Base subsets of symplectic Grassmannians

Mark Pankov

Received: 5 April 2006 / Accepted: 22 November 2006 / Published online: 10 January 2007 © Springer Science + Business Media, LLC 2007

Abstract Let *V* and *V'* be 2n-dimensional vector spaces over fields *F* and *F'*. Let also $\Omega: V \times V \to F$ and $\Omega': V' \times V' \to F'$ be non-degenerate symplectic forms. Denote by Π and Π' the associated (2n - 1)-dimensional projective spaces. The sets of *k*-dimensional totally isotropic subspaces of Π and Π' will be denoted by \mathcal{G}_k and \mathcal{G}'_k , respectively. Apartments of the associated buildings intersect \mathcal{G}_k and \mathcal{G}'_k by so-called base subsets. We show that every mapping of \mathcal{G}_k to \mathcal{G}'_k sending base subsets to base subsets is induced by a symplectic embedding of Π to Π' .

Keywords Tits building · Symplectic Grassmannians · Base subsets

1 Introduction

An incidence geometry of rank *n* has the following ingredients: a set \mathcal{G} whose elements are called *subspaces*, a symmetric *incidence relation* on \mathcal{G} , and a surjective *dimension function*

dim: $\mathcal{G} \to \{0, 1, \dots, n-1\}$

such that the restriction of this function to every maximal flag is bijective (flags are sets of mutually incident subspaces).

A *Tits building* [12] is an incidence geometry together with a family of isomorphic subgeometries called *apartments* and satisfying a certain collection of axioms. One of these axioms says that for any two flags there is an apartment containing them.

M. Pankov (🖂)

Department of Mathematics and Information Technology, University of Warmia and Mazury, Żolnierska 14A, 10-561 Olsztyn, Poland e-mail: pankov@matman.uwm.edu.pl Let us consider an incidence geometry of rank *n* whose set of subspaces is denoted by \mathcal{G} . For every $k \in \{0, 1, ..., n-1\}$ we denote by \mathcal{G}_k the *Grassmannian* consisting of all *k*-dimensional subspaces. If this geometry is a building then the intersection of \mathcal{G}_k with an apartment is called *the shadow* of this apartment in \mathcal{G}_k [12]. In the projective and symplectic cases the intersections of apartments with Grassmannians are known as *base subsets* [8–10].

Let *f* be a bijective transformation of \mathcal{G}_k preserving the class of the shadows of apartments. It is natural to ask: can *f* be extended to an automorphism of the corresponding geometry? This problem was solved in [8] for buildings of type A_n , in this case *f* is induced by a collineation of the associated projective space to itself or the dual projective space (the second possibility can be realized only for the case when n = 2k + 1). A more general result can be found in [9].

In the present paper we show that the extension is possible for symplectic buildings. Note that apartment preserving transformations of the chamber set (the set of maximal flags) of a spherical building are induced by automorphisms of the corresponding complex; this follows from the results given in [1].

2 Symplectic geometry

Let V be a 2n-dimensional vector space over a field $F, n \ge 2$. Let also

$$\Omega: V \times V \to F$$

be a non-degenerate symplectic form. Denote by $\Pi = (P, \mathcal{L})$ the (2n - 1)-dimensional projective space associated with V (points are 1-dimensional subspaces of V and lines are defined by 2-dimensional subspaces).

We say that two points $p, q \in P$ are *orthogonal* and write $p \perp q$ if

$$p = \langle x \rangle, \quad q = \langle y \rangle \quad \text{and} \quad \Omega(x, y) = 0.$$

Similarly, two subspaces *S* and *U* of Π will be called *orthogonal* ($S \perp U$) if $p \perp q$ for any $p \in S$ and $q \in U$. The orthogonal complement to a subspace *S* (the maximal subspace orthogonal to *S*) will be denoted by S^{\perp} , if *S* is *k*-dimensional then the dimension of S^{\perp} is equal to 2n - k - 2 (throughout the paper the dimension is always assumed to be projective).

A base $\{p_1, \ldots, p_{2n}\}$ of Π is said to be *symplectic* if for each $i \in \{1, \ldots, 2n\}$ there exists unique $\sigma(i) \in \{1, \ldots, 2n\}$ such that

$$p_i \not\perp p_{\sigma(i)}$$

(p_i and $p_{\sigma(i)}$ are non-orthogonal).

A subspace *S* of Π is called *totally isotropic* if any two points of *S* are orthogonal; in other words, $S \subset S^{\perp}$. The latter inclusion implies that the dimension of a totally isotropic subspace is not greater than n - 1.

Now consider the incidence geometry of totally isotropic subspaces. For every symplectic base B the subgeometry consisting of all totally isotropic subspaces spanned $\textcircled{D}_{Springer}$

by points of *B* is *the symplectic apartment associated with B*. It is well-known that the incidence geometry of totally isotropic subspaces together with the family of all symplectic apartments is a building of type C_n .

For every $k \in \{0, 1, ..., n-1\}$ we write \mathcal{G}_k for the set of all k-dimensional totally isotropic subspaces, it is clear that \mathcal{G}_0 coincides with P. The set of all k-dimensional totally isotropic subspaces spanned by points of a symplectic base will be called the *base subset* of \mathcal{G}_k associated with (defined by) this base.

Proposition 1. Every base subset of G_k consists of

$$2^{k+1}\binom{n}{k+1}$$

elements.

Proof: Let $B = \{p_1, \ldots, p_{2n}\}$ be a symplectic base and \mathcal{B} be the associated base subset of \mathcal{G}_k . By definition, \mathcal{B} consists of all *k*-dimensional subspaces

$$\{p_{i_1}, \ldots, p_{i_{k+1}}\}$$

such that

$$\{i_1,\ldots,i_{k+1}\}\cap\{\sigma(i_1),\ldots,\sigma(i_{k+1})\}=\emptyset$$

There are 2n possibilities to choose p_{i_1} , then p_{i_2} can be chosen in 2n - 2 ways, and so on. Since the order of the points must not be taken into account, we obtain that \mathcal{B} has precisely

$$\frac{2n \cdot (2n-2) \dots (2n-2k)}{(k+1)!} = 2^{k+1} \binom{n}{k+1}$$

elements.

Proposition 2. For any two k-dimensional totally isotropic subspaces there is a base subset of G_k containing them.

Proposition 2 can be obtained by an immediate verification or can be drawn from the fact that for any two flags there is an apartment containing them.

3 Results

From this moment we suppose that V and V' are 2n-dimensional vector spaces over fields F and F' (respectively), $n \ge 2$, and

$$\Omega: V \times V \to F, \quad \Omega': V' \times V' \to F'$$

Description Springer

are non-degenerate symplectic forms. Let $\Pi = (P, \mathcal{L})$ and $\Pi' = (P', \mathcal{L}')$ be the (2n - 1)-dimensional projective spaces associated with V and V', respectively.

An injection $f: P \to P'$ is called an *embedding* of Π to Π' if it maps lines to subsets of lines and for any line $L' \in \mathcal{L}'$ there is at most one line $L \in \mathcal{L}$ such that $f(L) \subset L'$. An embedding is said to be *strong* if it sends independent subsets to independent subsets. Every strong embedding of Π to Π' is induced by a semilinear injection of Vto V' (with respect to a *monomorphism* of the underlying fields) preserving the linear independence [3–5].

Our projective spaces have the same dimension, and strong embeddings of Π to Π' (if they exist) map bases to bases. An example given in [6] shows that strong embeddings of Π to Π' cannot be characterized as mappings sending bases of Π to bases of Π' .

Theorem 1. If a mapping $f: P \to P'$ transfers symplectic bases to symplectic bases then f is a strong embedding of Π to Π' and for any $p, q \in P$

$$p \perp q \iff f(p) \perp f(q).$$

Since a surjective embedding is a collineation, we get the following.

Corollary. Every surjection of P to P' sending symplectic bases to symplectic bases is a collineation of Π to Π' preserving the orthogonality relation.

In what follows embeddings and collineations sending symplectic bases to symplectic bases will be called *symplectic*.

For every $k \in \{0, 1, ..., n-1\}$ we denote by \mathcal{G}_k and \mathcal{G}'_k the sets of k-dimensional totally isotropic subspaces of Π and Π' , respectively.

Let $f: P \to P'$ be a symplectic embedding of Π to Π' . For each $S \in \mathcal{G}_k$ the subspace spanned by f(S) is an element of \mathcal{G}'_k . The mapping

$$(f)_k: \mathcal{G}_k \to \mathcal{G}'_k$$
$$S \to \overline{f(S)}$$

is an injection sending base subsets to base subsets. If f is a collineation then every $(f)_k$ is bijective. Conversely, an easy verification shows that if $(f)_k$ is bijective for certain k then f is a collineation.

Theorem 2. If a mapping of \mathcal{G}_k to \mathcal{G}'_k $(1 \le k \le n-1)$ transfers base subsets to base subsets then it is induced by a symplectic embedding of Π to Π' .

Corollary. Every surjection of \mathcal{G}_k to \mathcal{G}'_k $(1 \le k \le n-1)$ sending base subsets to base subsets is induced by a symplectic collineation of Π to Π' .

Deringer 201

For $k = n - 1 \ge 2$ Theorem 2 was established in [10]. In the present paper it will be proved for the general case.

Our proof of Theorem 2 is based on elementary properties of so-called inexact subsets (Section 5). If k = n - 1 then all maximal inexact subsets are of the same type. The case when k < n - 1 is more complicated: there are two different types of maximal inexact subsets.

Two elements of \mathcal{G}_k , $k \ge 1$ are called *adjacent* if their intersection belongs to \mathcal{G}_{k-1} . We say that two elements of \mathcal{G}_k are *ortho-adjacent* if they are orthogonal and adjacent; this is possible only if k < n - 1. Using inexact subsets we characterize the adjacency and ortho-adjacency relations in terms of base subsets. This characterization shows that every mapping of \mathcal{G}_k to \mathcal{G}'_k sending base subsets to base subsets is adjacency and ortho-adjacency preserving (Section 7); after that arguments in the spirit of [2] give the claim (Section 8).

4 Proof of Theorem 1

A line of Π or Π' is said to be *hyperbolic* if it is not totally isotropic.

Lemma 1. Let $p_1, p_2, p \in P$ be distinct points such that the line p_1p_2 is hyperbolic and $p \in p_1p_2$. Then for any symplectic base B containing p_1, p_2

$$(B \setminus \{p_i\}) \cup \{p\} \quad i = 1, 2 \tag{1}$$

are symplectic bases.

Proof: Direct verification.

Lemma 2. Let $p_1, p_2, p \in P$ be distinct points. If there exists a symplectic base B such that $p_1, p_2 \in B$ and (1) are symplectic bases then the line p_1p_2 is hyperbolic and $p \in p_1p_2$.

Proof: Let $B = \{p_1, p_2, ..., p_{2n}\}$ be such symplectic base. Since $(B \setminus \{p_1\}) \cup \{p\}$ is a symplectic base, $p \not\perp p_{\sigma(1)}$. Similarly, $p \not\perp p_{\sigma(2)}$. Thus there is no symplectic base containing p, $p_{\sigma(1)}$, $p_{\sigma(2)}$; this implies that $\sigma(1) = 2$. Therefore, the line $p_1 p_2$ is hyperbolic; moreover, it is the orthogonal complement to the subspace spanned by p_3, \ldots, p_{2n} . It is easy to see that $p \perp p_i$ for every $i \ge 3$. Thus p is a point on $p_1 p_2$.

Let $f: P \to P'$ be a mapping which sends symplectic bases of Π to symplectic bases of Π' . Since for any two points there is a symplectic base containing them, f is injective. By Lemmas 1 and 2, f transfers hyperbolic lines to subsets of hyperbolic lines; in particular,

$$p \not\perp q \implies f(p) \not\perp f(q).$$

Deringer 201

We prove that

$$p \perp q \implies f(p) \perp f(q).$$

Let $p, q \in P$ be distinct orthogonal points and *B* be a symplectic base containing them. There is a unique point $p' \in B$ such that $p \not\perp p'$. Then $f(p) \not\perp f(p')$ and all other points of f(B) are orthogonal to f(p); in particular, we get $f(p) \perp f(q)$.

Now we can show that f maps totally isotropic lines to subsets of totally isotropic lines. Let L be a totally isotropic line of Π and p_1, p_2 be distinct points on this line. We can choose a symplectic base $\{p_1, p_2, \ldots, p_{2n}\}$ such that L is the orthogonal complement to the subspace spanned by $p_1, p_2, \ldots, p_{2n-2}$. Then f(L) is contained in the line $f(p_1)f(p_2)$ which is the orthogonal complement to the subspace spanned by $f(p_1), f(p_2), \ldots, f(p_{2n-2})$.

We have established that every line goes to a subset of a line. So we need to show that f maps every base of Π to a base of Π' . We will use the following fact.

Fact 1. [7] If $g: P \to P'$ is an injection transferring lines to subsets of lines then for every subset $X \subset P$

$$g(\overline{X}) \subset \overline{g(X)};$$

in particular, $\overline{g(X)}$ coincides with $\overline{g(\overline{X})}$.

Let *B* be a base of Π . Then

$$\overline{f(B)} = \overline{f(\overline{B})} = \overline{f(P)}$$

The *f*-image of any symplectic base is a symplectic base, hence $\overline{f(P)} = P'$ and Π' is spanned by f(B). Since *f* is injective, f(B) is a base of Π' .

5 Inexact subsets

Let $B = \{p_1, \ldots, p_{2n}\}$ be a symplectic base of Π . Let also $1 \le k \le n - 1$ and \mathcal{B} be the base subset of \mathcal{G}_k associated with B. It was noted in the proof of Proposition 1 that \mathcal{B} consists of all *k*-dimensional subspaces

$$\{p_{i_1}, \ldots, p_{i_{k+1}}\}$$

such that

$$\{i_1,\ldots,i_{k+1}\}\cap\{\sigma(i_1),\ldots,\sigma(i_{k+1})\}=\emptyset.$$

If k = n - 1 then every element of \mathcal{B} contains precisely one of the points p_i or $p_{\sigma(i)}$ for each *i*.

We write $\mathcal{B}(+i)$ and $\mathcal{B}(-i)$ for the sets of all elements of \mathcal{B} which contain p_i or do not contain p_i , respectively. For any i_1, \ldots, i_s and j_1, \ldots, j_u belonging to $\{1, \ldots, 2n\}$ we define

$$\mathcal{B}(+i_1,\ldots,+i_s,-j_1,\ldots,-j_u) := \mathcal{B}(+i_1)\cap\cdots\cap\mathcal{B}(+i_s)\cap\mathcal{B}(-j_1)\cap\cdots\cap\mathcal{B}(-j_u).$$

The set of all elements of \mathcal{B} incident with a subspace S will be denoted by $\mathcal{B}(S)$ (this set may be empty). Then $\mathcal{B}(-i)$ coincides with $\mathcal{B}(S)$, where S is the subspace spanned by $B \setminus \{p_i\}$. It is trivial that

$$\mathcal{B}(+i) = \mathcal{B}(+i, -\sigma(i))$$

and for the case when k = n - 1 we have

$$\mathcal{B}(-i) = \mathcal{B}(+\sigma(i)) = \mathcal{B}(+\sigma(i), -i).$$

Let $\mathcal{R} \subset \mathcal{B}$. We say that \mathcal{R} is *exact* if there is only one base subset of \mathcal{G}_k containing \mathcal{R} ; otherwise, \mathcal{R} will be called *inexact*. If $\mathcal{R} \cap \mathcal{B}(+i)$ is not empty then we define $S_i(\mathcal{R})$ as the intersection of all subspaces belonging to \mathcal{R} and containing p_i , and we define $S_i(\mathcal{R}) := \emptyset$ if the intersection of \mathcal{R} and $\mathcal{B}(+i)$ is empty. If

$$S_i(\mathcal{R}) = p_i$$

for all i then \mathcal{R} is exact; the converse fails.

Lemma 3. Let $\mathcal{R} \subset \mathcal{B}$. Suppose that there exist distinct i, j such that

$$p_j \in S_i(\mathcal{R}) \text{ and } p_{\sigma(i)} \in S_{\sigma(j)}(\mathcal{R}).$$

Then \mathcal{R} is inexact.

Proof: On the line $p_i p_j$ we choose a point p'_i different from p_i and p_j . The line $p_{\sigma(i)}p_{\sigma(j)}$ contains a unique point orthogonal to p'_i ; we denote this point by $p'_{\sigma(j)}$. Then

$$(B \setminus \{p_i, p_{\sigma(j)}\}) \cup \{p'_i, p'_{\sigma(j)}\}$$

is a symplectic base. The associated base subset of \mathcal{G}_k contains \mathcal{R} and we get the claim.

Proposition 3. The subset $\mathcal{B}(-i)$ is inexact; moreover, if k < n-1 then this is a maximal inexact subset. In the case when k = n - 1, the inexact subset $\mathcal{B}(-i)$ is not maximal.

Proof: Let us take a point p'_i on the line $p_i p_{\sigma(i)}$ different from p_i and $p_{\sigma(i)}$. Then

$$(B \setminus \{p_i\}) \cup \{p'_i\}$$

Deringer 2015

is a symplectic base and the associated base subset of \mathcal{G}_k contains $\mathcal{B}(-i)$. Hence this subset is inexact.

Let k < n - 1. For any $j \neq i$ we can choose distinct

$$i_1,\ldots,i_k \in \{1,\ldots,2n\} \setminus \{i,j,\sigma(i),\sigma(j)\}$$

such that

$$\{i_1,\ldots,i_k\} \cap \{\sigma(i_1),\ldots,\sigma(i_k)\} = \emptyset$$

The subspaces spanned by

$$p_{i_1},\ldots,p_{i_k},p_j$$
 and $p_{\sigma(i_1)},\ldots,p_{\sigma(i_k)},p_j$

belong to $\mathcal{B}(-i)$. Since the intersection of these subspaces is p_i , we have

$$S_i(\mathcal{B}(-i)) = p_i \quad \text{if} \quad j \neq i. \tag{2}$$

Let U be an arbitrarily taken element of

$$\mathcal{B} \setminus \mathcal{B}(-i) = \mathcal{B}(+i).$$

This subspace is spanned by p_i and some p_{i_1}, \ldots, p_{i_k} . Since p_i is the unique point of U orthogonal to $p_{\sigma(i_1)}, \ldots, p_{\sigma(i_k)}, (2)$ shows that the subset

$$\mathcal{B}(-i) \cup \{U\} \tag{3}$$

is exact. This implies that the inexact subset $\mathcal{B}(-i)$ is maximal.

Now let k = n - 1. We take an arbitrary element $U \in \mathcal{B}(+i)$. There exists j such that $p_{\sigma(j)}$ does not belong to U. Then p_j is a point of the subspace

$$S_i(\mathcal{B}(-i) \cup \{U\}) = U.$$

Since $p_{\sigma(i)}$ belongs to every element of $\mathcal{B}(-i)$ and $p_{\sigma(i)}$ does not belong to U,

$$S_{\sigma(i)}(\mathcal{B}(-i)) = S_{\sigma(i)}(\mathcal{B}(-i) \cup \{U\})$$

contains $p_{\sigma(i)}$. By Lemma 3, the subset (3) is inexact and the inexact subset $\mathcal{B}(-i)$ is not maximal.

Proposition 4. *If* $j \neq i, \sigma(i)$ *then*

$$\mathcal{R}_{ij} := \mathcal{B}(+i, +j) \cup \mathcal{B}(+\sigma(i), +\sigma(j)) \cup \mathcal{B}(-i, -\sigma(j))$$

We remark that

$$\mathcal{R}_{ij} = \mathcal{B}(+i, +j) \cup \mathcal{B}(-i)$$

if k = n - 1.

Proof: Since

$$S_i(\mathcal{R}_{ij}) = p_i p_j$$
 and $S_{\sigma(j)}(\mathcal{R}_{ij}) = p_{\sigma(j)} p_{\sigma(i)}$,

Lemma 3 shows that \mathcal{R}_{ij} is inexact. We want to show that

$$S_l(\mathcal{R}_{ij}) = p_l \quad \text{if} \quad l \neq i, \sigma(j). \tag{4}$$

Let $l \neq i, j, \sigma(i), \sigma(j)$. If $k \ge 2$ then there exist

$$i_1,\ldots,i_{k-2} \in \{1,\ldots,n\} \setminus \{i,j,\sigma(i),\sigma(j),l,\sigma(l)\}$$

such that

$$\{i_1,\ldots,i_k\}\cap\{\sigma(i_1),\ldots,\sigma(i_k)\}=\emptyset;$$

the subspaces spanned by

$$p_{i_1}, \ldots, p_{i_{k-2}}, p_l, p_i, p_j$$
 and $p_{\sigma(i_1)}, \ldots, p_{\sigma(i_{k-2})}, p_l, p_{\sigma(i)}, p_{\sigma(j)}$

are elements of \mathcal{R}_{ij} intersecting in the point p_l . If k = 1 then the lines $p_l p_{\sigma(i)}$ and $p_l p_j$ are as required.

Now we choose distinct

$$i_1,\ldots,i_{k-1}\in\{1,\ldots,n\}\setminus\{i,j,\sigma(i),\sigma(j)\}$$

such that

$$\{i_1,\ldots,i_{k-1}\}\cap\{\sigma(i_1),\ldots,\sigma(i_{k-1})\}=\emptyset$$

and consider the subspace spanned by

$$p_{i_1}, \ldots, p_{i_{k-2}}, p_j, p_{\sigma(i)}.$$

This subspace intersects the subspaces spanned by

$$p_{i_1}, \ldots, p_{i_{k-1}}, p_j, p_i$$
 and $p_{i_1}, \ldots, p_{i_{k-1}}, p_{\sigma(i)}, p_{\sigma(j)}$

precisely in the points p_j and $p_{\sigma(i)}$, respectively. Since all these subspaces are elements of \mathcal{R}_{ij} , we get (4) for $l = j, \sigma(i)$.

Deringer

A direct verification shows that

$$\mathcal{B} \setminus \mathcal{R}_{ij} = \mathcal{B}(+i, -j) \cup \mathcal{B}(+\sigma(j), -\sigma(i)).$$

Thus for every $U \in \mathcal{B} \setminus \mathcal{R}_{ij}$ one of the following possibilities is realized:

(1) $U \in \mathcal{B}(+i, -j)$ intersects $S_i(\mathcal{R}_{ij}) = p_i p_j$ by p_i , (2) $U \in \mathcal{B}(+\sigma(j), -\sigma(i))$ intersects $S_{\sigma(j)}(\mathcal{R}_{ij}) = p_{\sigma(j)}p_{\sigma(i)}$ by $p_{\sigma(j)}$.

Since $p_{\sigma(j)}$ is the unique point of the line $p_{\sigma(j)}p_{\sigma(i)}$ orthogonal to p_i and p_i is the unique point on $p_i p_j$ orthogonal to $p_{\sigma(j)}$, the subset

$$\mathcal{R}_{ii} \cup \{U\}$$

is exact for each U belonging to $\mathcal{B} \setminus \mathcal{R}_{ii}$. Thus the inexact subset \mathcal{R}_{ii} is maximal. \Box

The maximal inexact subsets considered in Propositions 3 and 4 will be called of *first* and *second* type, respectively.

Proposition 5. Every maximal inexact subset is of first or second type. In particular, if k = n - 1 then each maximal inexact subset is of second type.

Proof: Let \mathcal{R} be a maximal inexect subset of \mathcal{B} , and let B' be another symplectic base of Π such that the associated base subset of \mathcal{G}_k contains \mathcal{R} . If certain $S_i(\mathcal{R})$ is empty then $\mathcal{R} \subset \mathcal{B}(-i)$. In the case when k = n - 1, this is impossible (the inexact subset $\mathcal{B}(-i)$ is not maximal). If k < n - 1 then the inverse inclusion holds (since our inexact subset is maximal).

Now suppose that each $S_i(\mathcal{R})$ is not empty. Denote by I the set of all i such that the dimension of $S_i(\mathcal{R})$ is non-zero. Since \mathcal{R} is inexact, I is non-empty. Suppose that for certain $l \in I$ the subspace $S_l(\mathcal{R})$ is spanned by $p_l, p_{j_1}, \ldots, p_{j_u}$ and

$$M_1 := S_{\sigma(i_1)}(\mathcal{R}), \dots, M_u := S_{\sigma(i_u)}(\mathcal{R})$$

do not contain $p_{\sigma(l)}$. Then p_l belongs to $M_1^{\perp}, \ldots, M_u^{\perp}$; on the other hand,

$$p_{j_1} \notin M_1^\perp, \ldots, p_{j_u} \notin M_u^\perp$$

and we have

$$M_1^{\perp} \cap \cdots \cap M_n^{\perp} \cap S_l(\mathcal{R}) = p_l.$$

Since $S_1(\mathcal{R}), \ldots, S_{2n}(\mathcal{R})$ and their orthogonal complements are spanned by points of the base B', the point p_l belongs to B'. The fact that $B \neq B'$ implies the existence of $i \in I$ and $j \neq i, \sigma(i)$ such that

$$p_i \in S_i(\mathcal{R})$$
 and $p_{\sigma(i)} \in S_{\sigma(j)}(\mathcal{R})$.

Then $\mathcal{R} = \mathcal{R}_{ij}$.

Maximal inexact subsets of the same type have the same cardinality. These cardinalities will be denoted by $c_1(k)$ and $c_2(k)$, respectively. An immediate verification shows that each of the following possibilities

$$c_1(k) = c_2(k), c_1(k) < c_2(k), c_1(k) > c_2(k)$$

is realized for suitable k.

6 Complement subsets

Let \mathcal{B} be as in the previous section. We say that $\mathcal{R} \subset \mathcal{B}$ is a *complement subset* if $\mathcal{B} \setminus \mathcal{R}$ is a maximal inexact subset. A complement subset is said to be of *first* or *second* type if the corresponding maximal inexact subset is of first or second type, respectively. The complement subsets for the maximal inexact subsets from Propositions 3 and 4 are

$$\mathcal{B}(+i)$$
 and $\mathcal{B}(+i,-j) \cup \mathcal{B}(+\sigma(j),-\sigma(i))$.

If k = n - 1 then the second subset coincides with

$$\mathcal{B}(+i, +\sigma(j)) = \mathcal{B}(+i, +\sigma(j), -j, -\sigma(i)).$$

In the case when k = n - 1 = 1, a complement subset has one element only.

Lemma 4. Let $k = n - 1 \ge 2$. Then $S, U \in \mathcal{B}$ are adjacent if and only if there are precisely $\binom{n-1}{2}$ distinct complement subsets of \mathcal{B} containing both S and U.

Proof: Denote by *m* the dimension of $S \cap U$. The complement subset $\mathcal{B}(+i, +j)$ contains our subspaces if and only if p_i , p_j belong to $S \cap U$. Thus there are precisely $\binom{m+1}{2}$ distinct complement subsets of \mathcal{B} containing *S* and *U*.

Lemma 5. Let k < n - 1 and \mathcal{R} be a complement subset of \mathcal{B} . If \mathcal{R} is of first type then there are precisely 4n - 3 distinct complement subsets of \mathcal{B} which do not intersect \mathcal{R} . If \mathcal{R} is of second type then there are precisely 4 distinct complement subsets of \mathcal{B} which do not intersect \mathcal{R} .

To prove Lemma 11 we use the following.

Lemma 6. Let k < n - 1 and i, i', j, j' be elements of $\{1, ..., 2n\}$ such that $i \neq j$ and $i' \neq j'$. If the intersection of

$$\mathcal{B}(+i,-j)$$
 and $\mathcal{B}(+i',-j')$

is empty then one of the following possibilities is realized: $i' = \sigma(i)$, i' = j, j' = i.

Proof: Direct verification.

Proof of Lemma 5. Let us fix $l \in \{1, ..., 2n\}$ and consider the complement subset $\mathcal{B}(+l)$. If $\mathcal{B}(+i)$ is disjoint with $\mathcal{B}(+l)$ then $i = \sigma(l)$. If for some $i, j \in \{1, ..., 2n\}$ the complement subset

$$\mathcal{B}(+i,-j) \cup \mathcal{B}(+\sigma(j),-\sigma(i))$$

does not intersect $\mathcal{B}(+l)$ then one of the following possibilities is realized:

- (1) $i = \sigma(l)$, the condition $j \neq i, \sigma(i)$ shows that there are precisely 2n 2 possibilities for *j*;
- (2) j = l and there are precisely 2n 2 possibilities for *i* (since $i \neq j, \sigma(j)$).

Now fix $i, j \in \{1, ..., 2n\}$ such that $j \neq i, \sigma(i)$ and consider the associated complement subset

$$\mathcal{B}(+i,-j) \cup \mathcal{B}(+\sigma(j),-\sigma(i)).$$
(5)

There are only two complement subsets of the first type disjoint with (5):

$$\mathcal{B}(+\sigma(i))$$
 and $\mathcal{B}(+j)$.

If

$$\mathcal{B}(+i', -j') \cup \mathcal{B}(+\sigma(j'), -\sigma(i'))$$

does not intersect (5) then one of the following two possibilities is realized:

i' = j, j' = i or $i' = \sigma(i)$, $j' = \sigma(j)$

(see Lemma 12).

7 Main lemma

Let $f: \mathcal{G}_k \to \mathcal{G}'_k$ $(1 \le k \le n-1)$ be a mapping which sends base subsets to base subsets. Since for any two elements of \mathcal{G}_k there exists a base subset containing them (Proposition 2) and the restriction of f to every base subset of \mathcal{G}_k is a bijection to a base subset of \mathcal{G}'_k , the mapping f is injective.

Throughout the section we suppose that $n \ge 3$. In this section the following statement will be proved.

Lemma 7 (Main Lemma). Let $S, U \in G_k$. Then S and U are adjacent if and only if f(S) and f(U) are adjacent. Moreover, for the case when k < n - 1, the subspaces S and U are ortho-adjacent if and only if the same holds for f(S) and f(U).

Springer

Let \mathcal{B} be a base subset of \mathcal{G}_k containing S and U. Then $\mathcal{B}' := f(\mathcal{B})$ is a base subset of $\mathcal{G}_k(\Omega')$ and the restriction $f|_{\mathcal{B}}$ is a bijection to \mathcal{B}' .

Lemma 8. A subset $\mathcal{R} \subset \mathcal{B}$ is inexact if and only if $f(\mathcal{R})$ is inexact; moreover, \mathcal{R} is a maximal inexact subset if and only if the same holds for $f(\mathcal{R})$.

Proof: If \mathcal{R} is inexact then there are two distinct base subsets of \mathcal{G}_k containing \mathcal{R} and their *f*-images are distinct base subsets of \mathcal{G}'_k containing $f(\mathcal{R})$, hence $f(\mathcal{R})$ is inexact. The base subsets \mathcal{B} and \mathcal{B}' have the same number of inexact subsets and the first part of our statement is proved. Since \mathcal{B} and \mathcal{B}' have the same number of maximal inexact subsets, every maximal inexact subset of \mathcal{B}' is the image of a maximal inexact subset of \mathcal{B} .

Lemma 9. $\mathcal{R} \subset \mathcal{B}$ is a complement subset if and only if $f(\mathcal{R})$ is a complement subset of \mathcal{B}' .

Proof: This is a simple consequence of the previous lemma.

If k = n - 1 then Main Lemma (Lemma 7) can be drawn directly from Lemmas 10 and 15. In [10] this statement was proved in a more complicated way.

Lemma 10. If k < n - 1 then the mapping $f|_{\mathcal{B}}$ together with the inverse mapping preserve types of maximal inexact and complement subsets.

Proof: This statement is trivial if $c_1(k) \neq c_2(k)$. In the general case it follows from Lemma 5.

We write \mathcal{X}_i and \mathcal{X}'_i for the sets of all *i*-dimensional subspaces spanned by points of the symplectic bases associated with \mathcal{B} and \mathcal{B}' , respectively. We denote by $\mathcal{B}(N)$ and $\mathcal{B}'(N')$ the sets of all elements of \mathcal{B} and \mathcal{B}' incident with subspaces N and N', respectively.

Lemma 11. Let k < n - 1. There exists a bijection $g: \mathcal{X}_{k+1} \to \mathcal{X}'_{k+1}$ such that

$$f(\mathcal{B}(N)) = \mathcal{B}'(g(N))$$

for every $N \in \mathcal{X}_{k+1}$.

Proof: Lemma 10 guarantees that $f|_{\mathcal{B}}$ and the inverse mapping send maximal inexact subsets of first type to maximal inexact subsets of first type. This implies the existence of a bijection $h: \mathcal{X}_{2n-2} \to \mathcal{X}'_{2n-2}$ such that

$$f(\mathcal{B}(M)) = \mathcal{B}'(h(M))$$

Deringer

for all $M \in \mathcal{X}_{2n-2}$. Each $N \in \mathcal{X}_{k+1}$ can be presented as the intersection of

$$M_1,\ldots,M_{2n-k-2}\in\mathcal{X}_{2n-2}.$$

Then

$$g(N) := \bigcap_{i=1}^{2n-k-2} h(M_i)$$

is as required.

Now we prove Lemma 7 for k < n - 1. Two subspaces $S, U \in \mathcal{B}$ are adjacent if and only if they belong to $\mathcal{B}(T)$ for certain $T \in \mathcal{X}_{k+1}$; moreover, S and U are orthoadjacent if and only if $\mathcal{B}(T)$ consists of k + 2 elements (in other words, T is totally isotropic). The required statement follows from Lemma 11.

8 **Proof of Theorem 2 for** $n \ge 3$

Let M, N be a pair of incident subspaces of Π such that dim $M < k < \dim N$. We denote by $[M, N]_k$ the set of k-dimensional subspaces of Π incident with both M and N; in the case when $M = \emptyset$ or N = P, we write $(N]_k$ or $[M)_k$, respectively.

We say that $\mathcal{X} \subset \mathcal{G}_k$ is an *A*-subset if any two distinct elements of \mathcal{X} are adjacent.

Example 1. If k < n - 1 and N is an element of \mathcal{G}_{k+1} then $(N]_k$ is a maximal A-subset of \mathcal{G}_k . Subsets of such type will be called *tops*. Any two distinct elements of a top are ortho-adjacent.

Example 2. If *M* belongs to \mathcal{G}_{k-1} then

$$[M, M^{\perp}]_k = [M)_k \cap \mathcal{G}_k$$

is a maximal A-subset of \mathcal{G}_k . Such maximal A-subsets are known as *stars*, they contain non-orthogonal elements.

Fact 2 ([2, 11]). Each *A*-subset is contained in a maximal *A*-subset. Every maximal *A*-subset of \mathcal{G}_{n-1} is a star. If k < n-1 then every maximal *A*-subset of \mathcal{G}_k is a top or a star.

Let $n \ge 3$ and f be as in the previous section. The first part of Lemma 7 says that f transfers A-subsets to A-subsets. The second part of Lemma 7 guarantees that stars go to subsets of stars. In other words, for any $M \in \mathcal{G}_{k-1}$ there exists $M' \in \mathcal{G}'_{k-1}$ such that

$$f([M, M^{\perp}]_k) \subset [M', M'^{\perp}]_k.$$
 (6)

Springer

Suppose that

$$f([M, M^{\perp}]_k) \subset [M'', M''^{\perp}]_k$$

for $M'' \in \mathcal{G}'_{k-1}$ other than M'. Then $f([M, M^{\perp}]_k)$ is contained in the intersection of $[M', M'^{\perp}]_k$ and $[M'', M''^{\perp}]_k$. This intersection is not empty only if M' = M'' or M' and M'' are ortho-adjacent; but in the second case our intersection consists of one element only. Thus there is unique $M' \in \mathcal{G}'_{k-1}$ satisfying (6). We have established the existence of a mapping

$$g: \mathcal{G}_{k-1} \to \mathcal{G}'_{k-1}$$

such that

$$f([M, M^{\perp}]_k) \subset [g(M), g(M)^{\perp}]_k$$

for every $M \in \mathcal{G}_{k-1}$. It is easy to see that

$$g((N)_{k-1}) \subset (f(N))_{k-1} \quad \forall N \in \mathcal{G}_k.$$

$$\tag{7}$$

Now we show that *g* sends base subsets to base subsets.

Proof: Let \mathcal{B}_{k-1} be a base subset of \mathcal{G}_{k-1} and B be the associated symplectic base. This base defines a base subset $\mathcal{B} \subset \mathcal{G}_k$. Now let B' be the symplectic base associated with the base subset $\mathcal{B}' := f(\mathcal{B})$ and \mathcal{B}'_{k-1} be the base subset of \mathcal{G}'_{k-1} defined by B'. If $S \in \mathcal{B}_{k-1}$ then we take $U_1, U_2 \in \mathcal{B}$ such that $S = U_1 \cap U_2$, and (7) shows that

$$g(S) = f(U_1) \cap f(U_2) \in \mathcal{B}'_{k-1}.$$

Thus $g(\mathcal{B}_{k-1})$ is contained in \mathcal{B}'_{k-1} . Suppose that $g(\mathcal{B}_{k-1})$ is a proper subset of \mathcal{B}'_{k-1} . Then g(S) = g(U) for some $S, U \in \mathcal{B}_{k-1}$. The *f*-image of

$$\mathcal{B}(S) = \mathcal{B} \cap [S, S^{\perp}]_k$$

is contained in

$$\mathcal{B}'(g(S)) = \mathcal{B}' \cap [g(S), g(S)^{\perp}]_k.$$

Since these sets have the same cardinality,

$$f(\mathcal{B}(S)) = \mathcal{B}'(g(S)).$$

Similarly,

$$f(\mathcal{B}(U)) = \mathcal{B}'(g(U)).$$

2 Springer

The equality $f(\mathcal{B}(S)) = f(\mathcal{B}(U))$ contradicts the injectivity of f. Hence $g(\mathcal{B}_{k-1})$ coincides with \mathcal{B}'_{k-1} .

If k = 1 then the mapping $g: P \to P'$ sends symplectic bases to symplectic bases. By Theorem 1, g is a symplectic embedding of Π to Π' , and we have $f = (g)_1$.

Now suppose that k > 1 and g is induced by a symplectic embedding h of Π to Π' . Let us consider an arbitrary element $S \in \mathcal{G}_k$ and take ortho-adjacent $M, N \in \mathcal{G}_{k-1}$ such that $S = \overline{M \cup N}$. Then

$$\{S\} = [M, M^{\perp}]_k \cap [N, N^{\perp}]_k$$

and f(S) belongs to the intersection of $[g(M), g(M)^{\perp}]_k$ and $[g(N), g(N)^{\perp}]_k$. Since

$$g(M) = \overline{h(M)}$$
 and $g(N) = \overline{h(N)}$

are ortho-adjacent, the intersection of $[g(M), g(M)^{\perp}]_k$ and $[g(N), g(N)^{\perp}]_k$ consists of one element and we have

$$f(S) = \overline{h(M)} \cup \overline{h(N)} = \overline{h(S)}.$$

This means that f is induced by h. Therefore, Theorem 2 can be proved by induction.

9 Proof of Theorem 2 for n = 2

Let k = n - 1 = 1. In this case, a base subset consists of 4 elements.

For $S, U \in \mathcal{G}_k$ we denote by $\mathcal{X}(S, U)$ the set of all $M \in \mathcal{G}_k \setminus \{S, U\}$ such that there is a base subset containing S, U, M.

Since k = 1, two distinct elements of \mathcal{G}_k are adjacent or non-intersecting.

Lemma 12. Two distinct $S, U \in G_k$ are non-intersecting if and only if for any distinct $M, N \in \mathcal{X}(S, U)$

$$\{S, U, M, N\}$$

is a base subset.

Proof: Direct verification.

This is a partial case of a more general property of generalized polygons [13]. Let f be as in Sections 7 and 8. Since

$$f(\mathcal{X}(S,U)) \subset \mathcal{X}(f(S), f(U)),$$

Lemma 12 shows that f maps adjacent elements of \mathcal{G}_k to adjacent elements of \mathcal{G}'_k . Then stars go to subsets of stars and f induces a mapping $g: P \to P'$. As above, we establish that g sends bases of Π to bases of Π' and Theorem 1 gives the claim.

Deringer 201

Acknowledgements The author thanks one of the referees for a long list of valuable remarks and a shorter proof of Proposition 1.

References

- P. Abramenko and H. Van Maldeghem, "On opposition in spherical buildings and twin buildings," Ann. Combinatorics 4 (2000), 125–137.
- 2. W.L. Chow, "On the geometry of algebraic homogeneous spaces," Ann. Math. 50 (1949), 32-67.
- 3. C.A. Faure and A. Frölicher, "Morphisms of projective geometries and semilinear maps," *Geom. Dedicata* **53** (1994), 237–262.
- 4. C.A. Faure, "An elementary proof of the fundamental theorem of projective geometry," *Geom. Dedicata* **90** (2002) 145–151.
- 5. H. Havlicek, "A generalization of Brauner's theorem on linear mappings," *Mitt. Math. Sem. Univ. Giessen* **215** (1994), 27–41.
- 6. W.-l. Huang and A. Kreuzer, "Basis preserving maps of linear spaces," *Arch. Math. (Basel)* **64**(6) (1995), 530–533.
- 7. A. Kreuzer, "On the definition of isomorphisms of linear spaces," Geom. Dedicata 61 (1996), 279–283.
- M. Pankov, "Transformations of Grassmannians and automorphisms of classical groups," J. Geom. 75 (2002), 132–150.
- M. Pankov, "A characterization of geometrical mappings of Grassmann spaces," *Results Math.* 45 (2004), 319–327.
- M. Pankov, "Mappings of the sets of invariant subspaces of null systems," *Beiträge zur Algebra Geom.* 45 (2004), 389–399.
- 11. M. Pankov, K. Prażmovski, and M. Żynel, "Geometry of polar Grassmann spaces," *Demonstratio Math.* **39** (2006), 625–637.
- 12. J. Tits, *Buildings of Spherical Type and Finite BN-Pairs*, Lecture Notes in Mathematics 386, Springer, Berlin, 1974.
- 13. H. Van Maldeghem, Private communication.