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Abstract We study the Jacobi-Trudi-type determinant which is conjectured to be the
q-character of a certain, in many cases irreducible, finite-dimensional representation
of the quantum affine algebra of type Dn. Unlike the An and Bn cases, a simple
application of the Gessel-Viennot path method does not yield an expression of the
determinant by a positive sum over a set of tuples of paths. However, applying an ad-
ditional involution and a deformation of paths, we obtain an expression by a positive
sum over a set of tuples of paths, which is naturally translated into the one over a set
of tableaux on a skew diagram.
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1 Introduction

Let g be the simple Lie algebra over C, and let ĝ be the corresponding untwisted
affine Lie algebra. Let Uq(ĝ) be the quantum affine algebra, namely, the quantized
universal enveloping algebra of ĝ [4, 11]. In order to investigate the finite-dimensional
representations of Uq(ĝ) [3, 5], an injective ring homomorphism

χq : RepUq(ĝ) → Z[Y±1
i,a ]i=1,...,n;a∈C× , (1.1)

called the q-character of Uq(ĝ), was introduced and studied in [6, 7], where
RepUq(ĝ) is the Grothendieck ring of the category of the finite-dimensional rep-
resentations of Uq(ĝ). The q-character contains the essential data of each represen-
tation V . So far, however, the explicit description of χq(V ) is available only for a
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limited type of representations (e.g., the fundamental representations) [2, 6], and the
description for general V is an open problem. See [10, 19] for related results.

In our previous work [17], for g = An, Bn, Cn, and Dn, we conjecture that the
q-characters of a certain family of, in many cases irreducible, finite-dimensional rep-
resentations are given by the determinant form χλ/μ,a , where λ/μ is a skew diagram
and a is a complex parameter. We call χλ/μ,a the Jacobi-Trudi determinant. For An

and Bn, this is a reinterpretation of the conjecture for the spectra of the transfer ma-
trices of the vertex models associated with the corresponding representations [1, 14].
See also [15] for related results for Cn and Dn. Let us briefly summarize the result
of [17]. Following the standard Gessel-Viennot method [9], we represent the Jacobi-
Trudi determinant by paths, and apply an involution for intersecting paths. For An

and Bn, this immediately reproduces the known tableaux descriptions of χλ/μ,a by
[1, 14]. Here, by tableaux description we mean an expression of χλ/μ,a by a positive
sum over a certain set of tableaux on λ/μ. For An, the relevant tableaux are nothing
but the semistandard tableaux as the usual character for g = An. For Bn, the tableaux
are given by the ‘horizontal’ and ‘vertical’ rules similar to the ones for the semistan-
dard tableaux. In contrast, we find that the tableaux description of χλ/μ,a for Cn is
not as simple as the former cases. The main difference is that a simple application
of the Gessel-Viennot method does not yield an expression of χλ/μ,a by a positive
sum. Nevertheless, in some special cases (i.e., a skew diagram λ/μ of at most two
columns or of at most three rows), one can further work out the cancellation of the
remaining negative contribution, and obtain a tableaux description of χλ/μ,a . Besides
the horizontal and vertical rules, we have an additional rule, which we call the extra
rule, due to the above process.

In this paper, we consider the same problem for χλ/μ,a for Dn, where the situa-
tion is quite parallel to Cn. By extending the idea of [17], we now successfully ob-
tain a tableaux description of χλ/μ,a for a general skew diagram λ/μ. The resulting
tableaux description shows nice compatibility with the proposed algorithm to gener-
ate the q-character by [6], and it is expected to be useful to study the q-characters fur-
ther. We also hope that our tableaux will be useful to parameterize the much-awaited
crystal basis for the Kirillov-Reshetikhin representations [12, 20], where λ/μ is a rec-
tangular shape. To support it, for a two-row rectangular diagram λ/μ, our tableaux
agree with the ones for the proposed crystal graph by [21]. Meanwhile, our tableau
rule is rather different from the one for the non-quantum case [8] due to the different
nature of the determinant and the generating function. The method herein is also ap-
plicable to a general skew diagram λ/μ for Cn, and it will be reported in a separate
publication [18].

Now let us explain the organization and the main idea of the paper.
In Sect. 2, following [17], we define the Jacobi-Trudi determinant χλ/μ,a for Dn.

The procedure to derive the tableaux description of χλ/μ,a consists of three steps.
In Sect. 3 we do the first step. Here we apply the standard method by [9] for the

determinant χλ/μ,a . Namely, first, we introduce lattice paths, and express χλ/μ,a as
a sum over a set of l-tuples of paths p = (pi) with fixed end points. Secondly, we
define the weight-preserving, sign-reversing involution ι1 (the first involution) so that
for an intersecting tuple of paths p the contributions from p and ι1(p) cancel each
other in the sum. Unlike An and Bn, however, this involution cannot be defined on the
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entire set of the intersecting tuples of paths, and the resulting expression for χλ/μ,a

(the first sum, Proposition 3.2) still includes negative terms.
In Sect. 4 we do the second step. Extending the idea of [17] for Cn, we define an-

other weight-preserving, sign-reversing involution ι2 (the second involution). Then,
the resulting expression (the second sum, Theorem 4.13) no longer includes negative
terms. However, the contribution from the tuples of paths with ‘transposed’ pairs still
remains, and one cannot naturally translate such a tuple of paths into a tableau on the
skew diagram λ/μ.

In Sects. 5 and 6, we do the last step. In Sect. 5, we claim the existence of a
weight-preserving deformation φ of the paths (the folding map), where φ ‘resolves’
transposed pairs by folding. The resulting expression (the third sum, Theorem 5.2) is
now naturally translated into the tableaux description whose tableaux are determined
by the horizontal, vertical, and extra rules (Theorems 5.6 and 5.8). The explicit list
of the extra rule has wide variety, and examples are given for λ/μ with at most two
columns or at most three rows. The construction of the folding map φ is the most
technical part of the work. We provide the details in Sect. 6.

We remark that while the explicit list of the extra rule for tableaux looks rather
complicated and disordered, it is a simple and easily recognizable graphical rule in
the path language. Therefore, the paths description (especially, the third sum) may be
as important as the tableaux description for applications.

2 The Jacobi-Trudi determinant of type Dn

In this section, we define the Jacobi-Trudi determinant χλ/μ,a , following [17]. See
[17] for more information.

A partition is a sequence of weakly decreasing non-negative integers λ =
(λ1, λ2, . . .) with finitely many non-zero terms λ1 ≥ λ2 ≥ · · · ≥ λl > 0. The length
l(λ) of λ is the number of the non-zero integers. The conjugate of λ is denoted
by λ′ = (λ′

1, λ
′
2, . . .). As usual, we identify a partition λ with a Young diagram

λ = {(i, j) ∈ N
2 | 1 ≤ j ≤ λi}, and also identify a pair of partitions such that λi ≥ μi

for any i, with a skew diagram λ/μ = {(i, j) ∈ N
2 | μi + 1 ≤ j ≤ λi}.

Let

I = {1,2, . . . , n,n, . . . ,2,1}. (2.1)

Let Z be the commutative ring over Z generated by zi,a’s, i ∈ I , a ∈ C, with the
following generating relations:

zi,azi,a−2n+2i = zi−1,azi−1,a−2n+2i (i = 1, . . . , n), z0,a = z0,a = 1. (2.2)

Let Z[[X]] be the formal power series ring over Z with variable X. Let A be the
non-commutative ring generated by Z and Z[[X]] with relations

Xzi,a = zi,a−2X, i ∈ I, a ∈ C.

For any a ∈ C, we define Ea(z,X), Ha(z,X) ∈A as
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Ea(z,X) :=
{ →∏

1≤k≤n

(1 + zk,aX)

}
(1 − zn,aXzn,aX)−1

{ ←∏
1≤k≤n

(1 + zk,aX)

}
, (2.3)

Ha(z,X) :=
{ →∏

1≤k≤n

(1 − zk,aX)−1

}
(1 − zn,aXzn,aX)

{ ←∏
1≤k≤n

(1 − zk,aX)−1

}
, (2.4)

where
→∏

1≤k≤n Ak = A1 . . .An and
←∏

1≤k≤n Ak = An . . .A1. Then we have

Ha(z,X)Ea(z,−X) = Ea(z,−X)Ha(z,X) = 1. (2.5)

For any i ∈ Z and a ∈ C, we define ei,a , hi,a ∈Z as

Ea(z,X) =
∞∑
i=0

ei,aX
i, Ha(z,X) =

∞∑
i=0

hi,aX
i,

with ei,a = hi,a = 0 for i < 0.
Due to relation (2.5), we have [16, (2.9)]

det(hλi−μj −i+j,a+2(λi−i))1≤i,j≤l = det(eλ′
i−μ′

j −i+j,a−2(μ′
j −j+1))1≤i,j≤l′ (2.6)

for any pair of partitions (λ,μ), where l and l′ are any non-negative integers such
that l ≥ l(λ), l(μ) and l′ ≥ l(λ′), l(μ′). For any skew diagram λ/μ, let χλ/μ,a denote
the determinant on the left- or right-hand side of (2.6). We call it the Jacobi-Trudi
determinant associated with the quantum affine algebra Uq(ĝ) of type Dn.

Let d(λ/μ) := max{λ′
i − μ′

i} be the depth of λ/μ. We conjecture that, if
d(λ/μ) ≤ n, the determinant χλ/μ,a is the q-character for a certain finite-dimensional
representations V of quantum affine algebras. We further expect that χλ/μ,a is the
q-character for an irreducible V , if d(λ/μ) ≤ n − 1 and λ/μ is connected [17].

Remark 2.1 The above conjecture and the ones for types Bn and Cn in [17] tell that
the irreducible character of Uq(ĝ), corresponding to a connected skew diagram, is
always expressed by the same determinant (2.6) regardless of the type of the algebra.
This is a remarkable contrast to the non-quantum case [13]. For example, the tensor
product of two first fundamental modules of g has two irreducible submodules for
type An and three ones for type Bn, Cn, or Dn. On the other hand, under the ap-
propriate choice of the values for the spectral parameters, the tensor product of two
first fundamental representations of Uq(ĝ) has exactly two irreducible subquotients,
one of which corresponds to two-by-one rectangular diagram and the other of which
corresponds to one-by-two rectangular diagram, regardless of the type of the algebra.
In fact, this is the simplest example of the conjecture.

3 Gessel-Viennot paths and the first involution

Following [17], let us apply the method by [9] to the determinant χλ/μ,a in (2.6) and
the generating function Ea(z,X) in (2.3).
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Fig. 1 An example of a path of type Dn and its e-labeling

Consider the lattice Z
2 and rotate it by 45◦ as in Fig. 1. An E-step s is a step

between two points in the lattice of length
√

2 in east direction. Similarly, an NE-
step (resp. an NW-step) is a step between two points in the lattice of unit length in
northeast direction (resp. northwest direction). For any point (x, y) ∈ R

2, we define
the height as ht(x, y) := x + y, and the horizontal position as hp(x, y) := 1

2 (x − y).
Due to (2.3), we define a path p (of type Dn) as a sequence of consecutive steps
(s1, s2, . . .) which satisfies the following conditions:

(1) It starts from a point u at height −n and ends at a point v at height n.
(2) Each step si is an NE-, NW-, or E-step.
(3) The E-steps occur only at height 0, and the number of E-steps is even.

We also write p as u
p→ v. See Fig. 1 for an example.

Let P be the set of all paths of type Dn. For any p ∈P , set

E(p) := {s ∈ p | s is an NE- or E-step},
E0(p) := {s ∈ p | s is an E-step} ⊂ E(p).

(3.1)

If E0(p) = {sj , sj+1, . . . , sj+2k−1}, then let

E1
0(p) := {sj+1, sj+3, . . . , sj+2k−1} ⊂ E0(p).
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Fix a ∈ C. The e-labeling (of type Dn) associated with a for a path p ∈P is the pair
of maps La = (L1

a,L
2
a) on E(p) defined as follows: Suppose that a step s ∈ E(p)

starts at a point w = (x, y), and let m := ht(w). Then, we set

L1
a(s) =

⎧⎪⎨
⎪⎩

n + 1 + m, if m < 0,

n, if m = 0 and s ∈ E1
0(p),

n − m, otherwise,

L2
a(s) = a − 2x.

(3.2)

See Fig. 1.
Now we define the weight of p ∈ P as

z
p
a :=

∏
s∈E(p)

zL1
a(s),L2

a(s) ∈ Z.

By the definition of Ea(z,X) in (2.3), for any k ∈ Z, we have

er,a−2k(z) =
∑
p

z
p
a , (3.3)

where the sum runs over all p ∈P such that (k,−n − k)
p→ (k + r, n − k − r).

For any l-tuples of distinct points u = (u1, . . . , ul) of height −n and v =
(v1, . . . , vl) of height n, and any permutation σ ∈ Sl , let

P(σ ;u,v) := {p = (p1, . . . , pl) | pi ∈P, ui
pi→ vσ(i) for i = 1, . . . , l},

and set

P(u, v) :=
⊔

σ∈Sl

P(σ ;u,v).

We define the weight z
p
a and the sign (−1)p of p ∈ P(u, v) as

z
p
a :=

l∏
i=1

z
pi
a , (−1)p := sgnσ if p ∈ P(σ ;u,v). (3.4)

For any skew diagram λ/μ, set l = λ1, and

uμ := (u1, . . . , ul), ui := (μ′
i + 1 − i,−n − μ′

i − 1 + i),

vλ := (v1, . . . , vl), vi := (λ′
i + 1 − i, n − λ′

i − 1 + i).

Then, due to (3.3), the determinant (2.6) can be written as

χλ/μ,a =
∑

p∈P(uμ,vλ)

(−1)pz
p
a . (3.5)
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In the An case, one can define a natural weight-preserving, sign-reversing involu-
tion on the set of all the tuples p which have some intersecting pair (pi,pj ). How-
ever, this does not hold for Dn because of Condition (3) of the definition of a path
of type Dn. Therefore, as in the cases of types Bn and Cn [17], we introduce the
following notion:

Definition 3.1 We say that an intersecting pair (pi,pj ) of paths is specially inter-
secting if it satisfies the following conditions:

(1) The intersection of pi and pj occurs only at height 0.
(2) pi(0) − pj (0) is odd, where pi(0) is the horizontal position of the leftmost point

on pi at height 0.

Otherwise, we say that an intersecting pair (pi,pj ) is ordinarily intersecting.

As in the cases of types Bn and Cn [17], we can define a weight-preserving, sign-
reversing involution ι1 on the set of all the tuples p ∈ P(uμ, vλ) which have some
ordinarily intersecting pair (pi,pj ). Therefore, we have

Proposition 3.2 For any skew diagram λ/μ,

χλ/μ,a =
∑

p∈P1(λ/μ)

(−1)pz
p
a , (3.6)

where P1(λ/μ) is the set of all p ∈ P(uμ, vλ) which do not have any ordinarily
intersecting pair (pi,pj ) of paths.

For Bn, the sum (3.6) is a positive sum because no p ∈ P1(λ/μ) has a ‘transposed’
pair (pi,pj ). But, this is not so for Cn and Dn.

4 The second involution

In this section, we define another weight-preserving involution, the second involution.
This is defined by using the paths deformations called expansion and folding. As a
result, the second involution cancels all the negative contributions in (3.6), and we
obtain an expression by a positive sum, see (4.7).

4.1 Expansion and folding

Let

S+ := {(x, y) ∈ R
2 | 0 ≤ ht(x, y) ≤ n},

S− := {(x, y) ∈ R
2 | −n ≤ ht(x, y) ≤ 0}.

For any w = (x, y) ∈ S+, define w∗ ∈ S− by

w∗ := (−y + 1,−x − 1).
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Then we have ht(w∗) = −ht(w), hp(w∗) = hp(w) + 1. Conversely, we define
(w∗)∗ = w, and we call the correspondence

S+ ↔ S−, w ↔ w∗ (4.1)

the dual map.

Definition 4.1 A lower path α (of type Dn) is a sequence of consecutive steps in
S− which starts at a point of height −n and ends at a point of height 0, and each
step is an NE- or NW-step. Similarly, an upper path β (of type Dn) is a sequence
of consecutive steps in S+ which starts at a point of height 0 and ends at a point of
height n, and each step is an NE- or NW-step.

For any lower path α and an upper path β , let α(r) and β(r) be the horizontal
positions of α and β at height r , respectively. We define an upper path α∗ and a lower
path β∗ by

α∗(r) = α(−r) − 1, β∗(−r) = β(r) + 1, (0 ≤ r ≤ n)

and call them the duals of α, β .
Let

(α;β) := (α1, . . . , αl;β1, . . . , βl)

be a pair of an l-tuple α of lower paths and an l-tuple β of upper paths. We say that
(α;β) is nonintersecting if (αi, αj ) is not intersecting, and so is (βi, βj ) for any i, j .

From now on, let λ/μ be a skew diagram, and we set l = λ1. Let

H(λ/μ) :=

⎧⎪⎨
⎪⎩(α;β) = (α1, . . . , αl;β1, . . . , βl)

∣∣∣∣∣
(α;β) is nonintersecting,

αi(−n) = n
2 + μ′

i + 1 − i,

βi(n) = −n
2 + λ′

i + 1 − i

⎫⎪⎬
⎪⎭ .

For any skew diagram λ/μ, we call the following condition the positivity condi-
tion:

λ′
i+1 − μ′

i ≤ n, i = 1, . . . , l − 1. (4.2)

We call this the ‘positivity condition’, because (4.2) guarantees that χλ/μ,a is a posi-
tive sum (see Theorem 4.13). By the definition, we have

Lemma 4.2 Let λ/μ be a skew diagram satisfying the positivity condition (4.2), and
let (α;β) ∈H(λ/μ). Then,

βi+1(n) ≤ α∗
i (n), β∗

i+1(−n) ≤ αi(−n). (4.3)

A unit U ⊂ S± is either a unit square with its vertices on the lattice, or half of
a unit square with its vertices on the lattice and the diagonal line on the boundary
of S±. See Fig. 2 for examples. The height ht(U) of U is given by the height of the
left vertex of U .
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Fig. 2 Examples of units

Definition 4.3 Let (α;β) ∈ H(λ/μ). For any unit U ⊂ S±, let ±r = ht(U) and let
a and a′ = a + 1 be the horizontal positions of the left and the right vertices of U .
Then,

(1) U is called a I-unit of (α;β) if there exists some i (0 ≤ i ≤ l) such that

α∗
i (r) ≤ a′ < a ≤ βi+1(r), if U ⊂ S+,

αi(−r) ≤ a < a′ ≤ β∗
i+1(−r), if U ⊂ S−.

(4.4)

(2) U is called a II-unit of (α;β) if there exists some i (0 ≤ i ≤ l) such that

βi+1(r) ≤ a < a′ ≤ α∗
i (r), if U ⊂ S+,

β∗
i+1(−r) ≤ a < a′ ≤ αi(−r), if U ⊂ S−.

(4.5)

Here, we set βl+1(r) = β∗
l+1(−r) = −∞ and α0(−r) = α∗

0(r) = +∞. Furthermore,
a II-unit U of (α;β) is called a boundary II-unit if (4.5) holds for i = 0, l, or r = n.

For a I-unit, actually (4.4) does not hold for i = 0, l. Also, it does not hold for
r = n if λ/μ satisfies the positivity condition (4.2), by Lemma 4.2.

The dual U∗ of a unit U is its image by the dual map (4.1). Let U and U ′ be units.
If the left or the right vertex of U is also a vertex of U ′, then we say that U and U ′
are adjacent and write U � U ′. It immediately follows from the definition that

Lemma 4.4

(1) A unit U is a I-unit (resp. a II-unit) if and only if the dual U∗ is a I-unit (resp. a
II-unit).

(2) No unit is simultaneously a I- and II-unit.
(3) If U is a I-unit and U ′ is a II-unit, then U and U ′ are not adjacent.

Fix (α;β) ∈ H(λ/μ). Let UI be the set of all I-units of (α;β), and let ŨI :=⋃
U∈UI

U , where the union is taken for U as a subset of S+ � S−. Let ∼ be the
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Fig. 3 The undotted lines represent αi ’s and βi ’s while the dotted lines represent their duals, α∗
i

’s and
β∗
i

’s. The shaded area represents a I-region V

equivalence relation in UI generated by the relation �, and [U ] be its equivalence
class of U ∈ UI. We call

⋃
U ′∈[U ] U ′ a connected component of ŨI. For II-units, UII,

ŨII and its connected component are defined similarly.

Definition 4.5 Let λ/μ be a skew diagram satisfying the positivity condition (4.2),
and let (α;β) ∈ H(λ/μ).

(1) A connected component V of ŨI is called a I-region of (α;β) if it contains at
least one I-unit of height 0.

(2) A connected component V of ŨII is called a II-region of (α;β) if it satisfies the
following conditions:
(i) V contains at least one II-unit of height 0.

(ii) V does not contain any boundary II-unit.

See Fig. 3 for an example.

Proposition 4.6 If V is a I- or II-region, then V ∗ = V , where for a union of units
V = ⋃

Ui , we define V ∗ = ⋃
U∗

i .

Proof We remark that if two units are adjacent, then their duals are also adjacent. It
follows that, for any I-unit U ⊂ V , U ∼ U0 � U∗

0 ∼ U∗ holds, where U0 is any I-unit
U ⊂ V of height 0. Therefore, U∗ ⊂ V . �

For any (α;β) ∈ H(λ/μ), let V be any I- or II-region of (α;β). Let α′
i be the

lower path obtained from αi by replacing the part αi ∩ V with β∗
i+1 ∩ V , and let β ′

i

be the upper path obtained from βi by replacing the part βi ∩ V with α∗
i−1 ∩ V . Set

εV (α;β) := (α′
1, . . . , α

′
l;β ′

1, . . . , β
′
l ). See Fig. 4 for an example.
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Fig. 4 The tuple (α′;β ′) := εV (α;β) for (α;β) with respect to V in Fig. 3

Proposition 4.7 Let λ/μ be a skew diagram satisfying the positivity condition (4.2).
Then, for any (α;β) ∈ H(λ/μ), we have

(1) For any I- or II-region V of (α;β), εV (α;β) ∈ H(λ/μ).
(2) For any I-region V of (α;β), V is a II-region of εV (α;β).
(3) For any II-region V of (α;β), V is a I-region of εV (α;β).

Proof We give a proof when V is a I-region.
(1) Set (α′;β ′) := εV (α;β). First, since V does not contain any unit of height ±n,

we have α′
i (−n) = αi(−n) = n

2 +μ′
i +1− i and β ′

i (n) = βi(n) = n
2 +λ′

i +1− i. Sec-
ondly, let us prove that (α′;β ′) is nonintersecting. Suppose, for example, if (α′

i , α
′
i+1)

is intersecting at a point w, then it implies that (αi, β
∗
i+2) is intersecting at w. Set

−r = ht(w). Since αi(−r) = β∗
i+2(−r) < β∗

i+1(−r), the unit U �⊂ V whose left ver-
tex is w is a I-unit. On the other hand, the unit U ′ whose right vertex is w is in V .
This contradicts to the fact that V is a connected component of ŨI.

(2) It is obvious that a unit in V is a II-unit of (α′;β ′), and U ∼ U ′ for any two
units U,U ′ ⊂ V . Assume that there exist some II-unit U ′′ �⊂ V of (α′;β ′) which is
adjacent to some U ⊂ V . Since U ′′ is a II-unit of (α;β) and U is a I-unit of (α;β), it
contradicts to Lemma 4.4 (3). Therefore, V is a connected component of the II-units
of (α′;β ′). �

We call the correspondence (α;β) �→ εV (α;β) the expansion (resp. the folding)
with respect to V , if V is a I-region (resp. a II-region) of (α;β). We remark that
εV ◦ εV = id for any I- or II-region V .

Remark 4.8 The expansion and the folding are decomposed into a series of deforma-
tions of paths along each unit in V . See Fig. 5. This is a key fact in the proof of the
weight-preserving property of the maps ι2 in Sect. 4.2 and φ in Sect. 6.
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Fig. 5 An example of a procedure of the expansion (α;β) �→ εV (α;β) with respect to a I-region V at a
pair (αi , βi+1), by each unit

4.2 The second involution and an expression of χλ/μ,a by a positive sum

From now, we assume that λ/μ satisfies the positivity condition (4.2).
Let p ∈ P1(λ/μ), and let pi(±n) be the horizontal position of pi at height ±n.

Then pi(−n) < pj (−n) for any i < j . We call a pair (pi,pj ), i < j transposed if
pi(n) > pj (n).

For each p ∈ P1(λ/μ), one can uniquely associate (α;β) ∈ H(λ/μ) by removing
all the E-steps from p. We write π(p) for (α;β). A I- or II-region of (α;β) = π(p)

is also called a I- or II-region of p.
Let p ∈ P1(λ/μ) and (α;β) = π(p). If h := αi(0) − βi+1(0) is a non-positive

number (resp. a positive number), then we call a pair (αi, βi+1) an overlap (resp. a
hole). Furthermore, if h is an even number (resp. an odd number), then we say that
(αi, βi+1) is even (resp. odd). Using that no triple (pi,pj ,pk) exists for p ∈ P1(λ/μ)

which is intersecting at a point, we have

Lemma 4.9 Let (α;β) = π(p) for p ∈ P1(λ/μ). Then, for any i,

(1) (αi, βi+1) is an odd overlap if and only if (pi,pj ) is a specially intersecting,
non-transposed pair for some j > i.

(2) (αi, βi+1) is an even overlap if and only if (pi,pj ) is a transposed pair for some
j > i.

(3) (αi, βi+1) is a hole if and only if (pi,pj ) is not intersecting for any j > i.

Let p ∈ P1(λ/μ), (α;β) = π(p), and V be a I- or II-region of p. Then, there
exists p′ ∈ P1(λ/μ) such that

εV (α;β) = π(p′).

It is constructed from p as follows, which is well-defined by Lemma 4.9:

A. The case of a I-region V . For any i, replace (αi, βi+1) in p with (α′
i , β

′
i+1). Fur-

thermore, for any i such that (αi, βi+1) is an overlap and intersects with V at
height 0, remove the E-steps between β ′

i+1(0) and α′
i (0). See Fig. 6.
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Fig. 6 The deformation εV : p ↔ p′ with respect to a I-region V of p and a II-region V of p′

B. The case of a II-region V . This is the reverse operation of Case A. Namely, for
any i, replace (αi, βi+1) in p with (α′

i , β
′
i+1). Furthermore, for any i such that

(αi, βi+1) is a hole and intersects with V at height 0, then add the E-steps between
β ′

i+1(0) and α′
i (0) as in Fig. 6 (a) (for an even hole) and Fig. 6 (b) (for an odd

hole) wherein {αi,βi+1,pi,pj } and {α′
i , β

′
i+1,p

′
i , p

′
k} are interchanged.

We call the correspondence p �→ p′ the expansion (resp. the folding) of p with
respect to a I-region (resp. a II-region) V , and write εV (p) := p′.

For any I-region V (resp. II-region V ) of p ∈ P1(λ/μ) with (α;β) = π(p), we set

n(V ) := #

{
i

∣∣∣ (αi, βi+1) is an even overlap (resp. an even hole)

which intersects with V at height 0

}
. (4.6)

Let V be a I- or II-region of p ∈ P1(λ/μ). By Lemma 4.9, n(V ) is equal to the
number of the transposed pairs (pi,pj ) in p which intersect with V at height 0.
Moreover, since the expansion (resp. the folding) p �→ εV (p) is a deformation that
‘resolves’ all the transposed pairs (resp. transposes all the even holes) in p which
intersect with V at height 0, we have

Lemma 4.10 Let p ∈ P1(λ/μ) and V be a I- or II-region of p. Then,

(−1)εV (p) = (−1)n(V ) · (−1)p.

Definition 4.11 We say that a I- or II-region V is even (resp. odd) if n(V ) is even
(resp. odd).
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Let Podd(λ/μ) be the set of all p ∈ P1(λ/μ) which have at least one odd I- or
II-region of p. We can define an involution

ι2 : Podd(λ/μ) → Podd(λ/μ)

as follows: Let V be the unique odd I- or II-region of p ∈ Podd(λ/μ) such that the
value max{hp(w) | w ∈ V, ht(w) = 0} is greatest among all the odd I- or II-regions
of p, and set ι2(p) = εV (p). Then we have

Proposition 4.12 The map ι2 : Podd(λ/μ) → Podd(λ/μ) is a weight-preserving,
sign-reversing involution.

Proof The map ι2 is an involution because εV ◦ εV = id, and sign-reversing by
Lemma 4.10. We prove that ι2 is weight-preserving in the case where p �→ p′ :=
ι2(p) is an expansion with respect to a I-region V of p. Let (α;β) = π(p), and we

decompose the weights z
p
a and z

p′
a in (3.4) into two parts as z

p
a = HE and z

p
a = H ′E′

where H and H ′ are the factors from the e-labeling on (α;β) and (α′;β ′), while E

and E′ are the ones from the e-labeling on the height 0 part (the E-steps) of p and p′.
By Remark 4.8, we have H ′ = Hδ, where

δ :=
∏

U⊂V :unit

δ(U),

and, for any unit U ⊂ V in S± of height ±r with left vertex (x, y),

δ(U) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zn−r,a−2x/zn−r+1,a−2x, if r �= 0 and U ⊂ S+,

zn−r,a−2x/zn−r+1,a−2x, if r �= 0 and U ⊂ S−,

zn,a−2x, if r = 0 and U ⊂ S+,

zn,a−2x, if r = 0 and U ⊂ S−.

Using the relations in (2.2), we have δ(U) · δ(U∗) = 1 for any U whose height is
not 0. Therefore, combining δ(U) for all the I-units in V , we obtain

δ =
∏

U⊂V :unit
ht(U)=0

δ(U) =
l−1∏
i=1

(
βi+1(0)−1∏
k=α∗

i (0)

zn,a−2k

β∗
i+1(0)−1∏
k=αi(0)

zn,a−2k

)
.

See Fig. 6. On the other hand, we have E′ = Eδ−1, and therefore, we obtain z
ι2(p)
a =

H ′E′ = HE = z
p
a . �

It follows from Proposition 4.12 that the contributions of Podd(λ/μ) to the sum
(3.6) cancel each other.

Let P2(λ/μ) := P1(λ/μ)\Podd(λ/μ), i.e., the set of all p ∈ P1(λ/μ) which satisfy
the following conditions:

(i) p does not have any ordinarily intersecting pair (pi,pj ).
(ii) p does not have any odd I- or II-region.
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Every p ∈ P2(λ/μ) has an even number of transposed pairs, which implies that
(−1)p = 1. Thus, the sum (3.6) reduces to a positive sum, and we have

Theorem 4.13 For any skew diagram λ/μ satisfying the positivity condition (4.2),
we have

χλ/μ,a =
∑

p∈P2(λ/μ)

z
p
a . (4.7)

5 The folding map and a tableaux description

In this section, we give a tableaux description of χλ/μ,a . Namely, the sum (4.7) is
translated into the one over a set of the tableaux of shape λ/μ which satisfy certain
conditions called the horizontal, vertical, and extra rules.

5.1 The folding map

Since a path p ∈ P2(λ/μ) in (4.7) might have (an even number of) transposed pairs
(pi,pj ), the sum (4.7) cannot be translated into a tableaux description yet. Therefore,
we introduce another set of paths as follows.

Let P(λ/μ) be the set of all p = (p1, . . . , pl) ∈ P(id;uμ, vλ) such that

(i) p does not have any ordinarily intersecting adjacent pair (pi,pi+1).
(ii) p does not have any odd II-region.

Here, an odd II-region of p ∈ P(λ/μ) is defined in the same way as that of p ∈
P1(λ/μ). The following fact is not so trivial.

Proposition 5.1 There exists a weight-preserving bijection

φ : P2(λ/μ) → P(λ/μ).

The map φ is called the folding map. Roughly speaking, it is an iterated appli-
cation of (some generalization of) the folding in Sect. 4. The construction of φ is
the most technical part of the paper. We provide the details in Sect. 6. Admitting
Proposition 5.1, we immediately have

Theorem 5.2 For any skew diagram λ/μ satisfying the positivity condition (4.2), we
have

χλ/μ,a =
∑

p∈P(λ/μ)

z
p
a . (5.1)

5.2 Tableaux description

Define a partial order in I in (2.1) by

1 ≺ 2 ≺ · · · ≺ n − 1 ≺ n

n
≺ n − 1 ≺ · · · ≺ 2 ≺ 1.
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A tableau T of shape λ/μ is the skew diagram λ/μ with each box filled by one
entry of I . For a tableau T and a ∈ C, we define the weight of T as

zT
a =

∏
(i,j)∈λ/μ

zT (i,j),a+2(j−i),

where T (i, j) is the entry of T at (i, j).

Definition 5.3 A tableau T (of shape λ/μ) is called an HV-tableau if it satisfies the
following conditions:
(H) horizontal rule T (i, j) � T (i, j + 1) or (T (i, j), T (i, j + 1)) = (n,n).
(V) vertical rule T (i, j) �� T (i + 1, j).

We denote the set of all HV-tableaux of shape λ/μ by TabHV(λ/μ).

Remark 5.4 The configuration (T (i, j), T (i, j + 1)) = (n,n) is prohibited later by
another rule. See Remark 5.11.

Let PHV(λ/μ) be the set of all p ∈ P(id;uμ, vλ) which do not have any ordinarily
intersecting adjacent pair (pi,pi+1). With any p ∈ PHV(λ/μ), we associate a tableau
T of shape λ/μ as follows: For any j = 1, . . . , l, let E(pj ) = {si1, si2 , . . . , sim} (i1 <

i2 < · · · < im) be the set defined as in (3.1), and set

T (μ′
j + k, j) = L1

a(sik ), k = 1, . . . ,m,

where L1
a is the first component of the e-labeling (3.2). It is easy to see that T satisfies

the vertical rule (V) because of the definition of the e-labeling of pj , and satisfies the
horizontal rule (H) because p does not have any ordinarily intersecting adjacent pair.
Therefore, if we set Tv : p �→ T , we have

Proposition 5.5 The map

Tv : PHV(λ/μ) → TabHV(λ/μ)

is a weight-preserving bijection.

Let Tab(λ/μ) := Tv(P (λ/μ)). In other words, Tab(λ/μ) is the set of all the
tableaux T which satisfy (H), (V), and the following extra rule:

(E) The corresponding p = T −1
v (T ) does not have any odd II-region.

By Theorem 5.2 and Proposition 5.5, we obtain a tableaux description of χλ/μ,a ,
which is the main result of the paper.

Theorem 5.6 For any skew diagram λ/μ satisfying the positivity condition (4.2), we
have

χλ/μ,a =
∑

T ∈Tab(λ/μ)

zT
a .
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5.3 Extra rule in terms of tableau

It is straightforward to translate the extra rule (E) into tableau language. We only give
the result here.

Fix an HV-tableau T . For any a1, . . . , am ∈ I , let C(a1, . . . , am) be a configuration
in T as follows:

(5.2)

If 1 � a1 ≺ · · · ≺ am � n, then we call it an L-configuration. If n � a1 ≺ · · · ≺ am � 1,
then we call it a U-configuration. Note that an L-configuration corresponds to a part
of a lower path, while a U-configuration corresponds to a part of an upper path under
the map Tv.

Let (L,U) be a pair of an L-configuration L = C(a1, . . . , as) in the j th column
and a U-configuration U = C(bt , . . . , b1) in the (j + 1)th column. We call it an LU-
configuration of T if it satisfies one of the following two conditions:

Condition 1. LU-configuration of type 1. (L,U) has the form

(5.3)

for some k and r with 1 ≤ k ≤ n, 1 ≤ r ≤ min{s, t}, n − k + 1 = s + t − r , and

a1 = k, b1 = k, (5.4)

a � n if a exists, b � n if b exists, (5.5)

ai+1 � b′
i , (1 ≤ i ≤ t ′), bi+1 � a′

i , (1 ≤ i ≤ s′), (5.6)

where a′
1 ≺ · · · ≺ a′

s′ (s′ := t − r) and b′
1 ≺ · · · ≺ b′

t ′ (t ′ := s − r) are defined as

{a1, . . . , as} � {a′
1, . . . , a

′
s′ } = {k, k + 1, . . . , n},

{b1, . . . , bt } � {b′
1, . . . , b

′
t ′ } = {k, k + 1, . . . , n}.

(5.7)

See Fig. 7 for the corresponding part in the paths. In particular, if r is odd, then we
say that (L,U) is odd.
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Fig. 7 An example of adjacent paths (pj ,pj+1) such that a part of it corresponds to an LU-configuration
of type 1 as in (5.3)

Condition 2. LU-configuration of type 2. (L,U) has the form

(5.8)

for some k and k′ with 1 ≤ k < k′ ≤ n, n − k + 1 = n − k′ + s + t , and

a1 = k, b1 = k, a′
s′ = k′, b′

t ′ = k′, a �� k′, b �� k′, (5.9)

ai+1 � b′
i , (1 ≤ i < s), bi+1 � a′

i , (1 ≤ i < t), (5.10)

where a′
1 ≺ · · · ≺ a′

s′ (s′ := t) and b′
1 ≺ · · · ≺ b′

t ′ (t ′ := s) are defined by

{a1, . . . , as} � {a′
1, . . . , a

′
s′ } = {k, k + 1, . . . , k′},

{b1, . . . , bt } � {b′
1, . . . , b

′
t ′ } = {k, k + 1, . . . , k′}.

(5.11)

See Fig. 8 for the corresponding part in the paths.
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Fig. 8 An example of adjacent
paths (pj ,pj+1) such that a
part of it corresponds to an
LU-configuration of type 2 as in
(5.8)

We say that an L-configuration L = C(a1, . . . , am) in the j th column of T is
boundary if a1 = T (μ′

j + 1, j), i.e., if a1 is at the top of the j th column, and m is the
largest number such that L ∩ L′ = ∅ for any LU -configuration (L′,U ′). Similarly,
a U -configuration U = C(a1, . . . , am) in the j th column of T is boundary if am =
T (λ′

j , j), i.e., if am is at the bottom of the j th column, and m is the largest number
such that U ∩ U ′ = ∅ for any LU -configuration (L′,U ′).

Let (L,U) = (C(a1, . . . , as),C(bt , . . . , b1)) be an LU-configuration, and set a′
1 ≺

· · · ≺ a′
s′ and b′

1 ≺ · · · ≺ b′
t ′ as in (5.7) (resp. as in (5.11)) if (L,U) is of type 1

(resp. of type 2). We say that an L-configuration L′ is right-adjacent to (L,U) if L′
is in the right-next column to L; furthermore, there exists some pair of an entry e of
L′ and an entry ai of L such that e is right-next to ai and e ≺ b′

i . Similarly, we say
that a U-configuration U ′ is left-adjacent to (L,U) if U ′ is in the left-next column
to U ; furthermore, there exists some pair of an entry e of U ′ and an entry bi of U such
that e is left-next to bi and e � a′

i . Then, we say that an LU-configuration (L′,U ′)
is adjacent to (L,U) if one of the following conditions is satisfied, and write it by
(L,U) � (L′,U ′):

(i) L′ is right-adjacent to (L,U).
(ii) L is right-adjacent to (L′,U ′).

(iii) U ′ is left-adjacent to (L,U).
(iv) U is left-adjacent to (L′,U ′).

For any tableau T , let LU(T ) be the set of all LU-configurations of T . Then, the
adjacent relation � of the LU-configurations generates an equivalence relation ∼ in
LU(T ).
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Definition 5.7 For any (L,U) ∈ LU(T ), let [(L,U)] ⊂ LU(T ) be the equivalence
class of (L,U) with respect to ∼, and let R = R(L,U) := ⋃

(L′,U ′)∈[(L,U)](L′,U ′)
be the corresponding configuration in T . We call R a II-region of T , if the following
conditions is satisfied:

(1) No boundary L-configuration L is right-adjacent to L′ for any LU-configuration
(L′,U ′) in R.

(2) No boundary U-configuration U is left-adjacent to U ′ for any LU-configuration
(L′,U ′) in R.

Moreover, we say that R is odd if the number of the odd type 1 LU-configurations in
R is odd.

Then, an odd II-region of T = Tv(p) corresponds to an odd II-region of p, and
therefore, Theorem 5.6 is rewritten as follows:

Theorem 5.8 For any skew diagram λ/μ satisfying the positivity condition (4.2), we
have

χλ/μ,a =
∑

T ∈Tab(λ/μ)

zT
a ,

where Tab(λ/μ) is the set of all the tableaux of shape λ/μ which satisfy (H), (V),
and the following extra rule (E′):
(E′) T does not have any odd II-region.

5.4 Explicit list of odd II-regions

Let us give an explicit list of all the possible odd II-regions for λ/μ of at most two
columns or of at most three rows.

Example 5.9 Let λ/μ be a skew diagram of two columns satisfying the positivity
condition (4.2). In this case, an odd II-region of T ∈ TabHV(λ/μ) is nothing but
an odd type 1 LU-configuration without any boundary L-configuration L which is
right-adjacent to it, or any boundary U-configuration U which is left-adjacent to it.
Therefore, the extra rule (E′) is given as follows:

(E-2C) T does not include any odd type 1 LU-configuration as
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Table 1 The LU-configurations in a tableau in Tab(λ/μ) for a skew diagram λ/μ of at most three rows.
We omit a and b if the inequalities are satisfied by the vertical rule (V)

odd type 1
LU-configurations
(a � n, b � n)

other
LU-configurations
(a � n, b � n,
a′ � n−1, b′ ≺ n − 1)

where, if t ′ = t − r ≥ 1, then ct ′ � n and ci � b′
i for any i = 1, . . . , t ′, and if s′ =

s − r ≥ 1, then ds′ � n and di � a′
i for any i = 1, . . . , s′.

Example 5.10 Let λ be a Young diagram of one row. In this case, the odd II-region of

T ∈ TabHV(λ) is the configuration , and therefore, the extra rule (E′) is given
as follows:

(E-1R) T does not include .

Remark 5.11 The extra rule (E-1R) is applied for any λ/μ, since is an odd
II-region of T ∈ TabHV(λ/μ).

Example 5.12 Let λ/μ be a skew diagram of two rows, i.e., λ′
1 = 2. Since an odd

II-region of T ∈ TabHV(λ/μ) is a combination of the LU-configurations of at most
two rows in Table 1 with one odd type 1 LU-configuration. Therefore, the extra rule
(E′) is given by (E-1R) and the following condition:

(E-2R) T does not include

, ,

where j ≥ 0.
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This rule appears for the proposed crystals of the representations of two-row rec-
tangle [21].

Example 5.13 Let λ/μ be a skew diagram of three rows, i.e., λ′
1 = 3. Since an odd

II-region of T ∈ TabHV(λ/μ) is a combination of the LU-configurations of at most
three rows in Table 1 with one or three odd type 1 LU-configurations, the extra rule
(E′) for a tableau T ∈ TabHV(λ/μ) is given by (E-1R), (E-2R), and the following
condition:

(E-3R) T does not include

(5.12)
where ji ≥ 0, j1 = 0 if j2 = 0, and

(a, b) =
{

(n,n), (n,n), if j2 �= 0,

(n,n), (n − 1, n) if j2 = 0,

(5.13)
where ji ≥ 0, j5 = 0 if j4 = 0, and

(a, b) =
{

(n,n), (n,n), if j4 �= 0,

(n,n − 1), (n,n), if j4 = 0,

and

(5.14)

where ji ≥ 0 and (a, b) = (n,n) or (n,n).

The odd II-regions (5.12), (5.13), and (5.14) include three (resp. one) odd type 1
LU-configurations if (a, b) = (n,n), j1 + j2 ≥ 1, and j4 + j5 ≥ 1 are satisfied
(resp. otherwise).
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Fig. 9 The odd II-region corresponding to the rule (5.14) for (a, b) = (n,n), j1, j5 �= 0

As mentioned in the introduction, though these rules look rather complicated, they
are more easily recognizable in the path picture. For example, the rule (5.14) for
(a, b) = (n,n), j1, j5 �= 0 corresponds to the odd II-region in Fig. 9.

6 Construction of φ and proof of Proposition 5.1

In this section, we construct the folding map φ : P2(λ/μ) → P(λ/μ) in Proposi-
tion 5.1, which is a key to derive the tableaux description (see Theorem 5.6).

6.1 k-expansion and k-folding

To define φ, we introduce the k-expansion and the k-folding, which are generaliza-
tions of the expansion and the folding in Sect. 4.1. The original corresponds to k = 1.
We also generalize related notions.

Definition 6.1 Let (α;β) ∈ H(λ/μ). For any unit U ⊂ S±, let ±r = ht(U) and let
a and a′ = a + 1 be the horizontal positions of the left and the right vertices of U .
Then, for any k = 1, . . . , l − 1,

(1) U is called a Ik-unit of (α;β) if there exists some i (0 ≤ i ≤ l) such that

α∗
i (r) ≤ a < a′ ≤ βi+k(r), if U ⊂ S+,

αi(−r) ≤ a < a′ ≤ β∗
i+k(−r), if U ⊂ S−.

(6.1)

(2) U is called a IIk-unit of (α;β) if there exists some i (0 ≤ i ≤ l) such that

βi+k(r) ≤ a < a′ ≤ α∗
i (r), if U ⊂ S+,

β∗
i+k(−r) ≤ a < a′ ≤ αi(−r), if U ⊂ S−.

(6.2)

Here, we set βi(r) = β∗
i (−r) = −∞ for i ≥ l + 1 and αi(−r) = α∗

i (r) = +∞ for
i ≤ 0. Furthermore, a IIk-unit U of (α;β) is called a boundary IIk-unit if (6.2) holds
for i = 0, i ≥ l − k + 1, or r = n.

As in the k = 1 case, actually (6.1) does not hold for i = 0 or i ≥ l − k + 1. Also
it does not hold for r = n if λ/μ satisfies the positivity condition.
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As Lemma 4.4, it is easy to see that

Lemma 6.2

(1) U is a Ik-unit (resp. a IIk-unit) if and only if U∗ is a Ik-unit (resp. a IIk-unit).
(2) No unit is simultaneously a Ik- and IIk′ -unit for any k and k′ such that k + 1 ≥ k′.
(3) If U is a Ik-unit and U ′ is a IIk′ -unit for any k ≥ k′, then U and U ′ are not

adjacent.
(4) The set of all the Ik-units and that of all the IIk+1-units are complementary to

each other in S+ � S−.

We define UIk and ŨIk (resp. UIIk and ŨIIk ) for Ik-units (resp. IIk-units) of (α;β)

and a connected component of ŨIk and ŨIIk similarly as in the k = 1 case.

Definition 6.3 Let λ/μ be a skew diagram satisfying the positivity condition (4.2),
and let (α;β) ∈ H(λ/μ).

(1) A connected component V of ŨIk is called a Ik-region of (α;β) if it contains at
least one Ik-unit of height 0.

(2) A connected component V of ŨIIk is called a IIk-region of (α;β) if it satisfies the
following conditions:
(i) V contains at least one Ik-unit of height 0.

(ii) V does not contain any boundary IIk-unit.

As Proposition 4.6, we have

Proposition 6.4 If V is a Ik- or IIk-region of (α;β), then V ∗ = V .

If U is a Ik-unit of (α;β), then it is also a Ik′ -unit (α;β) for any 1 ≤ k′ ≤ k, while
if U is a IIk-unit of (α;β), then it is also a IIk′ -unit of (α;β) for any k ≤ k′ ≤ l − 1.
Then, it follows that

Lemma 6.5

(1) If V is a Ik-region and V ′ is a Ik′ -region for k′ ≥ k, then V ′ ⊂ V or V ∩ V ′ = ∅.
(2) If V is a IIk-region and V ′ is a IIk′ -region for k′ ≤ k, then V ′ ⊂ V or V ∩V ′ = ∅.

For any (α;β) ∈ H(λ/μ), let V be any Ik- or IIk-region of (α;β). Let α′
i be the

lower path obtained from αi by replacing the part αi ∩ V with β∗
i+k ∩ V , and let β ′

i

be the upper path obtained from βi by replacing the part βi ∩ V with α∗
i−k ∩ V . Set

εk
V (α;β) := (α′

1, . . . , α
′
l;β ′

1, . . . , β
′
l ). Then, Proposition 4.7 is generalized as follows:

Proposition 6.6 Let λ/μ be a skew diagram satisfying the positivity condition (4.2).
Then, for any (α;β) ∈ H(λ/μ), we have

(1) For any Ik- or IIk-region V of (α;β), εk
V (α;β) ∈H(λ/μ).

(2) If V is a Ik-region and V ′ ⊂ V is a Ir -region of (α;β) for r ≥ k, then V ′ is a
II2k−r -region of εk

V (α;β).



J Algebr Comb (2007) 26: 253–290 277

(3) If V is a IIk-region and V ′ ⊂ V is a IIr -region of (α;β) for r ≤ k, then V ′ is a
I2k−r -region of εk

V (α;β).

Set (α′;β ′) = εk
V (α;β) for any Ik- or IIk-region V . The following equalities are

useful:

α′
i (0) =

{
β∗

i+k(0), if βi+r intersects with V at hight 0,

αi(0), otherwise,

β ′
i (0) =

{
α∗

i−k(0), if αi−k intersects with V at height 0,

βi(0), otherwise.

(6.3)

We call the correspondence (α;β) �→ εk
V (α;β) the k-expansion (resp. the

k-folding) with respect to V , if V is a Ik-region (resp. a IIk-region). As the k = 1
case, we have εk

V ◦ εk
V = id for any V .

Let (α;β) ∈ H(λ/μ). If h := αi(0) − βi+k(0) is a non-positive number (resp. a
positive number), then we call a pair (αi, βi+k) a k-overlap (resp. a k-hole). Further-
more, if h is an even number (resp. an odd number), then (αi, βi+k) is called even
(resp. odd).

For any Ik-region V (resp. IIk-region V ) of (α;β) ∈ H(λ/μ), let n(V ) be the
number of the even k-overlaps (resp. the even k-holes) which intersect with V at
height 0.

Definition 6.7 A Ik- or IIk-region V is called even (resp. odd) if n(V ) is even
(resp. odd).

6.2 Outline of construction

In this subsection, we give the outline of the construction of the folding map φ whose
existence is admitted in Sect. 5. Proofs of Propositions 6.9–6.12 below will be given
in the following sections.

Let t0 be the minimal number that satisfies 2t0 > l. For any t = 1,2, . . . , t0, we
define

Qt(λ/μ) := {(α;β) ∈ H(λ/μ) | (α;β) satisfies Conditions (1)t–(6)t },
Q̂t (λ/μ) := {(α;β) ∈ H(λ/μ) | (α;β) satisfies Conditions (1)t–(7)t },

where Conditions (1)t –(7)t are given as follows:

(1)t αi(0) ≤ βi(0) for any i = 1, . . . , l.
(2)t (α;β) does not contain any odd II1-region.
(3)t (α;β) does not contain any odd I2t−1-region.
(4)t (α;β) does not contain any 2t -overlap.
(5)t If t ≥ 2, then (α;β) contains at least one 2t−1-overlap.
(6)t s(αi) ≡ mt(αi) and s(βi) ≡ mt(βi), where
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Fig. 10 An example of s(αi ), s(βi ), m(αi), and m(βi) in the condition (6)t of Qt (λ/μ) for t = 1

s(αi) := αi(0) − β1(0) + i − 1,

s(βi) := βi(0) − β1(0) + i − 1,

mt (αi) := #{j | j ≤ i, (αj ,βj+2t−1) is an even (2t − 1)-overlap}
+ #{j | j < i, (αj ,βj+1) is an even 1-hole},

mt (βi) := #{j | j < i, (αj−2t+1, βj ) is an even (2t − 1)-overlap}
+ #{j | j ≤ i, (αj−1, βj ) is an even 1-hole}.

Here and the rest part of this section, ≡ denotes the congruence modulo 2. See
Fig. 10.

(7)t (α;β) has at least one even (2t − 1)-overlap (Then, it has at least two, because
of Condition (3)t ).

Remark 6.8 If t = t0, then Conditions (3)t and (4)t are void. Also, Q̂t0(λ/μ) = ∅,
because (7)t is not satisfied for any (α;β) ∈H(λ/μ).

Now, the folding map φ : P2(λ/μ) → P(λ/μ) is constructed as follows: For any
p ∈ P2(λ/μ) or any p ∈ P(λ/μ), one can associate π(p) := (α;β) ∈ H(λ/μ) by
removing all the E-steps from p. Then, we have

Proposition 6.9 The map π gives a bijection P2(λ/μ) → Q1(λ/μ).

The following claim is the main part of the construction of φ:

Proposition 6.10 There exists a bijection ϕt : Q̂t (λ/μ) → Qt+1(λ/μ) for any t =
1, . . . , t0 − 1.
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The map ϕt is defined by using the 2t -folding. See (6.8). Applying the bijections
ϕ1, ϕ2, . . . repeatedly, we obtain a bijection ϕ : Q1(λ/μ) → R(λ/μ), where

R(λ/μ) :=
t0⊔

t=1

(Qt (λ/μ) − Q̂t (λ/μ)). (6.4)

Furthermore, we have

Proposition 6.11 The map π gives a bijection P(λ/μ) → R(λ/μ).

Thanks to Propositions 6.9–6.11, we now have a bijection φ by the commutative
diagram,

P2(λ/μ)

π

φ

P (λ/μ)

π

Q1(λ/μ)
ϕ

R(λ/μ).

(6.5)

Then, Proposition 5.1 follows from

Proposition 6.12 The map φ is weight-preserving.

6.3 Proof of Proposition 6.9

We use the following lemma which immediately follows by the definition of s(αi)

and s(βi):

Lemma 6.13 For any i = 1, . . . , l,

(1) αi(0) − βj (0) is even if and only if s(αi) − i ≡ s(βj ) − j .
(2) αi(0) − αj (0) is even if and only if s(αi) − i ≡ s(αj ) − j .
(3) βi(0) − βj (0) is even if and only if s(βi) − i ≡ s(βj ) − j .

First, we prove that

π(P2(λ/μ)) ⊂ Q1(λ/μ). (6.6)

Let p ∈ P2(λ/μ) and set (α;β) = π(p). It holds for any i = 1, . . . , l that

#{j | αi(0) ≤ βj (0)} ≥ i. (6.7)

Therefore, (1)t (for t = 1) is satisfied. By Condition (ii) of P2(λ/μ), (2)t and (3)t
are satisfied, and by Condition (i), (4)t is satisfied.

We prove Condition (6)t for βi by induction with respect to i. The proof for αi is
similar. For i = 1, we have s(β1) = m1(β1) = 0. Assume s(βi−1) ≡ m1(βi−1). The
following four cases should be considered:

(a) (αi−1, βi) is an even 1-hole, and (αi−2, βi−1) is an even 1-overlap.
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(b) (αi−1, βi) is an even 1-hole, and (αi−2, βi−1) is not an even 1-overlap.
(c) (αi−1, βi) is not an even 1-hole, and (αi−2, βi−1) is an even 1-overlap.
(d) (αi−1, βi) is not an even 1-hole, and (αi−2, βi−1) is not an even 1-overlap.

By the definition of m1(βi), we have m1(βi) = m1(βi−1) + 2 for (a), m1(βi−1) + 1
for (b) and (c), and m1(βi−1) for (d). On the other hand, by Condition (i) of P2(λ/μ),
we have

Lemma 6.14 αi−1(0) − βi−1(0) is odd if and only if one and the only one of
(αi−2, βi−1) and (αi−1, βi) is an even overlap.

By Lemma 6.14,

βi(0) − βi−1(0) = (βi(0) − αi−1(0)) + (αi−1(0) − βi−1(0))

is odd for (a) and (d), and even for (b) and (d). By the assumption of induction and
Lemma 6.13 (3), we obtain s(βi) ≡ m1(βi) in each case.

Next, we define the inverse map π−1 : Q1(λ/μ) → P2(λ/μ). For any (α;β) ∈
Q1(λ/μ), set p := π−1(α;β) as follows: Let pi := [αi,βj ] denote the path defined
by αi , βj and the consecutive E-steps from αi(0) to βj (0).

Step 1. First, for any i such that (αi, βi+1) is an even 1-overlap, set pi = [αi,βi+1]
(see p1, p5, p6, and p7 in Fig. 10 for examples). Let 
1 (resp. 
2) be the set
of all i such that αi (resp. βi ) do not form even 1-overlaps.

Step 2. Next, for any i ∈ 
1 ∩ 
2 such that h := αi(0) − βi(0) is even (and non-
positive by (1)t ), set pi = [αi,βi] (see p3 and p4 in Fig. 10 for examples).
Let 
′

1 ⊂ 
1 (resp. 
′
2 ⊂ 
2) be the set of all i such that h are not even.

Step 3. Finally, for any i ∈ 
′
1 ∩ 
′

2, there exists some k > 0 such that h′ :=
αi(0) − βi−k(0) < 0, by (6.7) and the previous steps. Let k be the mini-
mum of such numbers. Since (αi−k′ , βi−k′+1) for all 1 ≤ k′ ≤ k is an even
1-overlap, we have m1(αi) = mt(βi−k) + k. Then, by Condition (6)t , h′ is
even by Lemma 6.13 (1). Set pi = [αi,βi−k] (see p2 and p8 in Fig. 10 for
examples).

Next, we prove that p satisfies Condition (i) of P2(λ/μ). Namely, for any in-
tersecting pair (pi,pj ) (i < j ), we prove that αi(0) − αj (0) is odd. The following
two cases should be considered (see Fig. 10; the other cases do not occur by Condi-
tion (4)t ):

(A) The case where pi is defined in Step 1 and pj is defined in Step 3. In
this case, all pk (i < k < j ) are defined in Step 1, by the definition of pj .
Therefore, (αk,βk+1) for any i < k < j is an even 1-overlap, and we have
m1(αj ) = m1(αi) + j − i − 1. Thus, αi(0) − αj (0) is odd by Condition (6)t
and Lemma 6.13 (2).

(B) The case where (pi,pj ) is a pair of paths defined in Steps (2) and (3). In this
case, pj = [αj ,βi+1] and (αi, βi+1) is a 1-overlap (otherwise, it contradicts
to (4)t ). Moreover, (αi, βi+1) is odd (otherwise, pi should be [αi,βi+1]). Since
αj (0) − βi+1(0) is even by pj , we obtain that αi(0) − αj (0) is odd.

Finally, the facts that p satisfies Condition (ii) of P2(λ/μ) and π−1 is the inverse
of π are obvious by construction.
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6.4 Proof of Proposition 6.11

Set

m∞(αi) = m∞(βi) := #{j | j ≤ i and (αj−1, βj ) is an even 1-hole}.
Then

Lemma 6.15 Let t = 1, . . . , t0. For any (α;β) ∈ H(λ/μ), (α;β) ∈ Qt(λ/μ)\
Q̂t (λ/μ) if and only if (α;β) satisfies conditions (1)t , (2)t , (4)t , (5)t and the fol-
lowing condition:
(6)′t s(αi) ≡ s(βi) ≡ m∞(αi) ≡ m∞(βi).

Proof (⇒) If (α;β) ∈ Qt(λ/μ)\Q̂t (λ/μ), then

mt(αi) = mt(βi) = m∞(αi) = m∞(βi),

and we obtain (6)′t .
(⇐) We show that (α;β) does not have any even (2t − 1)-overlap. If a pair

(αi, βi+2t−1) is an even (2t −1)-overlap, then s(αi) �≡ s(βi+2t−1) by Lemma 6.13 (1).
On the other hand, there does not exist any 1-hole between αi and βi+2t−1, which im-
plies m∞(αi) = m∞(βi+2t−1), and it contradicts to (6)′t . Therefore, (7)t is satisfied,
and moreover, we also have m∞(αi) = mt(αi) and m∞(βi) = mt(βi). Thus, (6)t is
satisfied. Finally, (3)t is satisfied because every I2t−1-region V of (α;β) satisfies
n(V ) = 0 by the definition of n(V ). �

By Lemma 6.15, the set R(λ/μ) in (6.4) is described as follows:

R(λ/μ) = {(α;β) ∈ H(λ/μ) | (α;β) satisfies (1)t , (2)t and (6)′t }.
Next, we prove π(P (λ/μ)) ⊂ R(λ/μ). Conditions (1)t and (2)t are satisfied, sim-

ilarly as in the proof of (6.6). We prove (6)′t . Since pi = [αi,βi], αi(0) − βi(0)

is even. Thus, s(αi) ≡ s(βi) by Lemma 6.13 (1). We prove s(αi) ≡ m∞(αi) by
induction with respect to i. The proof for s(αi) ≡ m∞(βi) is similar. For i = 1,
we have s(β1) = m∞(α1) = 0, and we obtain s(α1) ≡ s(β1) ≡ m∞(α1). Assume
s(αi−1) ≡ m∞(αi−1). Then the following two cases should be considered:

(a) (αi−1, βi) is an even 1-hole.
(b) (αi−1, βi) is not an even 1-hole.

By the definition, m∞(αi) = m∞(αi−1) + 1 for (a) and m∞(αi−1) for (b). On the
other hand, we have s(βi) �≡ s(αi−1) for (a), and s(βi) ≡ s(αi−1) for (b). Therefore,
we obtain s(αi) ≡ s(βi) ≡ m∞(αi) in each case.

Finally, we define the inverse map π−1 : R(λ/μ) → P(λ/μ) by p := π−1(α;β),
pi := [αi,βi] (i = 1, . . . , l) for any (α;β) ∈ R(λ/μ). The path pi is well defined,
because of (6)′t and Lemma 6.13 (1). If (pi,pi+1) is ordinarily intersecting, then we
have s(αi) �≡ s(αi+1) by Lemma 6.13 (2) and m∞(αi) = m∞(αi+1), which contra-
dicts to (6)′t . Therefore, p satisfies Condition (i) of P(λ/μ). The facts that p satisfies
Condition (ii) of P(λ/μ) and π−1 is the inverse of π are obvious.
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6.5 Definition of ϕt

Here, we give the definition of the map ϕt in Proposition 6.10. Fix k = 2, . . . , l.
Suppose that (α;β) ∈ H(λ/μ) has an even number 2m of even (k − 1)-overlaps
(αi1, βi1+k−1), . . . , (αi2m

,βi2m+k−1) (i1 < · · · < i2m). We say (αij , βij +k−1) (1 ≤
j ≤ 2m) is of R-type if j is odd, and of L-type if j is even. Let (αi, βi+k−1) and
(αi′ , βi′+k−1) be a nearest pair of even (k − 1)-overlaps with i = ij , i′ = ij+1. Then,
we say the height 0 units U ⊂ S+ between βi′+k−1 and α∗

i and their duals U∗ ⊂ S−
are of LR-type if j is odd, and of RL-type otherwise. Remark that any height 0 IIk-unit
is either of LR-type or RL-type.

The next lemma is the key for the definition and the bijectivity of ϕt .

Lemma 6.16 (α;β) ∈ H(λ/μ) does not have any odd Ik−1-region if and only if the
following conditions are satisfied:

(i) (α;β) has an even number of even (k − 1)-overlaps.
(ii) No connected component of ŨIIk of (α;β) contains height 0 IIk-units of both

LR- and RL-type, simultaneously.
(iii) Any connected component of ŨIIk of (α;β) which contains a height 0 IIk-unit of

LR-type is a IIk-region.

The proofs of the lemma requires some graph-theoretical consideration, and it is
given in Appendix 1.

Now, let (α;β) ∈ Q̂t (λ/μ) and let V be a II2t -region of (α;β). Since (α;β) does
not have any odd I2t−1-region by (3)t , one of the following is satisfied by Lemma 6.16
with k = 2t :

(a) All the height 0 units in V are of LR-type.
(b) All the height 0 units in V are of RL-type.

If (a) is satisfied, we say V is of LR-type. See Fig. 11 for an example. We define the
map ϕt in Proposition 6.10 by (the composition of ) the 2t -foldings with respect to all
the II2t -regions V1, . . . , Vp of LR-type of (α;β), i.e.,

ϕt : (α;β) �→ ε2t

V1
◦ · · · ◦ ε2t

Vp
(α;β). (6.8)

6.6 Proof of Proposition 6.10

To begin with, we give two lemmas.

Lemma 6.17 Let (α;β) ∈ Q̂t (λ/μ) and W = V1 ∪ · · · ∪ Vp for Vi ’s in (6.8). Then,

(1) αi intersects with W at height 0 if and only if

#{j | j ≤ i and (αj ,βj+2t−1) is an even (2t − 1)-overlap}

is odd.
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Fig. 11 An example of (α;β) ∈ Q̂t (λ/μ), its I2t−1-regions V1, V3 and II2t -regions V2, V4, V5, and the
map ϕt for t = 1. The even (2t − 1)-overlaps (α1, β2) and (α5, β6) are of R-type, (α3, β4) and (α7, β8)

are of L-type, and V2 and V5 are II2t -regions of LR-type

(2) βi intersects with W at height 0 if and only if

#{j | j < i and (αj−2t+1, βj ) is an even (2t − 1)-overlap}
is odd.

Proof We prove it for (1). Let U ⊂ W be a height 0 unit which intersects with αi .
Since U is of LR-type, and the number of the even (2t − 1)-overlaps (αj ,βj+2t−1)

to the right of U is odd.
Conversely, suppose the above number is odd. Then, the unit U whose right ver-

tex intersects with αi is of LR-type. Moreover, U is a II2t -unit because βi+2t (0) ≤
αi(0) − 2, by Conditions (4)t and (6)t . Then, U is included in W by Lemma 6.16;
therefore, αi intersects with W . �

Lemma 6.18 Let V be a IIk-region of (α;β) ∈ H(λ/μ) and (α′;β ′) = εk
V (α;β).

Then,



284 J Algebr Comb (2007) 26: 253–290

(1) For any r = 1, . . . , k, both αi and βi+r intersect with V at height 0 and αi(0) ≥
βi+r (0) + 2 if and only if both α′

i+r−k and β ′
i+k intersect with V at height 0 and

α′
i+r−k(0) ≤ β ′

i+k(0).
(2) Suppose that (α;β) does not have any odd I2k−1-region. Then, V ′ is an odd

II1-region of (α;β) if and only if V ′ is an odd II1- or odd I2k−1-region of (α′;β ′).

Proof (1) It is obtained by (6.3). (2) If V ′ is an odd II1-region of (α;β), then by
Lemma 6.5 (2), V ′ ⊂ V or V ′ ∩ V = ∅. In the former case, V ′ is a I2k−1-region of
(α′;β ′) by Proposition 6.6 (3). In the latter case, V ′ is also a II1-region of (α′;β ′).
The converse is similar. �

Now, let us prove ϕt : Q̂t (λ/μ) → Qt+1(λ/μ) is a bijection. First, we prove
ϕt (Q̂t (λ/μ)) ⊂ Qt+1(λ/μ). Set (α′;β ′) = ϕt (α;β). Let V1, . . . , Vp be the set of
all the II2t -regions of LR-type of (α;β), and set W = V1 ∪ · · · ∪ Vp . We remark that
Vi is a I2t -region of (α′;β ′) by Proposition 6.6 (3).
• (1)t+1. By the definition of the k-folding and Condition (1)t of (α;β), we have

α′
i (0) ≤ αi(0) ≤ βi(0) ≤ β ′

i (0).
• (2)t+1 and (3)t+1. This is obtained by Conditions (2)t and (4)t of (α;β) and

Lemma 6.18 (2).
• (4)t+1. Suppose that (α′

i , β
′
i+2t+1) is a 2t+1-overlap of (α′;β ′). Since (αi, βi+2t+1)

is not a 2t+1-overlap by (4)t , α′
i and β ′

i+2t+1 should intersect with W at height 0
(otherwise, (αi, βi+2t+1) = (α′

i , β
′
i+2t+1)). As (6.3), we have α′

i (0) = β∗
i+2t (0) and

β ′
i+2t+1(0) = α∗

i+2t (0), and therefore, βi+2t (0) ≤ αi+2t (0) − 2, which contradicts to
Condition (1)t of (α;β).

• (5)t+1. Since (α;β) satisfies (7)t , there exists an even (2t − 1)-overlap
(αi, βi+2t−1). By Condition (4)t , (αi−1, βi+2t−1) is not a 2t -overlap. If αi−1(0) =
βi+2t−1(0) + 1, then mt(αi−1) = mt(βi+2t−1), therefore, αi−1(0) ≡ βi+2t−1(0) by
Condition (6)t , which is a contradiction. Thus, αi−1(0) ≥ βi+2t−1(0) + 2, and αi−1
and βi+2t−1 intersect with W at height 0. Therefore, by Lemma 6.18 (1), we have
α′

i−1(0) ≤ β ′
i+2t−1(0), namely, (α′

i−1, β
′
i+2t−1) is a 2t -overlap.

• (6)t+1. We prove s(α′
i ) = mt(α

′
i ) (the proof for s(β ′

i ) = mt(β
′
i ) is similar).

Case 1. If αi does not intersect with W at height 0, which implies α′
i (0) = αi(0),

then s(α′
i ) = s(αi). On the other hand, we have

mt+1(α
′
i ) − mt(αi) = −#{j | j ≤ i, (αj ,βj+2t−1) is an even (2t − 1)-overlap},

(6.9)
by Lemma 6.18 (1) and Condition (4)t of (α;β). Moreover, the right-hand side of
(6.9) is even by Lemma 6.17 (1). By Condition (6)t of (α;β), we obtain mt+1(α

′
i ) ≡

mt(αi) ≡ s(αi) = s(α′
i ).

Case 2. If αi intersects with W at height 0, which implies that α′
i (0) = β∗

i+2t (0),
then s(α′

i ) = s(βi+2t ) + 1. On the other hand, we have

mt+1(α
′
i ) − mt(βi+2t ) = −#{j | j < i, (αj−2t+1, βj ) is an even (2t − 1)-overlap},

(6.10)
by Lemma 6.18 (1) and Condition (4)t of (α;β). Moreover, the right-hand side of
(6.9) is odd by Lemma 6.17 (1). By Condition (6)t of (α;β), we obtain mt+1(α

′
i ) �≡

mt(βi+2t ) ≡ s(βi+2t ) �≡ s(α′
i ).



J Algebr Comb (2007) 26: 253–290 285

Next, let us define the inverse map

ϕ−1
t : Qt+1(λ/μ) → Q̂t (λ/μ)

as follows: For any (α′;β ′) ∈ Qt+1(λ/μ), set

ϕ−1
t : (α′;β ′) �→ (α;β) := ε2t

V1
◦ · · · ◦ ε2t

Vp
(α′;β ′),

where V1, . . . , Vp are the set of all the I2t -regions of (α′;β ′). By (5)t+1, we have
p ≥ 1. Set W = V1 ∪ · · · ∪ Vp . We prove that (α;β) ∈ Q̂t (λ/μ).

• (1)t . By (6.3) wherein (αi), (α′
i ) and (βi), (β ′

i ) are interchanged, αi(0) =
β ′∗

i+2t (0) or α′
i (0), and βi(0) = α′∗

i−2t (0) or β ′
i (0). Only the case (αi(0), βi(0)) =

(β ′∗
i+2t (0), α′∗

i−2t (0)) is nontrivial. By (4)t+1, we have α′
i−2t (0) > β ′

i+2t (0). Then,
we have α′

i−2t (0) ≤ β ′
i+2t (0) by the same argument in the proof of (5)t+1 of ϕt (α;β).

• (2)t . This is because of Lemma 6.18 (2) and the Conditions (2)t+1 and (3)t+1 of
(α′;β ′).
• (4)t . Suppose that (α;β) has a 2t -overlap (αi, βi+2t ). By Proposition 6.6 (2),

V1, . . . , Vp are II2t -regions of (α;β), and therefore, αi and βi+2t do not intersect
with W at height 0 by Lemma 6.2 (3). Then, (α′

i , β
′
i+2t ) is also a 2t -overlap because

α′
i (0) = αi(0) and β ′

i+2t (0) = βi+2t (0), which implies that there exists a height 0
I2t -unit U �⊂ W of (α′;β) between α′

i and β ′
i+2t , and then contradicts to the definition

of W .
• (3)t and (7)t . This is the most non-trivial part of the proof of Proposition 6.10. We

prove that Conditions (i)–(iii) in Lemma 6.16 (for k = 2t ) are satisfied.
Let us study when a pair (αi, βi+2t−1) is an even (2t − 1)-overlap. There are four

cases A–D to be considered. We prove that (αi, βi+2t−1) is even only in Cases A
and B.

A. The case where αi does not intersect with W at height 0 and βi+2t−1 intersects
with W at height 0. In this case, we have β∗

i+2t−1(0) = α′
i−1(0) and αi(0) =

α′
i (0), and then (αi, βi+2t−1) is a (2t − 1)-overlap. We also have mt+1(α

′
i ) =

mt+1(α
′
i−1). This is because (α′

i−1, β
′
i ) is not an even 1-hole, and (α′

i , β
′
i+2t+1−1

)

is not an (even) (2t+1 − 1)-overlap (otherwise, (α′
i , β

′
i+2t ) is also a 2t -overlap,

and αi intersects with W at height 0, which contradicts to the assumption). There-
fore, s(α′

i ) ≡ s(α′
i−1), i.e., α′

i (0) �≡ α′
i−1(0). So, (αi, βi+2t−1) is an even (2t − 1)-

overlap.
B. The case where αi intersects with W at height 0 and βi+2t−1 does not intersect

with W at height 0. As in Case A, one can show that (αi, βi+2t−1) is an even
(2t − 1)-overlap.

C. The case where both αi and βi+2t−1 intersect with W at height 0. In this case, we
have β∗

i+2t−1(0) = α′
i−1(0), α∗

i (0) = β ′
i+2t (0), and (α′

i−1, β
′
i+2t−1), (α′

i , β
′
i+2t )

are 2t -overlaps. If (αi, βi+2t−1) is a (2t − 1)-overlap, then there does not ex-
ist any path at height 0 between β ′

i+2t (0) and α′
i−1(0). We have mt+1(α

′
i−1) =

mt+1(β
′
i+2t ), therefore, s(α′

i−1) ≡ s(β ′
i+2t ), namely, (αi, βi+2t−1) is odd.

D. The case where both αi and βi+2t−1 do not intersect with W at height 0. In this
case, we have αi(0) = α′

i (0) and β ′
i+2t−1(0) = βi+2t−1(0). If (αi, βi+2t−1) is a

(2t − 1)-overlap, then there does not exist any path at height 0 between α′
i and
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β ′
i+2t−1 because of the assumption. Then we have mt+1(β

′
i+2t−1) ≡ mt+1(α

′
i ),

therefore, (αi, βi+2t−1) is odd.

To summarize, the even (2t −1)-overlaps of L-type (resp. R-type) of (α;β) are the
ones in Case A (resp. Case B); furthermore, the number of the even (2t − 1)-overlaps
of (α;β) is even, and a height 0 II2t -unit U of (α;β) is of LR-type if and only if
U ⊂ W . Also, W is a union of II2t -regions of (α;β) by Proposition 6.6 (2). Thus,
Conditions (i)–(iii) in Lemma 6.16 (for k = 2t ) are satisfied.
• (5)t . If (αi, βi+2t−1) is an overlap, then (αi, βi+2t−1) is also an overlap, and there-

fore, (5)t holds.
• (6)t . We prove s(αi) ≡ mt(αi).

1. The case where αi does not intersect with W at height 0. This is the cases A and D
in the proof of (3)t . By αi(0) = α′

i (0), we have s(αi) = s(α′
i ). Since every even

(2t+1 − 1)-overlap of (α′;β ′) intersects with W at height 0, we have (αi, βi+1) is
an even 1-hole by Lemma 6.18 (1). Therefore,

mt(αi) − mt+1(α
′
i ) = #{j | j ≤ i, (αj ,βj+2t−1) is an even (2t − 1)-overlap}.

(6.11)
From the proof of (3)t , the right-hand side of (6.11) is even. Thus, mt(αi) ≡ s(αi).

2. The case where αi intersects with W at height 0. This is the cases B and C in the
proof of (3)t . By α∗

i (0) = β ′
i+2t (0) and β ′

1(0) = β1(0), we have s(αi) �≡ s(β ′
i+2t ).

As in the former case, we have

mt(αi) − mt+1(β
′
i+2t ) = #{j | j ≤ i, (αj ,βj+2t−1) is an even (2t − 1)-overlap},

(6.12)
and the right-hand side of (6.12) is odd. Thus, mt(αi) �≡ mt+1(β

′
i+2t ), which im-

plies mt(αi) ≡ s(αi).

Finally, the fact that π−1 is the inverse of π is obvious by construction.

6.7 Proof of Proposition 6.12

Finally, we show that φ is weight-preserving and then complete the proof of Propo-
sition 5.1.

For p ∈ P2(λ/μ) and p′ = φ(p) ∈ P(λ/μ), we shall show that z
p
a = z

p′
a .

Let (α;β) ∈ Q1(λ/μ) and (α′;β ′) ∈ R(λ/μ) be the corresponding ones to p and
p′ under the identification π . We decompose the monomial z

p
a in (3.4) into two parts

as z
p
a = HE, where H is the factor coming from the lower and upper paths (α;β)

for p, and E is the one from the height 0 parts (E-steps) of p. We do the same for z
p′
a

as z
p′
a = H ′E′.

By a similar argument for the proof of Proposition 4.12, one obtains that

H ′ = Hδ−1, (6.13)

where

δ =
l∏

i=1

(
αi(0)−1∏
k=α′

i (0)

zn,a−2k

β ′
i (0)−1∏

k=βi(0)

zn,a−2k

)
=

l∏
i=1

β ′
i (0)−1∏

k=βi(0)

zn,a−2kzn,a−2k−2. (6.14)
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Therefore, it is enough to show that

E′ = Eδ. (6.15)

To see it, we notice two facts following from (6.14), and the definitions of E, E′,
and φ:

Fact 1. Both E′ and Eδ are products of the factors zn,a−2kzn,a−2k+2 with k ∈ Z.
Fact 2. For each k ∈ Z, the total degree of zn,a−2k and zn,a−2k for E′ and the one

for Eδ are equal.
Now, the equality (6.15) easily follows from these facts.

Appendix 1 Proof of Lemma 6.16

In this section, we prove Lemma 6.16. To do so, we use a lemma (Lemma 7.3) for a
certain graph.

Let H ⊂ R
2 be the upper half plane. A graph � consists of a set V (�) of vertices

on the boundary of H , denoted by ×, and a set A(�) of arcs in H which satisfies the
following conditions:

(i) An arc in A(�) connects two vertices in V (�).
(ii) In each side of a vertex v, the number of the vertices which are connected with

v is at most one.
(iii) The arcs are nonintersecting with each other at H\V (�).

The vertices are labeled as L,R,L,R, . . . from left to right. The following is an
example of a graph:

(7.1)
Let v, v′ ∈ V (�). If v and v′ are connected by an arc in A(�), then we write v � v′.
Then � generates an equivalence relation ∼ in V (�). We call each equivalence class
S of V (�) a segment of �. We say that a segment S is even (resp. odd) if the number
of vertices |S| is even (resp. odd).

Let S and S′ be segments of �, and let v1 and v2 be the leftmost and the rightmost
vertices in S. If all the vertices v ∈ S are between v1 and v2, then we say that S′ is
inside S. Let us write S′ � S if S′ is inside S.

Lemma 7.1 A graph � does not have any odd segment if and only if each segment S

of � satisfies one of the following conditions:

(1) The leftmost vertex is L and the rightmost vertex is R.
(2) The leftmost vertex is R and the rightmost vertex is L.

Proof (⇒) Let S be an even segment of � and let v1 and v2 be its leftmost and the
rightmost vertices. We can show, by induction with respect to �, that the number
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h(S) of the vertices between v1 and v2 is even, which implies that S satisfies (1)
or (2).

(⇐) If � has an odd segment, then there exists an odd segment S which does not
have any odd segment inside. Since the number h(S) is odd, S satisfies neither (1)
nor (2). �

For any graph �, we define the dual graph �∗ = (V (�∗),A(�∗)) as follows: Let
V (�∗) be the set of all the vertices � which are placed between each nearest pair of
vertices in V (�), and the vertex ‘∞’ which is on the right to the rightmost vertex
of �. Let A(�∗) be the set of all the dotted arcs which connects each nearest pair of
vertices in V (�∗) without intersecting with the arcs in A(�∗). For example, the dual
graph �∗ of � in (7.1) is given as follows:

A segment S∗ of �∗ is similarly defined as that of �. We say the vertices of �∗
between L and R (resp. R and L) is of LR-type (resp. of RL-type).

Definition 7.2 Let S∗ be a segment of �∗. Then,

(1) We say that S∗ is mixed if it contains vertices of both LR-type and RL-type si-
multaneously, and unmixed otherwise. We say an unmixed segment S∗ is LR-type
(resp. RL-type) if it consists of vertices of LR-type (resp. RL-type) (also, ∞ may
be included).

(2) We say that S∗ is bounded if it does not contain ∞.

Lemma 7.3 A graph � does not have any odd segment if and only if the following
conditions are satisfied:

(i) |V (�)| is even.
(ii) �∗ is unmixed.

(iii) Any segment of LR-type of �∗ is bounded.

Proof (⇒) (ii) If there exists a mixed segment of �∗, then one of the following oc-
curs, which contradicts to Lemma 7.1:

(iii) If there exits an unmixed segment of LR-type which is not bounded, then there
exists an LR-type vertex w ∈ V (�∗) which belongs to the same segment with ∞.
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The number of all the vertices to the left of w is odd, which means that there exists
an odd segment of � to the left of w.

(⇐) If there exists an odd segment in �, then there exists a segment S of � that
satisfies one of the following conditions, by Lemma 7.1:

(1) Both the leftmost and the rightmost vertices of S are L.
(2) Both the leftmost and the rightmost vertices of S are R.

For example, suppose that S satisfies (1), and let v ∈ V (�∗) be the one right-next
to S. Then, one of the following occurs (by (i)):

Namely, if there exists an RL-type vertex v′ ∈ V (�∗) left-next to S, then v and v′
belongs to the same segment of �∗, otherwise, v belongs to the same segment with
the vertex ∞. The (2) case is similar. �

Now, let us prove Lemma 6.16. With any (α;β) ∈ H(λ/μ), we associate a graph
� as follows: Each vertex of � naturally corresponds to each even (k − 1)-overlaps
of (α;β). An arc of � connects a nearest pair of even (k − 1)-overlaps (under the
above correspondence) belonging to the same Ik−1-region. Then, an odd segment of
� corresponds to an odd Ik−1-region of (α;β). Furthermore, Conditions (i), (ii), and
(iii) of Lemma 7.3 are equivalent to the ones of Lemma 6.16 due to the complemen-
tarity of the Ik−1- and the IIk-units (Lemma 6.2 (4)). This completes the proof of
Lemma 6.16.
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