence with both P1 ⊗ 1 and
1 ⊗ Q1. In both cases the universal coaction v is the tensor product of its restrictions
to the images of P1 ⊗ 1 (i.e. 1 ⊗ C(Y )) and of 1 ⊗ Q1 (i.e. C(X ) ⊗ 1). �

Corollary 4.1.

1. We have A(Km × Kn) = A(Km) ⊗ A(Kn) for m �= n.
2. We have A(Pr(Kn)) = C(Z2) ⊗ As(n), for any n.
3. We have A(Pr(Cn)) = C(D2n), for n odd.
4. We have A(Pr(C4)) = C(Z2) ⊗ As(4).

Proof: The spectra of graphs involved are Sp(K2) = {−1, 1} and

Sp(Kn) = {−1, n − 1}
Sp(Cn) = {2 cos(2kπ/n) | k = 1, . . . , n}
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so the first three assertions follow from Theorem 4.1. We have

Pr(C4) = K2 × K4

(this graph is the cube) and the fourth assertion follows from the first one. �

We get the following table, the product operation × on quantum groups being the
one dual to the tensor product of Hopf C∗-algebras.

Order Graph Classical group Quantum group

8 Pr(C4) S4 × Z2 Q4 × Z2

10 Pr(C5) D10 D10

10 Pr(K5) S5 × Z2 Q5 × Z2

5 The torus graph

Theorem 4.1 doesn’t apply to the case X = Y , and the problem of computing the
algebras A(X × X ) and A(X�X ) appears. At level of classical symmetry groups,
there is no simple formula describing G(X × X ) and G(X�X ). Thus we have reasons
to believe that the above problem doesn’t have a simple solution either.

A simpler question is to characterize graphs X such that X × X or X�X has no
quantum symmetry. We don’t have a general result here, but we are able however to
deal with the case X = K3.

Definition 5.1. The graph Torus is the graph K3 × K3 = K3�K3.

The result below answers a question asked in [3, 4]. It also provides the first example
of graph having a classical wreath product as quantum symmetry group.

Theorem 5.1. The graph Torus has no quantum symmetry.

Proof: The spectrum of K3 is known to be

Sp(K3) = {−1, 2}

with corresponding eigenspaces given by

F2 = C1
F−1 = Cξ ⊕ Cξ 2

where ξ is the vector formed by third roots of unity.
Tensoring the adjacency matrix of K3 with itself gives

Sp(Torus) = {−2, 1, 4}
Springer
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with corresponding eigenspaces given by

E4 = Cξ00

E−2 = Cξ10 ⊕ Cξ01 ⊕ Cξ20 ⊕ Cξ02

E1 = Cξ11 ⊕ Cξ12 ⊕ Cξ21 ⊕ Cξ22

where we use the notation ξi j = ξ i ⊗ ξ j .
The universal coaction v preserves eigenspaces, so we have

v(ξ10) = ξ10 ⊗ a + ξ01 ⊗ b + ξ20 ⊗ c + ξ02 ⊗ d
v(ξ01) = ξ10 ⊗ α + ξ01 ⊗ β + ξ20 ⊗ γ + ξ02 ⊗ δ

for some a, b, c, d, α, β, γ, δ ∈ A. Taking the square of v(ξ10) gives

v(ξ20) = ξ20 ⊗ a2 + ξ02 ⊗ b2 + ξ10 ⊗ c2 + ξ01 ⊗ d2

along with relations coming from eigenspace preservation:

ab = −ba, ad = −da, bc = −cb, cd = −dc

ac + ca = −(bd + db)

Now since a, b anticommute, their squares have to commute. On the other hand,
by applying v to the equality ξ ∗

10 = ξ20, we get the following formulae for adjoints:

a∗ = a2, b∗ = b2, c∗ = c2, d∗ = d2

The commutation relation a2b2 = b2a2 reads now a∗b∗ = b∗a∗, and by taking
adjoints we get ba = ab. Together with ab = −ba this gives:

ab = ba = 0

The same method applies to ad, bc, cd, and we end up with:

ab = ba = 0, ad = da = 0, bc = cb = 0, cd = dc = 0

We apply now v to the equality 1 = ξ10ξ20. We get that 1 is the sum of 16 terms,
all of them of the form ξi j ⊗ P , where P are products between a, b, c, d and their
squares. Due to the above formulae 8 terms vanish, and the 8 remaining ones produce
the formula

1 = a3 + b3 + c3 + d3

along with relations coming from eigenspace preservation:

ac2 = ca2 = bd2 = db2 = 0
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Now from ac2 = 0 we get a2c2 = 0, and by taking adjoints this gives ca = 0. The
same method applies to ac, bd, db, and we end up with:

ac = ca = 0, bd = db = 0

In the same way one shows that α, β, γ, δ pairwise commute:

αβ = βα = . . . = γ δ = δγ = 0

It remains to show that a, b, c, d commute with α, β, γ, δ. For, we apply v to the
following equality:

ξ10ξ01 = ξ01ξ10

We get an equality between two sums having 16 terms each, and by using again
eigenspace preservation we get the following formulae relating the corresponding 32
products aα, αa etc.:

aα = 0 = αa, bβ = 0 = βb, cγ = 0 = γ c, dδ = 0 = δd,

aγ + cα + bδ + dβ = 0 = αc + γ a + βd + δb,

aβ + bα = αb + βa, bγ + cβ = βc + γ b,

cδ + dγ = γ d + δc, aδ + dα = αd + δa

Multiplying the first equality in the second row on the left by a and on the right by
γ gives a2γ 2 = 0, and by taking adjoints we get γ a = 0. The same method applies
to the other 7 products involved in the second row, so all 8 products involved in the
second row vanish:

aγ = cα = bδ = dβ = αc = γ a = βd = δb = 0

We use now the first equality in the third row. Multiplying it on the left by a gives
a2β = aβa, and multiplying it on the right by a gives aβa = βa2. Thus we get the
commutation relation a2β = βa2.

On the other hand from a3 + b3 + c3 + d3 = 1 we get a4 = a, so:

aβ = a4β = a2a2β = βa2a2 = βa

One shows in a similar manner that the missing commutation formulae aδ = δa
etc. hold as well. Thus A is commutative. �

Order Graph Classical group Quantum group

9 Torus S3 � Z2 S3 � Z2
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6 Lexicographic products

Let X and Y be two finite graphs. Their lexicographic product is obtained by putting
a copy of X at each vertex of Y :

Definition 6.1. The lexicographic product X ◦ Y has vertex set X × Y , and edges are
given by

(i, α) ∼ ( j, β) ⇐⇒ α ∼ β or α = β, i ∼ j.

The terminology comes from a certain similarity with the ordering of usual words,
which is transparent when iterating ◦.

The simplest example is with X ◦ Xn , where Xn is the graph having n vertices and
no edges: the graph X ◦ Xn is the graph consisting of n disjoint copies of X .

Definition 6.2. nX is the disjoint union of n copies of X .

When X is connected, we have an isomorphism

G(nX ) = G(X ) � Sn

where � is a wreath product. In other words, we have:

G(X ◦ Xn) = G(X ) � G(Xn)

In the general case, we have the following embedding of usual symmetry groups:

G(X ) � G(Y ) ⊂ G(X ◦ Y )

The quantum analogues of these results use the notion of free wreath product from
[4, 8]. In the following definition, a pair (A, u) is what we call a quantum permutation
group in [4]: A is a Hopf C∗-algebra and u is a multiplicative magic unitary matrix.

Definition 6.3. The free wreath product of (A, u) and (B, v) is

A ∗w B = (A∗n ∗ B)/ < [u(a)
i j , vab] = 0 >

where n is the size of v, with magic unitary matrix wia, jb = u(a)
i j vab.

In other words, A ∗w B is the universal C∗-algebra generated by n copies of A and
a copy of B, with the a-th copy of A commuting with the a-th row of v, for any a. The
Hopf C∗-algebra structure on A ∗w B is the unique one making w into a multiplicative
matrix. With this definition, we have the following result ([4]).

Theorem 6.1. If X is connected we have A(nX ) = A(X ) ∗w As(n).
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Note that the embedding A(X )∗n ↪→ A(X ) ∗w As(n) ensures that A(nX ) is an
infinite-dimensional algebra whenever n ≥ 2 and G(X ) is non trivial.

In the general case, we have the following quantum analogue of the embedding
result for G(X ) � G(Y ).

Proposition 6.1. We have a surjective morphism of Hopf C∗-algebras

A(X ◦ Y ) −→ A(X ) ∗w A(Y ).

Proof: We use the canonical identification

C(X × Y ) = C(X ) ⊗ C(Y )

given by δ(i,α) = δi ⊗ δα . The adjacency matrix of X ◦ Y is

dX◦Y = dX ⊗ 1 + I ⊗ dY

where I is the square matrix filled with 1’s.
Let u, v be the magic unitary matrices of A(X ), A(Y ). The magic unitary matrix of

A(X ) ∗w A(Y ) is given by

wia, jb = u(a)
i j vab

and from the fact that u commutes with dX (and I) and v commutes with dY , we get that
w commutes with dX◦Y . This gives a morphism as in the statement, and surjectivity
follows by summing over i and b. �

Theorem 6.2. Let X, Y be regular graphs, with X connected. If their spectra {λi } and
{μ j } satisfy the condition

{λ1 − λi | i �= 1} ∩ {−nμ j } = ∅

where n and λ1 are the order and valence of X, then A(X ◦ Y ) = A(X ) ∗w A(Y ).

Proof: We denote by Pi , Q j the spectral projections corresponding to λi , μ j . Since
X is connected we have P1 = 1

n I, and we get:

dX◦Y = dX ⊗ 1 + I ⊗ dY

=
(∑

i

λi Pi

)
⊗

(∑
j

Q j

)
+ (n P1) ⊗

(∑
i

μ j Q j

)
=

∑
j

(λ1 + nμ j )(P1 ⊗ Q j ) +
∑
i �=1

λi (Pi ⊗ 1)

In this formula projections form a partition of unity and scalars are distinct, so this
is the spectral decomposition of dX◦Y .

Springer



100 J Algebr Comb (2007) 26:83–105

Let W be the universal coaction on X ◦ Y . Then W must commute with all spectral
projections, and in particular:

[W, P1 ⊗ Q j ] = 0

Summing over j gives [W, P1 ⊗ 1] = 0, so 1 ⊗ C(Y ) is invariant under the coac-
tion. The corresponding restriction of W gives a coaction of A(X ◦ Y ) on 1 ⊗ C(Y ),
say

W (1 ⊗ ea) =
∑

b

1 ⊗ eb ⊗ yba

where y is a magic unitary. On the other hand we can write

W (ei ⊗ 1) =
∑

jb

e j ⊗ eb ⊗ xb
ji

and by multiplying by the previous relation we get:

W (ei ⊗ ea) =
∑

jb

e j ⊗ eb ⊗ yba xb
ji

=
∑

jb

e j ⊗ eb ⊗ xb
ji yba

This shows that coefficients of W have the following form:

W jb,ia = yba xb
ji = xb

ji yba

Consider now the matrix xb = (xb
i j ). Since W is a morphism of algebras, each row

of xb is a partition of unity. Also using the antipode, we have

S

(∑
j

xb
ji

)
= S

(∑
ja

xb
ji yba

)

= S

(∑
ja

W jb,ia

)
=

∑
ja

Wia, jb

=
∑

ja

xa
i j yab

=
∑

a

yab

= 1

so we conclude that xb is a magic unitary.
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We check now that xa, y commute with dX , dY . We have

(dX◦Y )ia, jb = (dX )i jδab + (dY )ab

so the two products between W and dX◦Y are given by:

(W dX◦Y )ia,kc =
∑

j

Wia, jc(dX ) jk +
∑

jb

Wia, jb(dY )bc

(dX◦Y W )ia,kc =
∑

j

(dX )i j W ja,kc +
∑

jb

(dY )abW jb,kc

Now since W commutes with dX◦Y , the terms on the right are equal, and by summing
over c we get:∑

j

xa
i j (dX ) jk +

∑
cb

yab(dY )bc =
∑

j

(dX )i j x
a
jk +

∑
cb

(dY )ab ybc

The graph Y being regular, the second sums in both terms are equal to the valency
of Y , so we get [xa, dX ] = 0.

Now once again from the formula coming from commutation of W with dX◦Y , we
get [y, dY ] = 0.

Summing up, the coefficients of W are of the form

W jb,ia = xb
ji yba

where xb are magic unitaries commuting with dX , and y is a magic unitary commuting
with dY . This gives a morphism

A(X ) ∗w A(Y ) −→ A(X ◦ Y )

mapping u(b)
j i → xb

ji and vba → yba , which is inverse to the morphism in the previous
proposition. �

Corollary 6.1. We have A(C10(4)) = C(Z2) ∗w C(D5).

Proof: We have isomorphisms

C10(4) = C10(4, 5)c = K2 ◦ C5

and Theorem 6.2 applies to the product on the right. �

Together with Theorem 6.1, this corollary gives the following table, where �∗ is
defined by C(G �∗ H ) = C(G) ∗w C(H ).
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Order Graph Classical group Quantum group

4 2K2 Z2 � Z2 Z2 �∗ Z2

6 2K3 S3 � Z2 S3 �∗ Z2

6 3K2 Z2 � S3 Z2 �∗ S3

8 2K4 S4 � Z2 Q4 �∗ Z2

8 2C4 (Z2 � Z2) � Z2 (Z2 �∗ Z2) �∗ Z2

8 4K2 Z2 � S4 Z2 �∗ Q4

9 3K3 S3 � S3 S3 �∗ S3

10 2C5 D5 � Z2 D5 �∗ Z2

10 2K5 S5 � Z2 Q5 �∗ Z2

10 5K2 Z2 � S5 Z2 �∗ Q5

10 C10(4) Z2 � D5 Z2 �∗ D5

7 Classification table

We are now in position of writing down a big table. We first recall the graph notations
used in the paper.

Definition 7.1. We use the following notations.

1. Basic graphs: – the complete graph having n vertices is denoted Kn .
– the disjoint union of n copies of X is denoted nX .
– the prism having basis X is denoted Pr(X ).

2. Circulant graphs:
– the n-cycle is denoted Cn .
– the 2n-cycle with diagonals is denoted C+

2n .
– the n-cycle with chords of length k is denoted Cn(k).

3. Special graphs:
– the triangle times itself is denoted Torus.
– the Petersen graph is denoted Petersen.

As for quantum group notations, these have to be taken with care, because quantum
groups do not really exist etc. Here they are.

Definition 7.2. We use the following notations.
– Zn, Dn, Sn are the cyclic, dihedral and symmetric groups.
– Qn is the quantum permutation group.
– ×, �, �∗ are the product, wreath product and free wreath product.

The vertex-transitive graphs of order less than 11, modulo complementation, are
given by the following table.
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Order Graph Classical group Quantum group

2 K2 Z2 Z2

3 K3 S3 S3

4 2K2 Z2 � Z2 Z2 �∗ Z2

4 K4 S4 Q4

5 C5 D5 D5

5 K5 S5 Q5

6 C6 D6 D6

6 2K3 S3 � Z2 S3 �∗ Z2

6 3K2 Z2 � S3 Z2 �∗ S3

6 K6 S6 Q6

7 C7 D7 D7

7 K7 S7 Q7

8 C8, C+
8 D8 D8

8 Pr(C4) S4 × Z2 Q4 × Z2

8 2K4 S4 � Z2 Q4 �∗ Z2

8 2C4 (Z2 � Z2) � Z2 (Z2 �∗ Z2) �∗ Z2

8 4K2 Z2 � S4 Z2 �∗ Q4

8 K8 S8 Q8

9 C9, C9(3) D9 D9

9 Torus S3 � Z2 S3 � Z2

9 3K3 S3 � S3 S3 �∗ S3

9 K9 S9 Q9

10 C10, C10(2), C+
10, Pr(C5) D10 D10

10 Petersen S5 ?

10 Pr(K5) S5 × Z2 Q5 × Z2

10 C10(4) Z2 � D5 Z2 �∗ D5

10 2C5 D5 � Z2 D5 �∗ Z2

10 2K5 S5 � Z2 Q5 �∗ Z2

10 5K2 Z2 � S5 Z2 �∗ Q5

10 K10 S10 Q10

11 C11, C11(2), C11(3) D11 D11

11 K11 S11 Q11

Here the first three columns are well-known, and can be found in various books or
websites. The last one collects results in this paper.

By using the equality Dn = Zn � Z2, we reach the conclusion in the abstract: with
one possible exception, all quantum groups in the right column can be obtained from
Zn, Sn,Qn by using the operations ×, �, �, �∗ .

The exceptional situation is that of the Petersen graph, which might give a new
quantum group. We discuss it in the next section.
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8 The Petersen graph

The techniques of the previous sections do not apply to the Petersen graph, which is
not a circulant graph and cannot be written as a graph product. Also we could not
carry a direct analysis similar to the one of the torus because of the complexity of
some computations. The usual symmetry group is S5, so in view of the results in our
classification table, we have at least two natural candidates for the quantum symmetry
group of the Petersen graph: S5 and Q5.

Theorem 8.1. The quantum automorphism group of the Petersen graph has an irre-
ducible 5-dimensional representation. In particular it is not isomorphic to the quantum
symmetric group Q5.

Proof: Let G be the quantum automorphism group of the Petersen graph, denoted
here P. We have an inclusion S5 ⊂ G. It is well-known that

Sp(P) = {3, −2, 1}

and that the corresponding eigenspaces have dimensions 1, 4, 5. These eigenspaces
furnish representations of G and of S5. It is straightforward to compute the character
of the permutation representation of S5 on C(P), and then using the character table of
S5 (see e.g. [10]), we see that C(P) is the direct sum of 3 irreducible representations
of S5. These have to be the previous eigenspaces, and in particular the 5-dimensional
one is an irreducible representation of S5, and of G. On the other hand, it is known
from [1] that Q5 has no irreducible 5-dimensional representation. Thus the quantum
groups G and Q5 are not isomorphic. �

The question now is: does the Petersen graph have quantum symmetry? In other
words, is A(P) commutative? The above result seems to indicate that if A(P) is not
commutative, we probably will have a new quantum permutation group.
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