ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The classification of flag-transitive Steiner 4-designs

Michael Huber
Mathematisches Institut der Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen Germany

DOI: 10.1007/s10801-006-0053-0

Abstract

Among the properties of homogeneity of incidence structures flag-transitivity obviously is a particularly important and natural one. Consequently, in the last decades flag-transitive Steiner t-designs (i.e. flag-transitive t-( v, k,1) designs) have been investigated, whereas only by the use of the classification of the finite simple groups has it been possible in recent years to essentially characterize all flag-transitive Steiner 2-designs. However, despite the finite simple group classification, for Steiner t-designs with parameters t > 2 such characterizations have remained challenging open problems for about 40 years (cf. [11, p. 147] and [12 p. 273], but presumably dating back to around 1965). The object of the present paper is to give a complete classification of all flag-transitive Steiner 4-designs. Our result relies on the classification of the finite doubly transitive permutation groups and is a continuation of the author's work [20, 21] on the classification of all flag-transitive Steiner 3-designs.

Pages: 183–207

Keywords: keywords Steiner designs; flag-transitive group of automorphisms; 2-transitive permutation group

Full Text: PDF

References

1. M. Aschbacher, “Chevalley groups of type G2 as the group of a trilinear form,” J. Algebra 109 (1987), 193-259.
2. Th. Beth, D. Jungnickel, and H. Lenz, Design Theory, Vol. I and II, Encyclopedia of Math. and Its Applications 69/78, Cambridge Univ. Press, Cambridge, 1999.
3. R.E. Block, “Transitive groups of collineations on certain designs,” Pacific J. Math. 15 (1965), 13-18.
4. F. Buekenhout, A. Delandtsheer, J. Doyen, P.B. Kleidman, M.W. Liebeck, and J. Saxl, “Linear spaces with flag-transitive automorphism groups,” Geom. Dedicata 36 (1990), 89-94.
5. F. Buekenhout, A. Delandtsheer, and J. Doyen, “Finite linear spaces with flag-transitive groups,” J. Combin. Theory, Series A 49 (1988), 268-293.
6. F. Buekenhout, “Remarques sur l'homogénéité des espaces linéaires et des syst`emes de blocs,” Math. Z. 104 (1968), 144-146.
7. P.J. Cameron and W.M. Kantor, “2-transitive and antiflag transitive collineation groups of finite projective and polar spaces,” J. Algebra 60 (1979), 384-422.
8. P.J. Cameron, “Parallelisms of Complete Designs,” London Math. Soc. Lecture Note Series 23, Cambridge Univ. Press, Cambridge, 1976.
9. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
10. C.W. Curtis, W.M. Kantor, and G.M. Seitz, “The 2-transitive permutation representations of the finite Chevalley groups,” Trans. Amer. Math. Soc. 218 (1976), 1-59.
11. A. Delandtsheer, “Finite (line, plane)-flag-transitive planar spaces,” Geom. Dedicata 41 (1992), 145- 153.
12. A. Delandtsheer, “Dimensional linear spaces,” in F. Buekenhout (Ed.), Handbook of Incidence Geometry, Elsevier Science, Amsterdam (1995), pp. 193-294.
13. A. Delandtsheer, “Finite flag-transitive linear spaces with alternating socle,” in A. Betten et al. (Eds.), Algebraic Combinatorics and Applications, Proc. Euroconf. (G\ddot oβweinstein 1999), Springer, Berlin (2001), pp. 79-88. Springer
14. P. Dembowski, Finite Geometries, Springer, Berlin, Heidelberg, New York, 1968; Reprint: Springer, 1997.
15. L.E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig, 1901; Reprint: Dover Publications, New York, 1958.
16. D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Plenum Publishing Corp., New York, London, 1982.
17. C. Hering, “Transitive linear groups and linear groups which contain irreducible subgroups of prime order,” Geom. Dedicata 2 (1974), 425-460.
18. C. Hering, “Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II,” J. Algebra 93 (1985), 151-164.
19. D.G. Higman and J.E. McLaughlin, “Geometric AB A-groups,” Illinois J. Math. 5 (1961), 382-397.
20. M. Huber, “Classification of flag-transitive Steiner quadruple systems,” J. Combin. Theory, Series A 94 (2001), 180-190.
21. M. Huber, “The classification of flag-transitive Steiner 3-designs,” Adv. Geom. 5 (2005), 195-221.
22. M. Huber, On Highly Symmetric Combinatorial Designs, Habilitationsschrift, Univ. T\ddot ubingen, T\ddot ubingen, 2005, Shaker, Aachen, 2006.
23. B. Huppert, “Zweifach transitive, aufl\ddot osbare Permutationsgruppen,” Math. Z. 68 (1957), 126-150.
24. B. Huppert, Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967.
25. W.M. Kantor, “Flag-transitive planes,” in C.A. Baker and L.M. Batten (Eds.), Finite Geometries (Winnipeg, Can., 1984), Lecture Notes in Pure and Applied Math., vol. 103, Dekker, New York (1985), pp. 179-181.
26. W.M. Kantor, “Homogeneous designs and geometric lattices,” J. Combin. Theory, Series A 38 (1985), 66-74.
27. W.M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes,” J. Algebra 106 (1987), 15-45.
28. W.M. Kantor, “2-transitive and flag-transitive designs,” in D. Jungnickel et al. (Eds.), Coding Theory, Design Theory, Group Theory, Proc. Marshall Hall Conf. (Burlington, VT, 1990), J. Wiley, New York (1993), pp. 13-30.
29. P.B. Kleidman and M.W. Liebeck, “The Subgroup Structure of the Finite Classical Groups,” London Math. Soc. Lecture Note Series 129, Cambridge Univ. Press, Cambridge, 1990.
30. P.B. Kleidman, “The finite flag-transitive linear spaces with an exceptional automorphism group,” in E.S. Kramer and S.S. Magliveras (Eds.), Finite Geometries and Combinatorial Designs (Lincoln, NE, 1987), Contemp. Math. 111, Amer. Math. Soc., Providence, RI (1990), pp. 117-136.
31. M.W. Liebeck, “The affine permutation groups of rank three,” Proc. London Math. Soc. 54(3) (1987), 477-516.
32. M.W. Liebeck, “The classification of finite linear spaces with flag-transitive automorphism groups of affine type,” J. Combin. Theory, Series A 84 (1998), 196-235.
33. H. L\ddot uneburg, “Fahnenhomogene Quadrupelsysteme,” Math. Z. 89 (1965), 82-90.
34. E. Maillet, “Sur les isomorphes holoédriques et transitifs des groupes symétriques ou alternés,” J. Math. Pures Appl. 1(5) (1895), 5-34.
35. J. Saxl, “On finite linear spaces with almost simple flag-transitive automorphism groups,” J. Combin. Theory, Series A 100 (2002), 322-348.
36. M. Suzuki, “On a class of doubly transitive groups,” Ann. Math. 75(2) (1962), 105-145.
37. J. Tits, “Sur les syst`emes de Steiner associés aux trois “grands” groupes de Mathieu,” Rendic. Math. 23 (1964), 166-184.
38. H.N. Ward, “On Ree's series of simple groups,” Trans. Amer. Math. Soc. 121 (1966), 62-89.
39. E. Witt, “Die 5-fach transitiven Gruppen von Mathieu,” Abh. Math. Sem. Univ. Hamburg 12 (1938), 256-264.
40. E. Witt, “ \ddot Uber Steinersche Systeme,” Abh. Math. Sem. Univ. Hamburg 12 (1938), 265-275.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition