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Abstract Let V and V ′ be 2n-dimensional vector spaces over fields F and F ′. Let also
�: V × V → F and �′: V ′ × V ′ → F ′ be non-degenerate symplectic forms. Denote
by � and �′ the associated (2n − 1)-dimensional projective spaces. The sets of k-
dimensional totally isotropic subspaces of � and �′ will be denoted by Gk and G ′

k ,
respectively. Apartments of the associated buildings intersect Gk and G ′

k by so-called
base subsets. We show that every mapping of Gk to G ′

k sending base subsets to base
subsets is induced by a symplectic embedding of � to �′.
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1 Introduction

An incidence geometry of rank n has the following ingredients: a setG whose elements
are called subspaces, a symmetric incidence relation on G, and a surjective dimension
function

dim:G → {0, 1, . . . , n − 1}

such that the restriction of this function to every maximal flag is bijective (flags are
sets of mutually incident subspaces).

A Tits building [12] is an incidence geometry together with a family of isomorphic
subgeometries called apartments and satisfying a certain collection of axioms. One
of these axioms says that for any two flags there is an apartment containing them.
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Let us consider an incidence geometry of rank n whose set of subspaces is denoted
by G. For every k ∈ {0, 1, . . . , n − 1} we denote by Gk the Grassmannian consisting
of all k-dimensional subspaces. If this geometry is a building then the intersection of
Gk with an apartment is called the shadow of this apartment inGk [12]. In the projective
and symplectic cases the intersections of apartments with Grassmannians are known
as base subsets [8–10].

Let f be a bijective transformation of Gk preserving the class of the shadows
of apartments. It is natural to ask: can f be extended to an automorphism of the
corresponding geometry? This problem was solved in [8] for buildings of type An ,
in this case f is induced by a collineation of the associated projective space to itself
or the dual projective space (the second possibility can be realized only for the case
when n = 2k + 1). A more general result can be found in [9].

In the present paper we show that the extension is possible for symplectic buildings.
Note that apartment preserving transformations of the chamber set (the set of maxi-

mal flags) of a spherical building are induced by automorphisms of the corresponding
complex; this follows from the results given in [1].

2 Symplectic geometry

Let V be a 2n-dimensional vector space over a field F , n ≥ 2. Let also

�: V × V → F

be a non-degenerate symplectic form. Denote by� = (P,L) the (2n − 1)-dimensional
projective space associated with V (points are 1-dimensional subspaces of V and lines
are defined by 2-dimensional subspaces).

We say that two points p, q ∈ P are orthogonal and write p ⊥ q if

p = 〈x〉, q = 〈y〉 and �(x, y) = 0.

Similarly, two subspaces S and U of � will be called orthogonal (S ⊥ U ) if p ⊥ q
for any p ∈ S and q ∈ U . The orthogonal complement to a subspace S (the maximal
subspace orthogonal to S) will be denoted by S⊥, if S is k-dimensional then the
dimension of S⊥ is equal to 2n − k − 2 (throughout the paper the dimension is always
assumed to be projective).

A base {p1, . . . , p2n} of � is said to be symplectic if for each i ∈ {1, . . . , 2n} there
exists unique σ (i) ∈ {1, . . . , 2n} such that

pi 
⊥ pσ (i)

(pi and pσ (i) are non-orthogonal).
A subspace S of � is called totally isotropic if any two points of S are orthogonal;

in other words, S ⊂ S⊥. The latter inclusion implies that the dimension of a totally
isotropic subspace is not greater than n − 1.

Now consider the incidence geometry of totally isotropic subspaces. For every sym-
plectic base B the subgeometry consisting of all totally isotropic subspaces spanned
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by points of B is the symplectic apartment associated with B. It is well-known that
the incidence geometry of totally isotropic subspaces together with the family of all
symplectic apartments is a building of type Cn .

For every k ∈ {0, 1, . . . , n − 1} we write Gk for the set of all k-dimensional totally
isotropic subspaces, it is clear that G0 coincides with P . The set of all k-dimensional
totally isotropic subspaces spanned by points of a symplectic base will be called the
base subset of Gk associated with (defined by) this base.

Proposition 1. Every base subset of Gk consists of

2k+1

(
n

k + 1

)
elements.

Proof: Let B = {p1, . . . , p2n} be a symplectic base and B be the associated base
subset of Gk . By definition, B consists of all k-dimensional subspaces

{pi1
, . . . , pik+1

}

such that

{i1, . . . , ik+1} ∩ {σ (i1), . . . , σ (ik+1)} = ∅.

There are 2n possibilities to choose pi1
, then pi2

can be chosen in 2n − 2 ways, and
so on. Since the order of the points must not be taken into account, we obtain that B
has precisely

2n · (2n − 2) . . . (2n − 2k)

(k + 1)!
= 2k+1

(
n

k + 1

)
elements. �

Proposition 2. For any two k-dimensional totally isotropic subspaces there is a base
subset of Gk containing them.

Proposition 2 can be obtained by an immediate verification or can be drawn from
the fact that for any two flags there is an apartment containing them.

3 Results

From this moment we suppose that V and V ′ are 2n-dimensional vector spaces over
fields F and F ′ (respectively), n ≥ 2, and

�: V × V → F, �′: V ′ × V ′ → F ′
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are non-degenerate symplectic forms. Let � = (P,L) and �′ = (P ′,L′) be the (2n −
1)-dimensional projective spaces associated with V and V ′, respectively.

An injection f : P → P ′ is called an embedding of � to �′ if it maps lines to subsets
of lines and for any line L ′ ∈ L′ there is at most one line L ∈ L such that f (L) ⊂ L ′.
An embedding is said to be strong if it sends independent subsets to independent
subsets. Every strong embedding of � to �′ is induced by a semilinear injection of V
to V ′ (with respect to a monomorphism of the underlying fields) preserving the linear
independence [3–5].

Our projective spaces have the same dimension, and strong embeddings of � to
�′ (if they exist) map bases to bases. An example given in [6] shows that strong
embeddings of � to �′ cannot be characterized as mappings sending bases of � to
bases of �′.

Theorem 1. If a mapping f : P → P ′ transfers symplectic bases to symplectic bases
then f is a strong embedding of � to �′ and for any p, q ∈ P

p ⊥ q ⇐⇒ f (p) ⊥ f (q).

Since a surjective embedding is a collineation, we get the following.

Corollary. Every surjection of P to P ′ sending symplectic bases to symplectic bases
is a collineation of � to �′ preserving the orthogonality relation.

In what follows embeddings and collineations sending symplectic bases to sym-
plectic bases will be called symplectic.

For every k ∈ {0, 1, . . . , n − 1} we denote by Gk and G ′
k the sets of k-dimensional

totally isotropic subspaces of � and �′, respectively.
Let f : P → P ′ be a symplectic embedding of� to�′. For each S ∈ Gk the subspace

spanned by f (S) is an element of G ′
k . The mapping

( f )k :Gk → G ′
k

S → f (S)

is an injection sending base subsets to base subsets. If f is a collineation then every
( f )k is bijective. Conversely, an easy verification shows that if ( f )k is bijective for
certain k then f is a collineation.

Theorem 2. If a mapping of Gk to G ′
k (1 ≤ k ≤ n − 1) transfers base subsets to base

subsets then it is induced by a symplectic embedding of � to �′.

Corollary. Every surjection of Gk to G ′
k (1 ≤ k ≤ n − 1) sending base subsets to base

subsets is induced by a symplectic collineation of � to �′.
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For k = n − 1 ≥ 2 Theorem 2 was established in [10]. In the present paper it will
be proved for the general case.

Our proof of Theorem 2 is based on elementary properties of so-called inexact
subsets (Section 5). If k = n − 1 then all maximal inexact subsets are of the same
type. The case when k < n − 1 is more complicated: there are two different types of
maximal inexact subsets.

Two elements of Gk , k ≥ 1 are called adjacent if their intersection belongs to Gk−1.
We say that two elements of Gk are ortho-adjacent if they are orthogonal and adjacent;
this is possible only if k < n − 1. Using inexact subsets we characterize the adjacency
and ortho-adjacency relations in terms of base subsets. This characterization shows
that every mapping of Gk to G ′

k sending base subsets to base subsets is adjacency and
ortho-adjacency preserving (Section 7); after that arguments in the spirit of [2] give
the claim (Section 8).

4 Proof of Theorem 1

A line of � or �′ is said to be hyperbolic if it is not totally isotropic.

Lemma 1. Let p1, p2, p ∈ P be distinct points such that the line p1 p2 is hyperbolic
and p ∈ p1 p2. Then for any symplectic base B containing p1, p2

(B \ {pi }) ∪ {p} i = 1, 2 (1)

are symplectic bases.

Proof: Direct verification. �

Lemma 2. Let p1, p2, p ∈ P be distinct points. If there exists a symplectic base B
such that p1, p2 ∈ B and (1) are symplectic bases then the line p1 p2 is hyperbolic
and p ∈ p1 p2.

Proof: Let B = {p1, p2, . . . , p2n} be such symplectic base. Since (B \ {p1}) ∪ {p}
is a symplectic base, p 
⊥ pσ (1). Similarly, p 
⊥ pσ (2). Thus there is no symplectic
base containing p, pσ (1), pσ (2); this implies that σ (1) = 2. Therefore, the line p1 p2

is hyperbolic; moreover, it is the orthogonal complement to the subspace spanned
by p3, . . . , p2n . It is easy to see that p ⊥ pi for every i ≥ 3. Thus p is a point on p1 p2.

�

Let f : P → P ′ be a mapping which sends symplectic bases of � to symplectic bases
of �′. Since for any two points there is a symplectic base containing them, f is
injective. By Lemmas 1 and 2, f transfers hyperbolic lines to subsets of hyperbolic
lines; in particular,

p 
⊥ q =⇒ f (p) 
⊥ f (q).
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We prove that

p ⊥ q =⇒ f (p) ⊥ f (q).

Let p, q ∈ P be distinct orthogonal points and B be a symplectic base containing
them. There is a unique point p′ ∈ B such that p 
⊥ p′. Then f (p) 
⊥ f (p′) and all
other points of f (B) are orthogonal to f (p); in particular, we get f (p) ⊥ f (q).

Now we can show that f maps totally isotropic lines to subsets of totally isotropic
lines. Let L be a totally isotropic line of � and p1, p2 be distinct points on this line.
We can choose a symplectic base {p1, p2, . . . , p2n} such that L is the orthogonal
complement to the subspace spanned by p1, p2, . . . , p2n−2. Then f (L) is contained
in the line f (p1) f (p2) which is the orthogonal complement to the subspace spanned
by f (p1), f (p2), . . . , f (p2n−2).

We have established that every line goes to a subset of a line. So we need to show
that f maps every base of � to a base of �′. We will use the following fact.

Fact 1. [7] If g: P → P ′ is an injection transferring lines to subsets of lines then for
every subset X ⊂ P

g( X ) ⊂ g(X );

in particular, g(X ) coincides with g( X ).

Let B be a base of �. Then

f (B) = f ( B ) = f (P)

The f -image of any symplectic base is a symplectic base, hence f (P) = P ′ and �′

is spanned by f (B). Since f is injective, f (B) is a base of �′.

5 Inexact subsets

Let B = {p1, . . . , p2n} be a symplectic base of �. Let also 1 ≤ k ≤ n − 1 and B be
the base subset of Gk associated with B. It was noted in the proof of Proposition 1 that
B consists of all k-dimensional subspaces

{pi1
, . . . , pik+1

}

such that

{i1, . . . , ik+1} ∩ {σ (i1), . . . , σ (ik+1)} = ∅.

If k = n − 1 then every element of B contains precisely one of the points pi or pσ (i)

for each i .
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We write B(+i) and B(−i) for the sets of all elements of B which contain pi or do
not contain pi , respectively. For any i1, . . . , is and j1, . . . , ju belonging to {1, . . . , 2n}
we define

B(+i1, . . . ,+is, − j1, . . . ,− ju) := B(+i1)∩ · · · ∩ B(+is) ∩ B(− j1) ∩ · · · ∩ B(− ju).

The set of all elements of B incident with a subspace S will be denoted by B(S) (this
set may be empty). Then B(−i) coincides with B(S), where S is the subspace spanned
by B \ {pi }. It is trivial that

B(+i) = B(+i, −σ (i))

and for the case when k = n − 1 we have

B(−i) = B(+σ (i)) = B(+σ (i), −i).

Let R ⊂ B. We say that R is exact if there is only one base subset of Gk containing
R; otherwise, R will be called inexact. If R ∩ B(+i) is not empty then we define
Si (R) as the intersection of all subspaces belonging to R and containing pi , and we
define Si (R) := ∅ if the intersection of R and B(+i) is empty. If

Si (R) = pi

for all i then R is exact; the converse fails.

Lemma 3. Let R ⊂ B. Suppose that there exist distinct i, j such that

p j ∈ Si (R) and pσ (i) ∈ Sσ ( j)(R).

Then R is inexact.

Proof: On the line pi p j we choose a point p′
i different from pi and p j . The line

pσ (i) pσ ( j) contains a unique point orthogonal to p′
i ; we denote this point by p′

σ ( j).
Then (

B \ {
pi , pσ ( j)

}) ∪ {
p′

i , p′
σ ( j)

}
is a symplectic base. The associated base subset of Gk containsR and we get the claim.

�

Proposition 3. The subset B(−i) is inexact; moreover, if k < n − 1 then this is a
maximal inexact subset. In the case when k = n − 1, the inexact subset B(−i) is not
maximal.

Proof: Let us take a point p′
i on the line pi pσ (i) different from pi and pσ (i). Then

(B \ {pi }) ∪ {p′
i }
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is a symplectic base and the associated base subset of Gk contains B(−i). Hence this
subset is inexact.

Let k < n − 1. For any j 
= i we can choose distinct

i1, . . . , ik ∈ {1, . . . , 2n} \ {i, j, σ (i), σ ( j)}

such that

{i1, . . . , ik} ∩ {σ (i1), . . . , σ (ik)} = ∅.

The subspaces spanned by

pi1
, . . . , pik , p j and pσ (i1), . . . , pσ (ik ), p j

belong to B(−i). Since the intersection of these subspaces is p j , we have

Sj (B(−i)) = p j if j 
= i. (2)

Let U be an arbitrarily taken element of

B \ B(−i) = B(+i).

This subspace is spanned by pi and some pi1
, . . . , pik . Since pi is the unique point of

U orthogonal to pσ (i1), . . . , pσ (ik ), (2) shows that the subset

B(−i) ∪ {U } (3)

is exact. This implies that the inexact subset B(−i) is maximal.
Now let k = n − 1. We take an arbitrary element U ∈ B(+i). There exists j such

that pσ ( j) does not belong to U . Then p j is a point of the subspace

Si (B(−i) ∪ {U }) = U.

Since pσ (i) belongs to every element of B(−i) and pσ ( j) does not belong to U ,

Sσ ( j)(B(−i)) = Sσ ( j)(B(−i) ∪ {U })

contains pσ (i). By Lemma 3, the subset (3) is inexact and the inexact subset B(−i) is
not maximal. �

Proposition 4. If j 
= i, σ (i) then

Ri j := B(+i, + j) ∪ B(+σ (i), +σ ( j)) ∪ B(−i, −σ ( j))

is a maximal inexact subset.
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We remark that

Ri j = B(+i, + j) ∪ B(−i)

if k = n − 1.

Proof: Since

Si (Ri j ) = pi p j and Sσ ( j)(Ri j ) = pσ ( j) pσ (i),

Lemma 3 shows that Ri j is inexact. We want to show that

Sl(Ri j ) = pl if l 
= i, σ ( j). (4)

Let l 
= i, j, σ (i), σ ( j). If k ≥ 2 then there exist

i1, . . . , ik−2 ∈ {1, . . . , n} \ {i, j, σ (i), σ ( j), l, σ (l)}

such that

{i1, . . . , ik} ∩ {σ (i1), . . . , σ (ik)} = ∅;

the subspaces spanned by

pi1
, . . . , pik−2

, pl , pi , p j and pσ (i1), . . . , pσ (ik−2), pl , pσ (i), pσ ( j)

are elements of Ri j intersecting in the point pl . If k = 1 then the lines pl pσ (i) and
pl p j are as required.

Now we choose distinct

i1, . . . , ik−1 ∈ {1, . . . , n} \ {i, j, σ (i), σ ( j)}

such that

{i1, . . . , ik−1} ∩ {σ (i1), . . . , σ (ik−1)} = ∅

and consider the subspace spanned by

pi1
, . . . , pik−2

, p j , pσ (i).

This subspace intersects the subspaces spanned by

pi1
, . . . , pik−1

, p j , pi and pi1
, . . . , pik−1

, pσ (i), pσ ( j)

precisely in the points p j and pσ (i), respectively. Since all these subspaces are elements
of Ri j , we get (4) for l = j, σ (i).
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A direct verification shows that

B \ Ri j = B(+i, − j) ∪ B(+σ ( j), −σ (i)).

Thus for every U ∈ B \ Ri j one of the following possibilities is realized:

(1) U ∈ B(+i, − j) intersects Si (Ri j ) = pi p j by pi ,
(2) U ∈ B(+σ ( j), −σ (i)) intersects Sσ ( j)(Ri j ) = pσ ( j) pσ (i) by pσ ( j).

Since pσ ( j) is the unique point of the line pσ ( j) pσ (i) orthogonal to pi and pi is the
unique point on pi p j orthogonal to pσ ( j), the subset

Ri j ∪ {U }

is exact for each U belonging to B \ Ri j . Thus the inexact subset Ri j is maximal. �

The maximal inexact subsets considered in Propositions 3 and 4 will be called of
first and second type, respectively.

Proposition 5. Every maximal inexact subset is of first or second type. In particular,
if k = n − 1 then each maximal inexact subset is of second type.

Proof: Let R be a maximal inexect subset of B, and let B ′ be another symplectic
base of � such that the associated base subset of Gk contains R. If certain Si (R) is
empty then R ⊂ B(−i). In the case when k = n − 1, this is impossible (the inexact
subset B(−i) is not maximal). If k < n − 1 then the inverse inclusion holds (since our
inexact subset is maximal).

Now suppose that each Si (R) is not empty. Denote by I the set of all i such that
the dimension of Si (R) is non-zero. Since R is inexact, I is non-empty. Suppose that
for certain l ∈ I the subspace Sl(R) is spanned by pl , p j1 , . . . , p ju and

M1 := Sσ ( j1)(R), . . . , Mu := Sσ ( ju )(R)

do not contain pσ (l). Then pl belongs to M⊥
1 , . . . , M⊥

u ; on the other hand,

p j1 
∈ M⊥
1 , . . . , p ju 
∈ M⊥

u

and we have

M⊥
1 ∩ · · · ∩ M⊥

u ∩ Sl(R) = pl .

Since S1(R), . . . , S2n(R) and their orthogonal complements are spanned by points of
the base B ′, the point pl belongs to B ′. The fact that B 
= B ′ implies the existence of
i ∈ I and j 
= i, σ (i) such that

p j ∈ Si (R) and pσ (i) ∈ Sσ ( j)(R).

Then R = Ri j . �
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Maximal inexact subsets of the same type have the same cardinality. These cardi-
nalities will be denoted by c1(k) and c2(k), respectively. An immediate verification
shows that each of the following possibilities

c1(k) = c2(k), c1(k) < c2(k), c1(k) > c2(k)

is realized for suitable k.

6 Complement subsets

LetB be as in the previous section. We say thatR ⊂ B is a complement subset ifB \ R
is a maximal inexact subset. A complement subset is said to be of first or second type
if the corresponding maximal inexact subset is of first or second type, respectively.
The complement subsets for the maximal inexact subsets from Propositions 3 and 4
are

B(+i) and B(+i, − j) ∪ B(+σ ( j), −σ (i)).

If k = n − 1 then the second subset coincides with

B(+i, +σ ( j)) = B(+i, +σ ( j), − j, −σ (i)).

In the case when k = n − 1 = 1, a complement subset has one element only.

Lemma 4. Let k = n − 1 ≥ 2. Then S, U ∈ B are adjacent if and only if there are
precisely ( n−1

2
) distinct complement subsets of B containing both S and U.

Proof: Denote by m the dimension of S ∩ U . The complement subset B(+i, + j)
contains our subspaces if and only if pi , p j belong to S ∩ U . Thus there are precisely

( m+1
2

) distinct complement subsets of B containing S and U . �

Lemma 5. Let k < n − 1 and R be a complement subset of B. If R is of first type then
there are precisely 4n − 3 distinct complement subsets of B which do not intersect
R. If R is of second type then there are precisely 4 distinct complement subsets of B
which do not intersect R.

To prove Lemma 11 we use the following.

Lemma 6. Let k < n − 1 and i, i ′, j, j ′ be elements of {1, . . . , 2n} such that i 
= j
and i ′ 
= j ′. If the intersection of

B(+i, − j) and B(+i ′, − j ′)

is empty then one of the following possibilities is realized: i ′ = σ (i), i ′ = j , j ′ = i .
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Proof: Direct verification. �

Proof of Lemma 5. Let us fix l ∈ {1, . . . , 2n} and consider the complement subset
B(+l). If B(+i) is disjoint with B(+l) then i = σ (l). If for some i, j ∈ {1, . . . , 2n}
the complement subset

B(+i, − j) ∪ B(+σ ( j), −σ (i))

does not intersect B(+l) then one of the following possibilities is realized:

(1) i = σ (l), the condition j 
= i, σ (i) shows that there are precisely 2n − 2 possibil-
ities for j ;

(2) j = l and there are precisely 2n − 2 possibilities for i (since i 
= j, σ ( j)).

Now fix i, j ∈ {1, . . . , 2n} such that j 
= i, σ (i) and consider the associated comple-
ment subset

B(+i, − j) ∪ B(+σ ( j), −σ (i)). (5)

There are only two complement subsets of the first type disjoint with (5):

B(+σ (i)) and B(+ j).

If

B(+i ′, − j ′) ∪ B(+σ ( j ′), −σ (i ′))

does not intersect (5) then one of the following two possibilities is realized:

i ′ = j, j ′ = i or i ′ = σ (i), j ′ = σ ( j)

(see Lemma 12). �

7 Main lemma

Let f :Gk → G ′
k (1 ≤ k ≤ n − 1) be a mapping which sends base subsets to base

subsets. Since for any two elements of Gk there exists a base subset containing them
(Proposition 2) and the restriction of f to every base subset of Gk is a bijection to a
base subset of G ′

k , the mapping f is injective.
Throughout the section we suppose that n ≥ 3. In this section the following state-

ment will be proved.

Lemma 7 (Main Lemma). Let S, U ∈ Gk . Then S and U are adjacent if and only if
f (S) and f (U ) are adjacent. Moreover, for the case when k < n − 1, the subspaces
S and U are ortho-adjacent if and only if the same holds for f (S) and f (U ).
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Let B be a base subset of Gk containing S and U . Then B′ := f (B) is a base subset
of Gk(�′) and the restriction f |B is a bijection to B′.

Lemma 8. A subset R ⊂ B is inexact if and only if f (R) is inexact; moreover, R is
a maximal inexact subset if and only if the same holds for f (R).

Proof: If R is inexact then there are two distinct base subsets of Gk containing R and
their f -images are distinct base subsets of G ′

k containing f (R), hence f (R) is inexact.
The base subsets B and B′ have the same number of inexact subsets and the first part
of our statement is proved. Since B and B′ have the same number of maximal inexact
subsets, every maximal inexact subset of B′ is the image of a maximal inexact subset
of B. �

Lemma 9. R ⊂ B is a complement subset if and only if f (R) is a complement subset
of B′.

Proof: This is a simple consequence of the previous lemma. �

If k = n − 1 then Main Lemma (Lemma 7) can be drawn directly from Lemmas
10 and 15. In [10] this statement was proved in a more complicated way.

Lemma 10. If k < n − 1 then the mapping f |B together with the inverse mapping
preserve types of maximal inexact and complement subsets.

Proof: This statement is trivial if c1(k) 
= c2(k). In the general case it follows from
Lemma 5. �

We write Xi and X ′
i for the sets of all i-dimensional subspaces spanned by points

of the symplectic bases associated with B and B′, respectively. We denote by B(N )
and B′(N ′) the sets of all elements of B and B′ incident with subspaces N and N ′,
respectively.

Lemma 11. Let k < n − 1. There exists a bijection g:Xk+1 → X ′
k+1 such that

f (B(N )) = B′(g(N ))

for every N ∈ Xk+1.

Proof: Lemma 10 guarantees that f |B and the inverse mapping send maximal inexact
subsets of first type to maximal inexact subsets of first type. This implies the existence
of a bijection h:X2n−2 → X ′

2n−2 such that

f (B(M)) = B′(h(M))
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for all M ∈ X2n−2. Each N ∈ Xk+1 can be presented as the intersection of

M1, . . . , M2n−k−2 ∈ X2n−2.

Then

g(N ) :=
2n−k−2⋂

i=1

h(Mi )

is as required. �

Now we prove Lemma 7 for k < n − 1. Two subspaces S, U ∈ B are adjacent if
and only if they belong to B(T ) for certain T ∈ Xk+1; moreover, S and U are ortho-
adjacent if and only if B(T ) consists of k + 2 elements (in other words, T is totally
isotropic). The required statement follows from Lemma 11.

8 Proof of Theorem 2 for n ≥ 3

Let M, N be a pair of incident subspaces of � such that dim M < k < dim N . We
denote by [M, N ]k the set of k-dimensional subspaces of � incident with both M and
N ; in the case when M = ∅ or N = P , we write (N ]k or [M)k , respectively.

We say that X ⊂ Gk is an A-subset if any two distinct elements of X are adjacent.

Example 1. If k < n − 1 and N is an element of Gk+1 then (N ]k is a maximal A-subset
of Gk . Subsets of such type will be called tops. Any two distinct elements of a top are
ortho-adjacent.

Example 2. If M belongs to Gk−1 then

[M, M⊥]k = [M)k ∩ Gk

is a maximal A-subset of Gk . Such maximal A-subsets are known as stars, they contain
non-orthogonal elements.

Fact 2 ([2, 11]). Each A-subset is contained in a maximal A-subset. Every maximal
A-subset of Gn−1 is a star. If k < n − 1 then every maximal A-subset of Gk is a top or
a star.

Let n ≥ 3 and f be as in the previous section. The first part of Lemma 7 says that
f transfers A-subsets to A-subsets. The second part of Lemma 7 guarantees that stars
go to subsets of stars. In other words, for any M ∈ Gk−1 there exists M ′ ∈ G ′

k−1 such
that

f ([M, M⊥]k) ⊂ [M ′, M ′⊥]k . (6)
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Suppose that

f ([M, M⊥]k) ⊂ [M ′′, M ′′⊥]k

for M ′′ ∈ G ′
k−1 other than M ′. Then f ([M, M⊥]k) is contained in the intersection of

[M ′, M ′⊥]k and [M ′′, M ′′⊥]k . This intersection is not empty only if M ′ = M ′′ or M ′

and M ′′ are ortho-adjacent; but in the second case our intersection consists of one
element only. Thus there is unique M ′ ∈ G ′

k−1 satisfying (6). We have established the
existence of a mapping

g:Gk−1 → G ′
k−1

such that

f ([M, M⊥]k) ⊂ [g(M), g(M)⊥]k

for every M ∈ Gk−1. It is easy to see that

g((N ]k−1) ⊂ ( f (N )]k−1 ∀ N ∈ Gk . (7)

Now we show that g sends base subsets to base subsets.

Proof: Let Bk−1 be a base subset of Gk−1 and B be the associated symplectic base.
This base defines a base subset B ⊂ Gk . Now let B ′ be the symplectic base associated
with the base subset B′ := f (B) and B′

k−1 be the base subset of G ′
k−1 defined by B ′. If

S ∈ Bk−1 then we take U1, U2 ∈ B such that S = U1 ∩ U2, and (7) shows that

g(S) = f (U1) ∩ f (U2) ∈ B′
k−1.

Thus g(Bk−1) is contained in B′
k−1. Suppose that g(Bk−1) is a proper subset of B′

k−1.
Then g(S) = g(U ) for some S, U ∈ Bk−1. The f -image of

B(S) = B ∩ [S, S⊥]k

is contained in

B′(g(S)) = B′ ∩ [g(S), g(S)⊥]k .

Since these sets have the same cardinality,

f (B(S)) = B′(g(S)).

Similarly,

f (B(U )) = B′(g(U )).
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The equality f (B(S)) = f (B(U )) contradicts the injectivity of f . Hence g(Bk−1)
coincides with B′

k−1. �

If k = 1 then the mapping g: P → P ′ sends symplectic bases to symplectic bases.
By Theorem 1, g is a symplectic embedding of � to �′, and we have f = (g)1.

Now suppose that k > 1 and g is induced by a symplectic embedding h of � to
�′. Let us consider an arbitrary element S ∈ Gk and take ortho-adjacent M, N ∈ Gk−1

such that S = M ∪ N . Then

{S} = [M, M⊥]k ∩ [N , N⊥]k

and f (S) belongs to the intersection of [g(M), g(M)⊥]k and [g(N ), g(N )⊥]k . Since

g(M) = h(M) and g(N ) = h(N )

are ortho-adjacent, the intersection of [g(M), g(M)⊥]k and [g(N ), g(N )⊥]k consists
of one element and we have

f (S) = h(M) ∪ h(N ) = h(S).

This means that f is induced by h. Therefore, Theorem 2 can be proved by induction.

9 Proof of Theorem 2 for n = 2

Let k = n − 1 = 1. In this case, a base subset consists of 4 elements.
For S, U ∈ Gk we denote by X (S, U ) the set of all M ∈ Gk \ {S, U } such that there

is a base subset containing S, U, M .
Since k = 1, two distinct elements of Gk are adjacent or non-intersecting.

Lemma 12. Two distinct S, U ∈ Gk are non-intersecting if and only if for any distinct
M, N ∈ X (S, U )

{S, U, M, N }

is a base subset.

Proof: Direct verification. �

This is a partial case of a more general property of generalized polygons [13].
Let f be as in Sections 7 and 8. Since

f (X (S, U )) ⊂ X ( f (S), f (U )),

Lemma 12 shows that f maps adjacent elements of Gk to adjacent elements of G ′
k .

Then stars go to subsets of stars and f induces a mapping g: P → P ′. As above, we
establish that g sends bases of � to bases of �′ and Theorem 1 gives the claim.
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