ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Cell transfer and monomial positivity

Thomas Lam1 and Pavlo Pylyavskyy2
1Harvard University Department of Mathematics Cambridge MA 02138 USA
2M.I.T. Department of Mathematics Cambridge MA 02139 USA

DOI: 10.1007/s10801-006-0054-z

Abstract

We give combinatorial proofs that certain families of differences of products of Schur functions are monomial-positive. We show in addition that such monomial-positivity is to be expected of a large class of generating functions with combinatorial definitions similar to Schur functions. These generating functions are defined on posets with labelled Hasse diagrams and include for example generating functions of Stanley's ( P,ω )-partitions.

Pages: 209–224

Keywords: keywords symmetric functions; monomial positivity; P-partitions

Full Text: PDF

References

1. F. Bergeron and P. McNamara, Some positive differences of products of Schur functions, preprint, 2004; math.CO/0412289.
2. F. Bergeron, R. Biagioli, and M. Rosas, “Inequalities between Littlewood-Richardson Coefficients,” J. Comb. Th. Ser A, to appear; math.CO/0403541.
3. N. Bergeron and F. Sottile, “Skew Schubert functions and the Pieri formula for flag manifolds, with Nantel Bergeron,” Trans. Amer. Math. Soc. 354, (2002), 651-673.
4. S. Fomin, W. Fulton, C.-K. Li, and Y.-T. Poon, “Eigenvalues, singular values, and Littlewood- Richardson coefficients,” Amer. J. Math. 127 (2005), 101-127.
5. I. Gessel and C. Krattenthaler, “Cylindric Partitions,” Trans. Amer. Math. Soc. 349 (1997), 429-479.
6. T. Lam, “Affine Stanley Symmetric Functions,” Amer. J. Math., to appear; math.CO/0501335.
7. T. Lam and P. Pylyavskyy, “P-partition products and fundamental quasi-symmetric function positivity,” preprint, 2006; math.CO/0609249.
8. T. Lam, A. Postnikov, and P. Pylyavskyy, “Schur positivity and Schur log-concavity,” Amer. J. Math., to appear; math.CO/0502446.
9. I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1995.
10. P. McNamara, “Cylindric Skew Schur Functions,” Adv. Math. 205(1) (2006), 275-312.
11. A. Okounkov, “Log-Concavity of multiplicities with Applications to Characters of U (\infty ),” Adv. Math. 127(2) (1997), 258-282.
12. A. Postnikov, “Affine approach to quantum Schubert calculus,” Duke Math. J. 128(3) (2005), 473-509.
13. R. Stanley, Enumerative Combinatorics, Vol 2, Cambridge, 1999.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition