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Abstract In this paper we introduce and study a new class of posets, that we call
zircons, which includes all Coxeter groups partially ordered by Bruhat order. We
prove that many of the properties of Coxeter groups extend to zircons often with
simpler proofs: in particular, zircons are Eulerian posets and the Kazhdan-Lusztig
construction of the Kazhdan-Lusztig representations can be carried out in the context
of zircons. Moreover, for any zircon Z, we construct and count all balanced and exact
labelings (used in the construction of the Bernstein-Gelfand-Gelfand resolutions in
the case that Z is the Weyl group of a Kac-Moody algebra).
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1 Introduction

Coxeter group theory has a wide range of applications in different areas of mathe-
matics such as algebra, combinatorics, and geometry (see e.g. [2, 5, 12, 14]). Bruhat
order arises in Coxeter group theory in several contexts such as in connection with
the Bruhat decomposition, with inclusions among Schubert varieties, with the Verma
modules of a complex semisimple Lie algebra, and in Kazhdan-Lusztig theory. Cox-
eter groups partially ordered by Bruhat order have a rich combinatorial structure
which has been the object of several studies. In this paper, we introduce a new class of
partially ordered sets, that we call zircons, which properly includes the class of finite
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and infinite Coxeter groups partially ordered by Bruhat order. Many of the proper-
ties of the Coxeter groups extend to zircons: in particular, we prove that zircons are
Eulerian posets, that open intervals in zircons are isomorphic to spheres, and that the
Kazhdan-Lusztig construction of the Kazhdan-Lusztig representations can be carried
out in the context of zircons. It is often the case that the proofs for zircons are simpler
than the corresponding proofs for Coxeter groups: in particular, the proof of The-
orem 3.4, as far as we know, is the shortest among the many different arguments
which prove the Eulerianity of Coxeter groups (see [3, 9, 15, 20] and the recent paper
by J. Stembridge [18]). The definition of zircon is based on the concept of special
matchings. These are particular matchings of the Hasse diagram that play a funda-
mental role in the proof of Lusztig’s Conjecture on the combinatorial invariance of
Kazhdan-Lusztig polynomials for lower Bruhat intervals (see [7] or [17]).

For every Coxeter group W , D. Kazhdan and G. Lusztig [15] define certain poly-
nomials indexed by pairs of elements in W which are now known as the Kazhdan-
Lusztig polynomials. These polynomials are introduced in order to construct certain
representations of the Hecke algebra associated to W . In [8], the authors show that
Kazhdan and Lusztig’s construction can be carried out in a more general (and en-
tirely combinatorial) context. Here we produce a further generalization showing that
all results in [8], which cannot be extended to arbitrary zircons, are indeed valid in
the category of well refined zircons, which are zircons with the additional structure
given by specifying certain special matchings. More precisely, we can define a family
of polynomials indexed by pairs of elements in any well refined zircon which reduce
to the Kazhdan-Lusztig polynomials in the case that the zircon is a Coxeter group.
We then associate to every well refined zircon a Coxeter group and hence a Hecke
algebra, and show that this Coxeter group and the corresponding Hecke algebra act
on certain subsets of the zircon (the zircon cells). These representations are the usual
Kazhdan-Lusztig representations when the zircon is a Coxeter group and the Hecke
algebra is the wanted one.

I. N. Bernstein, I. M. Gelfand and S. I. Gelfand [1] construct certain resolutions,
now called the BGG resolutions, of a finite-dimensional irreducible module of a com-
plex semisimple Lie algebra g by Verma modules (see also [16]). The differential
maps of the BGG resolutions are explicitly given in terms of certain labelings of the
Hasse diagram of the Weyl group W associated to g (partially ordered by Bruhat
order). I. N. Bernstein, I. M. Gelfand and S. I. Gelfand [1, Lemma 10.4] prove the
existence of such labelings for any finite Coxeter group W . Here, for any finite or infi-
nite zircon Z, we give an algorithm to construct all such labelings, and we count their
number producing explicit bijections with the subsets of Z \{minimal elements}. The
proof of this result achieved using special matchings is simpler than the proof of the
more particular result for Coxeter groups.

This work is organized as follows. In Sect. 2, we recall some basic definitions and
results that are needed in the sequel. In Sect. 3, we introduce the class of zircons
and we derive their first properties, including the fact that they are Eulerian posets.
In Sect. 4, we show how to develop Kazhdan and Lusztig’s theory in the context of
zircons. Sections 5 and 6 are devoted to the labelings used to construct the BGG com-
plexes and the BGG resolutions. We call such labelings balanced labelings and exact
labelings. In Sect. 5, we give some general results on balanced and exact labelings. In
Sect. 6, we first prove that the set of balanced labelings of a zircon Z is in bijection
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with the set of the subsets of Z \{minimal elements}. Then we show that the concepts
of balanced labeling and exact labeling coincide for zircons. The results in Sect. 6 are
new also in the case of Coxeter groups and imply Lemma 10.4 of [1].

2 Notation and background

This section reviews the background material on posets, Coxeter systems and special
matchings that is needed in the rest of this work. We refer the reader to [2, 14] and
[17] for a more detailed treatment. We write “:=” if we are defining the left hand side
by the right hand side. We let N := {0,1,2,3, . . .}, and for a, b ∈ N we let [a, b] :=
{a, a + 1, a + 2, . . . , b} and [a] := {1,2, . . . , a}. The cardinality of a set A will be
denoted by |A|. The disjoint union of two sets A and Ã will be denoted by A � Ã.

Let P be a partially ordered set (or poset for short). An order ideal of P is a sub-
set S ⊆ P such that, if x ∈ S and y ≤ x, then y ∈ S. An element x ∈ P is maximal
(respectively minimal) if there is no element y ∈ P \ {x} such that x ≤ y (respec-
tively y ≤ x). We say that P has a bottom element ̂0 if there exists an element ̂0 ∈ P

satisfying ̂0 ≤ x for all x ∈ P . Similarly, P has a top element ̂1 if there exists an
element̂1 ∈ P satisfying x ≤̂1 for all x ∈ P . If x ≤ y we define the (closed) interval
[x, y] = {z ∈ P : x ≤ z ≤ y} and the open interval (x, y) = {z ∈ P : x < z < y}. If
every interval of P is finite, then P is called a locally finite poset. We say that x is
covered by y if x < y and [x, y] = {x, y}, and we write x � y or y � x. If P has a
0̂ then an element x ∈ P is an atom of P if 0̂ � x. Similarly, if P has a 1̂ then an
element x ∈ P is a coatom of P if x � 1̂. Given p ∈ P , the coatoms of p are the
coatoms of {x ∈ P : x ≤ p}. A chain of P is a totally ordered subset of P . A chain c

with top element y and bottom element x is saturated if it is a maximal chain of the
interval [x, y].

A standard way of depicting a poset P is by its Hasse diagram. This is the digraph
with P as node set and having an upward-directed edge from x to y if and only if
x � y. We say that P is connected if its Hasse diagram is connected as a graph.
A morphism of posets is a map φ : P → Q from the poset P to the poset Q which
is order-preserving, namely such that x ≤ y in P implies φ(x) ≤ φ(y) in Q, for all
x, y ∈ P . Two posets P and Q are isomorphic if there exists an order-preserving
bijection φ : P → Q whose inverse is also order-preserving. In this case φ is an
isomorphism of posets.

A poset P is ranked if there exists a (rank) function ρ : P → N such that ρ(y) =
ρ(x)+1 whenever x �y. A poset P is pure of length �(P ) = n if all maximal chains
are of the same length n. A poset P with bottom element̂0 is graded if every interval
[̂0, x] is pure. A poset P is a Boolean algebra if it is isomorphic to the poset of all
subsets of a certain set S, partially ordered by inclusion. In this case, if |S| = n, then
we say that P is the Boolean algebra of rank n. We say that a ranked poset P with
rank function ρ is thin if for all ordered pairs x ≤ y ∈ P with ρ(y) − ρ(x) = 2,
the interval [x, y] consists of exactly 4 elements. In this case we say that [x, y] is
a square. The order complex �(P ) of a poset P is the simplicial complex whose
simplices are the chains in P . We denote by ||�(P )|| its geometric realization. A
poset P is a piecewise linear sphere, or a PL-sphere, if �(P ) admits a subdivision
which is a subdivision of the boundary of a simplex.
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The Möbius function of P assigns to each ordered pair x ≤ y an integer μ(x, y)

according to the following recursion:

μ(x, y) =
{

1, if x = y,
−∑

x≤z<y μ(x, z), if x < y.

A graded poset P , with rank function ρ, is Eulerian if μ(x, y) = (−1)ρ(y)−ρ(x) for
all x, y ∈ P , x ≤ y. Equivalently, P is Eulerian if and only if

|{z ∈ [x, y] : ρ(z) is even}| = |{z ∈ [x, y] : ρ(z) is odd}|

for all x, y ∈ P , x ≤ y.
Given a Coxeter system (W,S) and w ∈ W , we denote by l(w) the length of w,

we call any product of l(w) elements of S which represents w a reduced expression
for w, and we let

DR(w) := {s ∈ S : l(ws) < l(w)} = DL(w−1),

DL(w) := {s ∈ S : l(sw) < l(w)} = DR(w−1).

We call DR(w) and DL(w) respectively the right and the left descent set of w.
We denote by e the identity of W , and we let T := {wsw−1 : w ∈ W, s ∈ S} be
the set of reflections of W . We denote the symmetric group on n elements by
S(n) and the transpositions in S(n) by (i, j), where 1 ≤ i < j ≤ n. Let S :=
{s1 = (1,2), s2 = (2,3), . . . , sn−1 = (n − 1, n)}. It is well known that (S(n), S) is a
Coxeter system of rank n − 1. We call an interval [u,v] in a poset P dihedral if it is
isomorphic to a finite Coxeter system of rank ≤ 2 ordered by Bruhat order.

The Coxeter group W is partially ordered by (strong) Bruhat order, which will be
denoted by ≤. Given u,v ∈ W , u ≤ v if and only if there exist r ∈ N and t1, . . . , tr ∈ T

such that tr . . . t1 u = v and l(ti . . . t1u) > l(ti−1 . . . t1u) for i = 1, . . . , r . It is well
known that W , partially ordered by Bruhat order, is a graded poset having the length
function l as its rank function and the identity e as bottom element. There is a well
known characterization of Bruhat order on a Coxeter group (usually referred to as the
subword property). By a subword of a word s1s2 · · · sq we mean a word of the form
si1si2 · · · sik , where 1 ≤ i1 < · · · < ik ≤ q .

Theorem 2.1 Let u,v ∈ W . Then the following are equivalent:

(1) u ≤ v,
(2) every reduced expression for v has a subword that is a reduced expression for u,
(3) there exists a reduced expression for v which has a subword that is a reduced

expression for u.

Lemma 2.2 (Lifting Lemma) Let s ∈ S and u,v ∈ W , u ≤ v. Then

- if s ∈ DR(v) and s ∈ DR(u) then us ≤ vs,
- if s /∈ DR(v) and s /∈ DR(u) then us ≤ vs,
- if s ∈ DR(v) and s /∈ DR(u) then us ≤ v and u ≤ vs.
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The Hecke algebra H(W) of W is the free Z[q 1
2 , q− 1

2 ]-module having the set
{Tw : w ∈ W } as a basis and multiplication uniquely determined by

TsTw =
{

Tsw if sw > w,
(q − 1)Tw + qTsw if sw < w,

for all w ∈ W and s ∈ S. This is an associative algebra having Te as unity. Each basis
element is invertible in H(W).

Proposition 2.3 There exists a family of polynomials {Ru,v(q)}u,v∈W ⊆ Z[q] satis-
fying

(Tw−1)
−1 = q−l(w)

∑

u≤w

(−1)l(u,w)Ru,w(q)Tu,

with Rw,w = 1 for all w ∈ W .

The polynomials Ru,v are called the R -polynomials of W .

Define an involution ι : Z[q 1
2 , q− 1

2 ] → Z[q 1
2 , q− 1

2 ] by ι(q
1
2 ) = q− 1

2 and extend

it to a Z[q 1
2 , q− 1

2 ]-semilinear ring automorphism ι : H(W) → H(W) satisfying
ι(Tw) = (Tw−1)−1. The following result is due to D. Kazhdan and G. Lusztig [15].

Theorem 2.4 There exists a unique basis C′ = {C′
w : w ∈ W } of H(W) such that:

1. ι(C′
w) = C′

w;

2. C′
w = q− l(w)

2
∑

u≤w Pu,w(q)Tu;

3. Pu,w ∈ Z[q] has degree at most 1
2 (l(w) − l(u) − 1) if u < w, and Pw,w = 1.

The polynomials {Pu,v(q)}u,v∈W ⊆ Z[q] are the Kazhdan-Lusztig polynomials of W .
Recall that a matching of a graph G = (V ,E) is an involution M : V → V such

that {M(v), v} ∈ E for all v ∈ V . Let P be a partially ordered set. A matching M of
the Hasse diagram of P is a special matching of P if

u � v �⇒ M(u) ≤ M(v),

for all u,v ∈ P such that M(u) 
= v.

Remark A special matching has certain rigidity properties. For example, if u� v and
M(v) � v, then M(u) � u and M(u) � M(v).

For the reader’s convenience, we collect the following two results. The first one
appears in [7] while the second one follows easily by Lemma 4.2 of [6].

Lemma 2.5 Let P be a locally finite ranked poset, M be a special matching of P ,
and u,v ∈ P , u ≤ v, be such that M(u) � u and M(v) � v. Then M restricts to a
special matching of [u,v].

Lemma 2.6 (Lifting Lemma for special matchings) Let M be a special matching of
a locally finite ranked poset P , and let u,v ∈ P , u ≤ v. Then
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Fig. 1 A zircon

1. if M(v) � v and M(u) � u then M(u) ≤ M(v),
2. if M(v) � v and M(u) � u then M(u) ≤ M(v),
3. if M(v) � v and M(u) � u then M(u) ≤ v and u ≤ M(v).

3 Zircons

In this section we introduce the main concept of this paper. This is a class of abstract
partially ordered sets which includes Coxeter groups partially ordered by Bruhat
order. Then we derive some of its basic properties including the fact that they are
Eulerian.

Given a poset P , we denote the set of all special matchings of P by SMP . Given an
element w ∈ P , we say that M is a special matching of w if M is a special matching
of the Hasse diagram of the subposet {x ∈ P : x ≤ w}. We denote the set of all special
matchings of w by SMw .

Definition 3.1 We say that a locally finite ranked poset Z is a zircon if SMw is non-
empty for all w ∈ Z, w not minimal.

Note that the set SMZ of all special matchings of the entire zircon Z may happen to
be empty (see, for example, Fig. 1). For every element p in a locally finite ranked
poset P , there exists at least one minimal element m which is ≤ p. The following
result says that, if P is a zircon, then such an element m is unique, and implies that
connected zircons are graded posets.

Proposition 3.2 Let Z be a zircon and let z ∈ Z. Then the subposet {x ∈ Z : x ≤ z}
has a bottom element.

Proof By contradiction, let m1 and m2 be two different minimal elements in {x ∈
Z : x ≤ z}. Choose a minimal element w in the set {x ∈ Z : x ≤ z, x ≥ m1, x ≥ m2},
which is not empty since it contains z. By the definition of a zircon, there exists a
special matching M of w. Since m1 and m2 are minimal elements, M(m1) � m1 and
M(m2) � m2, and so, by Lemma 2.6, M(w) ≥ m1 and M(w) ≥ m2. This contradicts
the minimality of w. �

Corollary 3.3 Any zircon is a disjoint union of graded posets (its connected compo-
nents).
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Fig. 2 A zircon whose dual is
not a zircon

Proof It is enough to prove that any connected zircon Z is a graded poset. Let us first
show that Z has a bottom element. Suppose that m1 and m2 are two minimal elements
in Z. Since Z is connected, there exists a sequence (z0 = m1, z1, . . . , zn−1, zn = m2)

of elements in Z such that, for all i ∈ [n], either zi−1 � zi or zi−1 � zi . The assertion
follows by showing that zi ≥ m1 for all i = 0, . . . , n since this implies m1 = m2 by
minimality. Let us proceed by induction on i, the case i = 0 being trivial. So assume
zi ≥ m1. If zi � zi+1, then clearly zi+1 ≥ m1. If zi � zi+1, then both zi+1 and m1 are
in the subposet {x ∈ Z : x ≤ zi}, which, by Proposition 3.2, has a bottom element 0̂.
By the minimality of m1, m1 = 0̂ and hence zi+1 ≥ m1. The zircon Z is a graded
poset since, given any z ∈ Z, the interval [0̂, z] is pure because it is a finite ranked
poset with both bottom and top element. �

After Corollary 3.3, in the sequel we will often consider connected zircons, the gen-
eralization to arbitrary zircons being completely trivial. The class of zircons is closed
under taking order ideals, disjoint unions (since SM

Z�Z̃
∼= SMZ × SM

Z̃
for all zir-

cons Z and Z̃) and direct products (since SM
Z×Z̃

= SMZ � SM
Z̃

, see [11], Exam-
ple 2.8). Figure 2 shows that it is not closed under taking dual posets.

Remark Any Coxeter group partially ordered by Bruhat order is a connected zircon.
In fact, let (W,S) be an arbitrary Coxeter system. The Coxeter group W is a locally
finite ranked poset with the length function as rank function. Fix w ∈ W \ {e} and s ∈
DR(w). Then, by Lemma 2.2, the involution ρs : [e,w] → [e,w] defined by ρs(u) =
us for all u ∈ [e,w] is a special matching of w. Similarly, if s ∈ DL(w), the involution
λs : [e,w] → [e,w] defined by λs(u) = su for all u ∈ [e,w] is a special matching
of w.

The specialization of the following result to Coxeter groups was first conjectured
[19] and later proved [20] by Verma. The Eulerianity of Coxeter groups can be shown
with many different arguments (see [3, 9, 15, 20] and the recent paper by J. Stem-
bridge [18]). The present one, as far as we know, is the shortest one.

Theorem 3.4 Any connected zircon Z is an Eulerian poset.



370 J Algebr Comb (2007) 26: 363–382

Proof We need to show that, for all x, y ∈ Z, x < y, we have

|{z ∈ [x, y] : ρ(z) even}| = |{z ∈ [x, y] : ρ(z) odd}|, (1)

where ρ : Z → N is the rank function. We proceed by induction on ρ(y). The cases
ρ(y) = 0,1 are trivial.
So suppose ρ(y) ≥ 2 and note that, if [x, y] has a special matching, then (1) holds
since an element of even rank is matched to an element of odd rank. Fix a special
matching M of y. If M(x) � x then, by Lemma 2.5, M induces a special matching
of [x, y] and we are done. Otherwise, if M(x) � x, we have

[x, y] = [x,M(y)] � {v ∈ [x, y] : v 
≤ M(y)},
[M(x), y] = [M(x),M(y)] � {v ∈ [M(x), y] : v 
≤ M(y)}.

We claim that {v ∈ [x, y] : v 
≤ M(y)} = {v ∈ [M(x), y] : v 
≤ M(y)}. This is equiv-
alent to {v ∈ [M(x), y] : v 
≥ x and v 
≤ M(y)} = ∅. Let v ∈ [M(x), y]. Then, by
Lemma 2.6, we have that v ≤ M(y) if M(v) � v, and v ≥ x if M(v) � v. Hence
the claim is proved.
Now,

|{z ∈ [M(x), y] : ρ(z) even}| = |{z ∈ [M(x), y] : ρ(z) odd}|,
|{z ∈ [M(x),M(y)] : ρ(z) even}| = |{z ∈ [M(x),M(y)] : ρ(z) odd}|,

respectively since M is a special matching of [M(x), y] and by the induction hypoth-
esis since ρ(M(y)) < ρ(y). Hence

|{v ∈ [M(x), y] : v 
≤ M(y) and ρ(v) even}| = |{v ∈ [M(x), y] : v 
≤ M(y) and

ρ(v) odd}|,
and so, by the claim, we have

|{v ∈ [x, y] : v 
≤ M(y) and ρ(v) even}| = |{v ∈ [x, y] : v 
≤ M(y) and ρ(v) odd}|.
By the induction hypothesis

|{z ∈ [x,M(y)] : ρ(z) even}| = |{z ∈ [x,M(y)] : ρ(z) odd}|,
and (1) follows. �

From Theorem 3.4, we can derive some properties of the intervals in a zircon Z

which are needed in the sequel. A regular CW complex � is a collection of balls in
a Hausdorff space � such that the interiors of the balls partition � and the boundary
of c is a union of some balls in � for all c ∈ �, dim c ≥ 1. If � is homeomorphic to
the topological space X, then we say that � is a regular CW decomposition of X.
The cell poset of � is the set of balls of � ordered by containment. Recall that we
denote by ||�((u, v))|| the geometric realization of the order complex �((u, v)) of
the interval (u, v).
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Corollary 3.5 Let Z be a zircon with rank function ρ and let u,v ∈ Z, u ≤ v,
ρ(v) − ρ(u) > 1. Then the following assertions hold.

1. �((u, v)) is a PL-sphere.
2. Consider ||�((u, v))|| and its subspaces cz = ||�((u, z])|| for all z ∈ (u, v), and

let �(u, v) := {cz : z ∈ (u, v)}. Then �(u, v) is a regular CW decomposition of
||�((u, v))|| which is homeomorphic to the sphere of dimension ρ(v) − ρ(u) − 2.

3. If ρ(v) − ρ(u) = 2 then (u, v) is a square (i.e. Z is thin). If ρ(v) − ρ(u) = 3 then
(u, v) is a k-crown.

Proof The first assertion follows by Theorem 3.4 and by Corollary 4.3 of [13] (which
follows by results in [11] which, in turn, are special cases of unpublished results
by Dyer [10]). After what we already proved, the proof of the second assertion is
analogous to that for Bruhat intervals (see Theorem 2.7.12 of [2]). The third assertion
is straightforward by Theorem 3.4 and by the first assertion. �

The following proposition deals with the structure of lower intervals in a zircon
and implies that, as in the case of Coxeter groups, the only zircons which are lattices
are the Boolean algebras.

Proposition 3.6 Let Z be a zircon, z ∈ Z, and M ∈ SMz. Let 0̂ be the bottom element
in {x ∈ Z : x ≤ z}, and let J be the order ideal of [0̂,M(z)] defined by J := {x ∈
[0̂,M(z)] : M(x) ∈ [0̂,M(z)]}. Then [0̂, z] = [0̂,M(z)] � I , where I is the set in
bijection with [0̂,M(z)] \ J through the restriction of M . Furthermore, for all x, y ∈
[0̂, z], y 
= M(x), we have

x � y in [0̂, z] ⇐⇒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x � y in [0̂,M(z)],
if x, y ∈ [0̂,M(z)],

M(x) � M(y) in [0̂,M(z)],
if x /∈ [0̂,M(z)] \ J and y /∈ [0̂,M(z)].

Proof By Lemma 2.6, J is an order ideal. Again by Lemma 2.6, if x /∈ [0̂,M(z)]
then M(x) ∈ [0̂,M(z)] and so M restricts to a bijection from [0̂,M(z)] \ J to [0̂, z] \
[0̂,M(z)]. The last assertion follows by the definition of a special matching and its
proof is left to the reader. �

Corollary 3.7 Let Z be a zircon with rank function ρ and let w ∈ Z. Then [0̂,w] is
a lattice if and only if it is a Boolean algebra.

Proof We proceed by induction on ρ(w), the assertion being clear if ρ(w) = 1. Let
ρ(w) > 1 and M be a special matching of w. By the induction hypothesis, [0̂,M(w)]
is a Boolean algebra of rank ρ(w) − 1. We need to show that [0̂,w] is the product of
[0̂,M(w)] and a two element chain. By Proposition 3.6, this will follow if we prove
that J := {z ∈ [0̂,M(w)] : M(z) ∈ [0̂,M(w)]} = ∅. By contradiction, let z be a maxi-
mal element in J . Clearly, ρ(z) < ρ(w)−1 because M(M(w)) = w /∈ [0̂,M(w)]. So
there exists z̃ ∈ [0̂,M(w)] with z� z̃. By maximality, z̃ /∈ J and so M(z̃) /∈ [0̂,M(w)]
and M(z̃)� z̃. Hence, by Lemma 2.5, M restricts to a special matching of the interval
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[M(z),M(z̃)] of rank 3. Since it admits a special matching, the interval [M(z),M(z̃)]
is a k-crown with k = 2,3. On the other hand, [M(z),M(z̃)] cannot be a 3-crown
since M(M(z)) = z � M(M(z̃)) = z̃. Hence k = 2, which is a contradiction since
[0̂,w] is a lattice. �

Remarks 1. There exist intervals in zircons which are lattices but not Boolean alge-
bras (for example, the k-crowns for all k ≥ 4).

2. Proposition 3.6 implies that any zircon with a top element is an accessible poset
in the sense of Du Cloux [11] (hence any interval in a zircon is an accessible poset
by Proposition 3.3 of [11]).

3. Corollary 3.7 can also been obtained as a consequence of Corollary 1 of Sect. 5
of [11].

4 Kazhdan-Lusztig theory for zircons

Kazhdan and Lusztig [15] construct certain representations of the Hecke algebra of
a Coxeter group W via a family of polynomials (in one variable, indexed by pairs of
elements in W ) which are strictly related to the Bruhat order on W . In this section
we show how the Kazhdan-Lusztig construction can be carried out in the much more
general context of zircons. The present construction generalizes also the construction
in [8], where the authors consider the class of diamonds, which is a proper subclass of
the class of zircons. The main difference from [8] consists in the fact that, in contrast
with what is proved for diamonds, the analogues of the Kazhdan-Lusztig polynomials
of an arbitrary zircon are not independent of the special matchings chosen to define
them. Hence here we need to consider the new category of well refined zircons. Once
found the right category to work with, most of the results appearing in [8] can be
extended without substantial changes in proofs. We refer the reader to [2, 14] and
[15] for all undefined notations concerning the classical Kazhdan-Lusztig theory.

Let Z be a connected zircon and S ⊆ SMZ be any set of special matchings of Z.
We denote by (WS

Z,S) the Coxeter system whose Coxeter generators are the special
matchings in S and whose Coxeter matrix is given by m(M,N) := o(MN), the pe-
riod of MN as a permutation of Z (possibly ∞). We denote by H(Z,S) the Hecke

algebra of WS
Z and by MZ the free Z[q 1

2 , q− 1
2 ]-module defined by

MZ :=
⊕

u∈Z

Z[q 1
2 , q− 1

2 ]u.

The natural action of WS
Z on Z extends to an action of H(Z,S) on MZ .

Theorem 4.1 There exists a unique action of H(Z,S) on MZ such that

TM(u) =
{

M(u), if M(u) � u,

qM(u) + (q − 1)u, if M(u) � u,
(2)

for all u ∈ Z and M ∈ S.
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Proof The uniqueness part is clear. Let us prove that (2) defines an action of H(Z,S).
The quadratic relations are satisfied since, for all u ∈ Z and M ∈ S, we have

T 2
M(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

TM(M(u)) = qu + (q − 1)M(u),

if M(u) � u,

TM(qM(u) + (q − 1)u) = qu + (q − 1)[qM(u) + (q − 1)u],
if M(u) � u.

(3)

Fix u ∈ Z and M,N ∈ S. We need to prove that

TM(TN(TM(· · ·
︸ ︷︷ ︸

m

(u) · · ·))) = TN(TM(TN(· · ·
︸ ︷︷ ︸

m

(u) · · ·))). (4)

Let 〈M,N〉 be the group generated by M and N , 〈M,N〉(u) the orbit of u un-
der the action of 〈M,N〉, and (W, {s, t}) a dihedral Coxeter system of order
2d := |〈M,N〉(u)|. By Lemma 4.1 of [7], we can consider the isomorphism 	 :
〈M,N〉(u) −→ W sending · · ·MNM

︸ ︷︷ ︸

k

(u0) to · · · sts
︸ ︷︷ ︸

k

, for all k ∈ [2d], where u0 is

the smallest element in 〈M,N〉(u). Let M̃ be the submodule of MZ generated
by 〈M,N〉(u). Extend 	 to a linear map 	 : M̃ −→ H(W) by 	(z) := T	(z)

for all z ∈ 〈M,N〉(u). Then 	(TM(z)) = Ts	(z) and 	(TN(z)) = Tt	(z) for all
z ∈ 〈M,N〉(u), and so

	(TM(TN(TM(· · ·
︸ ︷︷ ︸

d

(z) · · ·))) = TsTtTs · · ·
︸ ︷︷ ︸

d

	(z)

= TtTsTt · · ·
︸ ︷︷ ︸

d

	(z)

= 	(TN(TM(TN(· · ·
︸ ︷︷ ︸

d

(z) · · ·))).

Hence TM(TN(TM(· · ·
︸ ︷︷ ︸

d

(u) · · ·))) = TN(TM(TN(· · ·
︸ ︷︷ ︸

d

(u) · · ·))) and this proves (4) since

d divides m because m is the least common multiple of the cardinalities of the orbits
of 〈M,N〉. �

We want to construct some representations of H(Z,S) which are smaller than
MZ . In order to do it, we must restrict our treatment to those sets S ⊆ SMZ satisfying
a certain property. By definition, we can fix a family M = {Mv}v∈Z\0̂ of special

matchings such that Mv ∈ SMv for all v ∈ Z \ 0̂. We call the pair (Z,M) a refined
zircon. We say that two refined zircons (Z,M) and (Z̃,M̃) are isomorphic if there
exists a poset isomorphism φ : Z → Z̃ such that φ ◦ Mz(z) = Mφ(z) ◦ φ(z) for all
z ∈ Z.

As a matter of fact, we are interested in a full subcategory of the category of refined
zircons and in an equivalence relation which is weaker than isomorphism. Let w ∈ Z,
and let M,N ∈ SMw . We denote by 〈M,N〉 the subgroup of the symmetric group on
[0̂,w] generated by M and N , and by 〈M,N〉(z) the orbit of any element z ∈ [0̂,w]
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under the action of 〈M,N〉. Following [8] and [17], we say that M and N are strictly
coherent if

|〈M,N〉(x)| divides |〈M,N〉(w)| (5)

for all x ∈ [0̂,w]. We are interested in the transitive closure of this relation. We say
that M and N are coherent if there exists a sequence (M0,M1, . . . ,Mk) of special
matchings in SMw such that M0 = M , Mk = N , and Mi and Mi+1 are strictly coher-
ent for all i = 0,1, . . . , k − 1.

Definition 4.2 We say that a refined zircon (Z,M = {Mv}v∈Z\0̂) is a well refined

zircon if the restriction of Mv to [0̂, u] is coherent to Mu for all u ≤ v ∈ Z\ 0̂ such that
u�Mv(u). Two well refined zircons (Z,M = {Mv}v∈Z\0̂) and (Z̃,M̃ = {M̃v}v∈Z\0̂)

are coherent if there exists a poset isomorphism ψ : Z → Z̃ such that the special
matchings ψ ◦ Mz and Mψ(z) are coherent for all z ∈ Z \ 0̂.

Let us define the R-polynomials for any refined zircon.

Definition 4.3 Let (Z,M) be a refined zircon, M = {Mv}v∈Z\0̂. For all u,v ∈ Z,
we inductively define the R-polynomial Ru,v(q) by the following recursive property:

Ru,v(q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RMv(u),Mv(v)(q), if u ≤ v and Mv(u) � u,
qRMv(u),Mv(v)(q) + (q − 1)Ru,Mv(v)(q), if u ≤ v and Mv(u) � u,
0, if u 
≤ v,
1, if u = v = 0̂.

(6)

The proof of Theorem 3.3 of [8] shows the two following useful facts.

1. If (Z,M) is a well refined zircon, then (6) holds also replacing Mv with Mz for
all z ≥ v such that Mz(v) � v.

2. Two well refined zircons which are coherent have the same family of R-
polynomials. More precisely, if (Z,M) and (Z̃,M̃) are two well refined zir-
cons which are coherent through the poset isomorphism ψ : Z → Z̃, then
Rx,y(q) = Rψ(x),ψ(y)(q) for all x, y ∈ Z.

Now consider a well refined zircon (Z,M = {Mv}v∈Z\0̂) (and so the associated
family of R-polynomials) and a set S ⊆ SMZ with the following property: if M ∈ S,
v ∈ Z and v � M(v), then the restriction of M to [0̂, v] is coherent to Mv . We want
S to satisfy this property because we need (6) to hold also if we replace Mv with any
M ∈ S such that M(v) � v. With these assumptions, it is not difficult to see that all
results in Sects. 5 and 6 of [8] hold for the zircon Z too. In particular, we can introduce
the family {Pu,v(q)}u,v∈Z ⊆ Z[q] of analogues of the Kazhdan-Lusztig polynomials
and we can construct what we shall call the zircon graph, the zircon cells and the
zircon cell representations of H(Z,S).

The definitions of R-polynomials and Kazhdan-Lusztig polynomials of a zircon
Z are consistent with the ones for Coxeter groups given in [15] and with the ones for
diamonds given in [8]. In fact, suppose that Z is a zircon which is either isomorphic
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Fig. 3 A balanced labeling

to a lower Bruhat interval [e,w] in a Coxeter group W (which is itself a diamond, see
Theorem 3.8 of [8] or Theorem 7.2.5 of [8]) or isomorphic to a generic diamond D.
Then we have that all refinements of Z give a structure of well refined zircon, and
that any two such well refined zircons are coherent. Hence Z admits only one family
of R-polynomials and one family of Kazhdan-Lusztig polynomials as a well refined
zircon. These families coincide with the families of R-polynomials and Kazhdan-
Lusztig polynomials of [e,w] as a Coxeter group interval or of D as a diamond.
More precisely, if φ is a poset isomorphism from Z to [e,w] or to D, then Rx,y(q) =
Rφ(x),φ(y)(q) and Px,y(q) = Pφ(x),φ(y)(q) for all x, y ∈ Z. Note that this implies that
every left, right or two-sided Kazhdan-Lusztig cell representation, as well as every
diamond cell representation, is isomorphic to a zircon cell representation.

5 Balanced and exact labelings

In this section we give some definitions and results concerning balanced and exact la-
belings on a poset P . If P = W is the Weyl group of a Kac-Moody algebra, these are
the labelings needed to construct BGG complexes and BGG resolutions of a finite-
dimensional irreducible module of a complex semisimple Lie algebra by Verma mod-
ules (see [1] or [16]). Throughout this section, let P be any thin graded poset with
rank function ρ. Recall that this means that, for all ordered pairs x ≤ y ∈ P with
ρ(y) − ρ(x) = 2, the interval [x, y] is a square (i.e. consists of exactly 4 elements).
Let CovP := {(u, v) ∈ P × P : u � v} and let L be a labeling of the Hasse diagram
of P with labels +1 and −1, that is a mapping L : CovP → {+1,−1}.

Definition 5.1 Let x, y ∈ P , x ≤ y, ρ(y)−ρ(x) = 2, and let x�m�y and x�n�y,
m 
= n, be the two maximal chains in [x, y]. The labeling L is balanced on [x, y] if

L(x � m)L(m � y) + L(x � n)L(n � y) = 0,

(or, equivalently, if L(x � m)L(m � y)L(x � n)L(n � y) = −1).
Moreover, we say that L is a balanced labeling on the poset P (or just a balanced
labeling if the poset P is clear from the context) if it is balanced on all intervals of
length 2.
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Suppose we have any labeling L : CovP → {+1,−1} and let Ci(P ) be the free
Abelian group generated by the set {v ∈ P : ρ(v) = i}. Define a differential map
di(L) : Ci(P ) → Ci−1(P ) (that we denote just by di if the labeling L is clear from
the context) by linear extension of

di(v) = ∑

x:x�v L(x � v)x (∀v ∈ P,ρ(v) = i).

It is easy to see that di−1 ◦ di = 0 for all i if and only if L is a balanced labeling.
Hence, if L is a balanced labeling, we have the following differential complex C(L)

· · · → Cn(P ) → Cn−1(P ) → ·· · → C1(P ) → C0(P ) → 0.

Definition 5.2 We say that a balanced labeling L is exact if C(L) is an exact se-
quence.

Let L be any labeling on P and let v ∈ P . Then we can define a new labeling
	v(L) by

	v(L)(x � y) :=
{

L(x � y) if v /∈ {x, y},
−L(x � y) if v ∈ {x, y},

for all x � y.
Note that, for all u,v ∈ P , 	u ◦ 	v = 	v ◦ 	u and 	2

v = Id . We can extend this
definition to any subset S of P by setting

	S(L)(x � y) := (−1)|S∩{x,y}|L(x � y)

for all x � y. Note that 	S is the composition of all 	v with v ∈ S and that 	2
S = Id .

Proposition 5.3 Let S and T be two subsets of P . Then 	S(L) = 	T (L) if and only
if T ∈ {S,P \ S}.

Proof Suppose 	S(L) = 	T (L). If either v ∈ S ∩ T or v /∈ S ∪ T , then S ∩ {x :
x � v or x � v} = T ∩ {x : x � v or x � v}. As P is connected, we get the assertion.
The converse follows from the definition. �

Theorem 5.4 Let S be any subset of P . The labeling L is balanced if and only if
	S(L) is balanced.

Proof Since 	2
S = Id , we need to prove only one implication, and since 	S is the

composition of all 	v with v ∈ S, we may assume S = {v}. So we suppose that L

is balanced and we show that 	v(L) is also balanced. Let x, y ∈ P , x ≤ y, ρ(y) −
ρ(x) = 2, and let x � m � y and x � n � y, m 
= n, be the two maximal chains
in [x, y]. Then L(x � m)L(m � y)L(x � n)L(n � y) = 	v(L)(x � m)	v(L)(m �
y)	v(L)(x � n)	v(L)(n � y) since we have to change sign of the labels of exactly
two edges if v ∈ {x,m,n, y}, of none otherwise. �
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Note that, for any v ∈ P , if dr(L)(
∑

akxk) = ∑

bkyk , we have

dr(	v(L))(
∑

akxk) =
⎧

⎨

⎩

dr(L)(−a1v + ∑

k 
=1 akxk) if ρ(v) = r and v = x1,
−b1v + ∑

k 
=1 bkyk if ρ(v) = r − 1 and v = y1,
dr(L)(

∑

akxk) if v /∈ {x1, x2, . . . , y1, y2, . . .}.
(7)

Theorem 5.5 Let S be any subset of P . The labeling L is exact if and only if 	S(L)

is exact.

Proof Since 	2
S = Id , we need to prove only one implication, and since 	S is the

composition of all 	v with v ∈ S, we may assume S = {v}. So we suppose that L

is exact and we show that 	v(L) is also exact. For notational convenience, we set
	 = 	v , dr = dr(L), and 	(dr) = dr(	(L)), for all possible r . Let X = ∑

akxk ∈
ker 	(di). We must show that X ∈ Im	(di+1). If ρ(v) /∈ {i + 1, i, i − 1}, this is clear
since 	(di) = di and 	(di+1) = di+1 by (7).
Case ρ(v) = i + 1.
In this case, 	(di) = di and so X ∈ ker di . Thus, there exists Y ∈ Ci+1(P ) such
that di+1(Y ) = X, since L is exact. Suppose that Y = ∑

bkyk where y1, y2, . . . ∈ P

have rank i + 1 and b1, b2, . . . ∈ Z. If v /∈ {y1, y2, . . .}, then 	(di+1)(
∑

bkyk) =
di+1(

∑

bkyk) =X. Otherwise, suppose v = y1. Then 	(di+1)(−b1v+∑

k 
=1 bkyk) =
X by (7).
Case ρ(v) = i.
If v /∈ {x1, x2, . . .} then di(X) = 	(di)(X), hence X ∈ ker di . Thus, there exist
y1, y2, . . . ∈ P of rank i + 1 and b1, b2, . . . ∈ Z such that di+1(

∑

bkyk) = X, since
L is exact. Then 	(di+1)(

∑

bkyk) = X by (7). So we may assume that v = x1.
By (7), di(−a1v + ∑

k 
=1 akxk) = 0 and there exist some y1, y2, . . . ∈ P of rank
i + 1 and some b1, b2, . . . ∈ Z such that di+1(

∑

bkyk) = −a1v + ∑

k 
=1 akxk . Hence
	(di+1)(

∑

bkyk) = a1v + ∑

k 
=1 akxk = X.
Case ρ(v) = i − 1.
By (7), di(X) = 	(di)(X) = 0, hence X ∈ ker di . Thus, there exist some y1, y2, . . . ∈
P of rank i + 1 and some b1, b2, . . . ∈ Z such that di+1(

∑

bkyk) = X, since L is
exact. But by (7), 	(di+1) = di+1. �

Corollary 5.6 Let P be finite. If P has a balanced (respectively, exact) labeling L,
then it has exactly 2|P |−1 distinct balanced (respectively, exact) labelings of the form
	S(L), with S ⊆ P .

Proof The assertion follows by Proposition 5.3 and Theorems 5.4 and 5.5. �

6 Labelings on zircons

In this section we prove that the concepts of balanced and exact labelings essentially
coincide for zircons. We give an algorithm to construct all such labelings which im-
plies that the number of balanced and exact labelings on a finite connected zircon Z

is 2|Z|−1.
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Let Z be a zircon, which we may assume to be connected. By the definition
of a zircon, we can fix a family M = {Mv}v∈Z\0̂ of special matchings such that

Mv ∈ SMv for all v ∈ Z \ 0̂ (namely, the pair (Z,M) is a refined zircon, see Sect. 4).
Our algorithm will depend on M. We construct a labeling L of the edges of the Hasse
diagram of Z step by step. We start from Step 1) and we go on. At the i-th step, the
edges connecting an element of rank k to an element of rank k −1 are already labeled
for all k ∈ [i − 1]. The i-th step is as follows.
Step i).
Part 1: If there are no elements in Z of rank i, the labeling is complete. Otherwise,
for all v ∈ Z of rank i, label the edge {v,Mv(v)} at random.
Part 2: If there are edges with no label connecting an element v of rank i to an ele-
ment u of rank i − 1, go to Part 3. Otherwise go to Step i + 1).
Part 3: Choose at random an edge E = {v,u} with no label connecting an element
v of rank i to an element u of rank i − 1. By construction, u 
= Mv(v). By the
definition of a special matching, the elements v,u,Mv(v),Mv(u) form a square
Q (see the Remark of Sect. 2). All edges of Q have already been labeled ex-
cept E. Then label the edge E as to obtain a balanced labeling on Q and go to
Part 2.

Theorem 6.1 Any labeling L : CovP → {+1,−1} given by the previous algorithm
is a balanced labeling.

Proof By contradiction, suppose that L is not a balanced labeling. Let Q = [u,v] =
{v,m,n,u} be a square of minimal rank such that L is not a balanced labeling on Q,
i.e.

L(u � m)L(m � v)L(u � n)L(n � v) = 1. (8)

We distinguish two cases, according to as whether Mv(v) ∈ {m,n} or not. For nota-
tional convenience, we let M = Mv in the sequel of the proof.
Case 1: M(v) /∈ {m,n}.
By the definition of a special matching, M(m) � M(v), M(n) � M(v) and, since Z

is thin, M(m) 
= u, M(n) 
= u. Hence M(u) � u, M(u) � M(m) and M(u) � M(n),
and we are in the situation of Fig. 4.

By the minimality of the square Q and by the definition of the algorithm, we have

−1 = L(M(u) � M(m)) L(M(u) � u) L(M(m) � m) L(u � m),

−1 = L(M(u) � M(m)) L(M(u) � M(n)) L(M(m) � M(v)) L(M(n) � M(v)),

−1 = L(M(u) � u) L(M(u) � M(n)) L(u � n) L(M(n) � n),

−1 = L(M(m) � m) L(M(m) � M(v)) L(m � v) L(M(v) � v),

−1 = L(M(n) � n) L(M(n) � M(v)) L(n � v) L(M(v) � v).

By multiplying right hand sides and left hand sides we get

−1 = L(m � v) L(u � m) L(u � n) L(n � v),
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Fig. 4 M(v) 
∈ {m,n}

Fig. 5 M(v) = m

which contradicts (8).
Case 2: M(v) ∈ {m,n}.
We may assume that M(v) = m. By the definition of the algorithm, L is a balanced
labeling on the square {v,n,M(v) = m,M(n)}, that is

−1 = L(M(n) � m)L(m � v)L(M(n) � n)L(n � v) (9)

and hence M(n) 
= u by (8). Then, by the definition of a special matching, M(u)�u,
M(u) � M(n) and we are in the situation of Fig. 5.
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By the minimality of the square Q we have

−1 = L(M(u) � M(n)) L(M(n) � m) L(M(u) � u) L(u � m),

−1 = L(M(u) � M(n)) L(M(n) � n) L(M(u) � u) L(u � n).

By multiplying right hand sides and left hand sides of the two previous equalities and
of (9), we get

−1 = L(u � m)L(u � n)L(m � v)L(n � v),

which contradicts (8). �

Corollary 6.2 To any family M = {Mv}v∈Z\0̂ of special matchings with Mv ∈ SMv

for all v ∈ Z \ 0̂ we can associate a bijection 	M between the set of balanced label-
ings and the set of subsets of Z \ {0̂}. The bijection 	M sends a balanced labeling L

to the subset {v ∈ Z : L(Mv(v) � v) = 1}.
In particular, if Z is finite, the number of balanced labelings on Z is 2|Z|−1.

Proof By Theorem 6.1, any mapping L : {Mv(v) � v : v ∈ Z} → {+1,−1} can be
uniquely extended to a balanced labeling on Z. �

Corollary 6.3 Let L be a balanced labeling on Z. Given any other balanced labeling
L′ on Z, there exists S ⊆ Z such that L′ = 	S(L).

Proof If Z is finite, then by Corollary 5.6 there are exactly 2|Z|−1 distinct balanced
labelings on Z of the form 	S(L) with S ⊆ Z. By Corollary 6.2, this is also the
number of balanced labelings and so the assertion follows. To find the subset S we
can proceed step by step. At the i-th step, we already know S ∩ {z ∈ Z : ρ(z) < i}
and we find S ∩{z ∈ Z : ρ(z) = i} considering the edges connecting elements of rank
i to elements of rank i − 1. We start from the first step and we go on till the maximal
rank. Note that, for all z ∈ Z, the restrictions of L and L′ to [0̂, z] determine whether
z is in S or not.
Now suppose that Z is infinite. For all T ⊆ Z, |T | < ∞, let ZT := ∪z∈T [0̂, z] (Z
has 0̂ by Corollary 3.3). Clearly Z = ∪|T |<∞ZT . Since every order ideal of a zircon
is itself a zircon and a zircon is locally finite, ZT is a finite zircon for all T ⊆ Z,
|T | < ∞. Then by what we have already proved, for all T ⊆ Z, |T | < ∞, there exists
ST ⊆ ZT such that the restriction of L′ to ZT is equal to the labeling we obtain by
applying 	ST

to the restriction of L to ZT . Note that, for all finite subsets T ,T ′ ⊆ Z,
T ⊆ T ′, we have that ZT ⊆ ZT ′ , ST ⊆ ST ′ and ST ′ ∩ ZT = ST . Let S = ∪|T |<∞ST .
Let us show that S ∩ ZT = ST for all T ⊆ Z, |T | < ∞. Clearly S ∩ ZT ⊇ ST . Let
us prove that S ∩ ZT ⊆ ST by contradiction. So assume that z ∈ (S ∩ ZT ) \ ST . This
means that there exist T ′ ⊆ Z, |T ′| < ∞, such that z ∈ ST ′ . Consider U = T ∪ T ′.
Then SU ∩ ZT = ST and SU ∩ ZT ′ = ST ′ . This is a contradiction since z ∈ ZT , z ∈
ZT ′ , z ∈ ST ′ , but z /∈ ST .
So S ∩ ZT = ST for all T ⊆ Z, |T | < ∞. Then the restriction of L′ to ZT is equal to
the restriction of 	S(L) to ZT . Since Z = ∪|T |<∞ZT , we have L′ = 	S(L). �
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Fig. 6 A poset with no exact
labelings

We now show that all balanced labelings on a zircon Z are exact if we assume Z

to be directed (a poset P is directed if for every z1, z2 ∈ P , there is some z ∈ P with
z ≥ z1 and z ≥ z2). This follows by the existence of at least one exact labeling, whose
proof is based on the fact that the reduced cellular homology of the ball vanishes in
all dimensions.

Corollary 6.4 All balanced labelings on a directed zircon Z are exact labelings.

Proof First we claim that, for all u,v ∈ Z, u ≤ v, there exists an exact labeling on
[u,v]. After Corollary 3.5, we can proceed as in the case of Bruhat intervals (see
Corollary 2.7.14 of [2] and references cited there). So we omit the proof of our claim
and we just note that it is based on the fact that the reduced cellular homology of
the ball vanishes in all dimensions, and on the existence of the incidence numbers.
These are numbers given by a mapping from pairs of balls (c, c′) of a regular CW
complex with c ⊂ c′ and dim c′ = dim c + 1 to numbers [c : c′] ∈ {+1,−1} such that
the boundary maps are given by

di(c
′) =

∑

c

[c : c′]c.

So, in particular, if Z has a top element 1̂, there exists an exact labeling on Z. In
this case, by Corollary 5.6, Z has at least 2|Z|−1 exact labelings. But this is also
the number of its balanced labelings by Corollary 6.2. So the assertion is proved for
zircons with top element.
Now suppose that Z is an arbitrary directed zircon and that L is a balanced labeling
on Z. Then, for all z ∈ Z, the restriction of L to [0̂, z] is exact. Hence we get the
assertion because, given X = ∑

akxk ∈ ker di (where x1, x2, . . . ∈ P are finite in
number and have rank i +1, and a1, a2, . . . ∈ Z), there is some z ∈ Z such that xk ≤ z

for all k. �

Remarks

1. The hypothesis that Z is directed is essential. For example, suppose that the zir-
con Z consists of the bottom element 0̂ and two atoms. The trivial labeling with
two +1 is a balanced labeling which is not exact. However, this condition is not
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particularly restrictive and all Coxeter groups are directed posets (see Lemma 6.4
of [4]).

2. The hypothesis that Z is a zircon is essential. For example, the directed Eulerian
poset P in Fig. 6 has 2|P | balanced labelings and none of them is exact.
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