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Abstract A construction of bases for cell modules of the Birman—Murakami—WenzI
(or B-M-W) algebra B,(g,r) by lifting bases for cell modules of B,_1(gq,r) is
given. By iterating this procedure, we produce cellular bases for B-M—W algebras
on which a large Abelian subalgebra, generated by elements which generalise the
Jucys—Murphy elements from the representation theory of the Iwahori—-Hecke alge-
bra of the symmetric group, acts triangularly. The triangular action of this Abelian
subalgebra is used to provide explicit criteria, in terms of the defining parameters ¢
and r, for B-M—W algebras to be semisimple. The aforementioned constructions pro-
vide generalisations, to the algebras under consideration here, of certain results from
the Specht module theory of the Iwahori—Hecke algebra of the symmetric group.

Keywords Birman—Murakami—Wenzl algebra - Brauer algebra - Specht module -
Cellular algebra - Jucys—Murphy operators

1 Introduction

Using a recursive procedure which lifts bases of B;_1(q, r) to bases for B;(q, r), for
i=1,2,...,n, we obtain new cellular bases (in the sense of [5]) for the B-M-W
algebra B, (q, r), indexed by paths in an appropriate Bratteli diagram, whereby

1. each cell module for B, (g, r) admits a filtration by cell modules for B,_1(g, ),
and

2. certain commuting elements in B, (g, r), which generalise the Jucys—Murphy el-
ements in the Iwahori-Hecke algebra of the symmetric group, act triangularly on
each cell module for the algebra B, (g, r).
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The triangular action of the generalised Jucys—Murphy elements, combined with the
machinery of cellular algebras from [5], allows us to obtain explicit criteria, in terms
of defining parameters, for any given B-M—W algebra to be semisimple. The afore-
mentioned provide generalisations of classical results from the representation theory
of the Iwahori—Hecke algebra of the symmetric group to the algebras under investi-
gation here.

The contents of this article are presented as follows.

1. Definitions concerning partitions and tableaux, along with standard facts from the
representation theory of the Iwahori—-Hecke algebra of the symmetric group are
stated in Sect. 2.

2. In Sect. 3, we define a generic version of the B-M-W algebras and restate in a
more transparent notation the main results of [4] on cellular bases of the same
algebras.

3. In Sect. 4, we state for reference some consequences following from the state-
ments in Sect. 3 and the theory of cellular algebras given in [5].

4. In Sect. 5, an explicit description of the behaviour of the cell modules for generic
B-M-W algebras under restriction is obtained.

5. In Sect. 6, the results of Sect. 5 are used to construct new bases for B-M-W alge-
bras, indexed by pairs of paths in the Bratteli diagram associated with B-M-W al-
gebras and generalising Murphy’s construction [9] of bases for the Iwahori-Hecke
algebras of the symmetric group. A demonstration of the iterative procedure is
given in detail in Examples 6.2 and 6.3.

6. Certain results of R. Dipper and G. James on the Jucys—Murphy operators of the
Iwahori-Hecke algebra of the symmetric group are extended to generic B-M-W
algebras in Theorem 7.8.

7. Theorems 8.2 and 8.5 use the above mentioned results to give sufficient criteria
for the B-M—-W algebras over a field to be semisimple.

8. Theorem 10.7 shows that the Jucys—Murphy elements act triangularly on each cell
module of the Brauer algebra, while the semisimplicity criterion of Theorem 11.1
is a weak version of a result of H. Rui [11].

9. Some conjectures on the semisimplicity of the Brauer algebras are given in
Sect. 12.

The author is indebted to B. Srinivasan for guidance, to A. Ram for remarks on a
previous version of this paper, and to 1. Terada for discussions during the period this
work was undertaken. The author is grateful to T. Shoji and H. Miyachi for comments
and thanks the referees for numerous suggestions and corrections.

2 Preliminaries
2.1 Combinatorics and tableaux
Throughout, n will denote a positive integer and &,, will be the symmetric group

actingon {1, ..., n} on the right. Fori an integer, 1 <i < n, let s; denote the transpo-
sition (i,7 + 1). Then &, is generated as a Coxeter group by sy, 52, ..., s,—1, which

@ Springer



J Algebr Comb (2007) 26: 291-341 293

satisfy the defining relations

sizzl forl <i <n;
SiSi+18i = Si+18iSi+1 forl <i<n-—1;
SiSi =88 for2 <|i —j|.
i3] Joi J

An expression w = §;, S, - - - §i; in which k is minimal is called a reduced expression
for w, and £(w) = k is the length of w.

Let f be an integer, 0 < f <[n/2]. If n —2f > 0, a partition of n —2f is a
non—increasing sequence A = (A, ..., Ax) of integers, A; > 0, such that Zle A=
n — 2f; otherwise, if n — 2f = 0, write A = & for the empty partition. The fact
that A is a partition of n — 2 f will be denoted by A -n — 2 f. We will also write
|A| = > ;=1 Ai. The integers {A; : for i > 1} are the parts of A. If A is a partition of
n —2f, the Young diagram of A is the set

M={GJj):A>j>1landi > 1} SN xN.

The elements of [A] are the nodes of A and more generally a node is a pair (I, j) €
N x N. The diagram [A] is traditionally represented as an array of boxes with A;

boxes on the i—th row. For example, if A = (3, 2), then [A] = |. Let [A] be the
diagram of a partition. A node (i, j) is an addable node of [A] if (i, j) & [A] and
[1] =[A1U{(, j)} is the diagram of a partition; in this case (i, j) is also referred to
as a removable node of [1i].

For our purposes, a dominance order on partitions is defined as follows: if A and
[ are partitions, then A > p if either

1. || > |A] or
2. |l =|rland Y5 A > S5 i forall k > 0.

We will write A > @ to mean that A > pu and A # p. Although the definition of the
dominance order on partitions employed here differs from the conventional defini-
tion [7] of the dominance order on partitions, when restricted to the partitions of the
odd integers {1, 3, ..., n} or to partitions of the even integers {0, 2, ..., n}, depend-
ing as n is odd or even, the order I> as defined above is compatible with a cellular
structure of the Birman—Murakami—Wenzl and Brauer algebras, as shown in [4], [5]
and [13].

Let f be an integer, 0 < f < [n/2], and A be a partition of n — 2 f. A A—tableau
labeled by {2f + 1,2 f +2,...,n} is a bijection t from the nodes of the diagram [A]
to the integers {2f + 1,2f 4+ 2,...,n}. A given A-tableau t: [A\] = {2f + 1,2f +
2,...,n} can be visualised by labeling the nodes of the diagram [A] with the integers
2f+1,2f +2,...,n. Forexample, if n =10, f =2 and A = (3,2, 1),

8[10)
7 2.1

t=

BEE

represents a A—tableau. A A—tableau t labeled by {2f + 1,2f 4+ 2,...,n} is said to
be standard if

t(1, j1) = t(2, j2), whenever i1 > i and j; > jo.
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If A is a partition of n — 2 f, write Std, (1) for the set of standard A—tableaux labeled
by the integers {2f +1,2f +2,...,n}. We let t* denote the element of Std, (1) in
which2f + 1,2f +2,...,n are entered in increasing order from left to right along
the rows of [A]. Thus in the above example where n =10, f =2 and A = (3,2, 1),

6]7]
9] . (2.2)

th=

|SOOU|

The tableau ¢ is referred to as the superstandard tableau in Std, (1). If t € Std,, (1),
we will write A = Shape(t) and, abiding by the convention used in the literature,
Std(1) will be used to denote the set of standard tableaux t: [A] — {1,2,...,|A|};
we will refer to elements of Std(A) simply as standard A—tableaux. If s € Std, (1), we
will write § for the tableau in Std(1) which is obtained by relabelling the nodes of s
by the mapir>i—2f.

If t € Std,(A) and i is an integer 2f < i < n, define t|; to be the tableau ob-
tained by deleting each entry k of t with £ > i (compare Example 5.1 below). The set
Std, (1) admits an order > wherein s > t if Shape(s|;) &> Shape(t|;) for each integer
i with 2 f <i <n. We adopt the usual convention of writing s > t to mean that s > t
and 5 # t.

The subgroup 6,27 = (s; : 2f <i <n) C &, acts on the set of A-tableaux on
the right in the usual manner, by permuting the integer labels of the nodes of [A]. For
example,

5[6[7] 5 810
l%m (6, 8)(7,10,9) =g‘7\ . 2.3)

If A is a partition of n — 2 f, then for our purposes the Young subgroup S, is de-
fined to be the row stabiliser of ¢ in &, —2y. For instance, when n = 10, f =2 and
A= (3,2,1),asin (2.2) above, then &, = (ss, 56, s3). To each A—tableau t, associate
a unique permutation d(t) € &, >5 by the condition t = t*d(t). If we refer to the
tableau t in (2.1) above for instance, then d(t) = (6, 8)(7, 10, 9) by (2.3).

2.2 The Iwahori—-Hecke algebra of the symmetric group

For the purposes of this section, let R denote an integral domain and ¢g be a unit in R.
The Iwahori—Hecke algebra (over R) of the symmetric group is the unital associative
R-—algebra #, (qz) with generators X1, X», ..., X,—1, which satisfy the defining re-
lations

Xi—)Xi+q~ =0 for1 <i <n;
XiXim1Xi=XinXiXin forl<i<n-—1;
XiX;=X;X; for2 <|i — j|.

If w e &, and s;, i, - - - 53, is a reduced expression for w, then

X=X Xi, - X,
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is a well defined element of #, (qz) and the set {X,, : w € G,} freely generates
H,(g?) as an R—module (Theorems 1.8 and 1.13 of [8]).

Below we state for later reference standard facts from the representation theory
of the Iwahori—Hecke algebra of the symmetric group, of which details can be found
in [8] or [9]. If u is a partition of n, define the element

cu= Z q'"Xx,.

weS,

In this section, let s denote the algebra anti—involution of #,(¢%) mapping X,,
X,,-1. If A is a partition of n, # is defined to be the two-sided ideal in #,(g?)
generated by

{euo = XjjycuXde) - u, 0 € Std(u), where p 1> A}.
The next statement is due to E. Murphy in [9].

Theorem 2.1 The Iwahori-Hecke algebra #,(q?) is free as an R—module with basis

oru, v € Std()) and
M= {Cun = Xj(u)cAXd(u) f ( ) } .

A a partition of n

Moreover, the following statements hold.

1. The R-linear anti—involution * satisfies * : cs¢ > Cis for all s, t € Std()).
2. Suppose that h € ¥, (qz), and that s is a standard A—tableau. Then there exist
ay € R, for u € Std(A), such that for all v € Std()),

Cosh= Y aucyu mod H,. (2.4)
ueStd(r)

The basis M is cellular in the sense of [5]. If A is a partition of n, the cell (or
Specht) module C* for #,(¢q?) is the R—module freely generated by

{cs =1 Xas) + H 5 €Std(L)), (2.5)
and given the right #, (¢*)—action

csh = Z ayCy, for h € J(’n(qz),
ueStd(r)

where the coefficients a,, € R, for u € Std(A), are determined by the expression (2.4).
The basis (2.5) is referred to as the Murphy basis for C* and M is the Murphy basis
for #, (q2).

Remark 2.1 The #,(q>)-module C* is the contragradient dual of the Specht module
defined in [2].
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Let A and u be partitions of n. A A-tableau of type w is a map T: [A] —
{1,2,...,d} such that u; = |{y € [\] : T(y) =i}| fori > 1. A A-tableau T of type
W is said to be semistandard if (i) the entries in each row of T are non—decreasing,
and (ii) the entries in each column of T are strictly increasing. If u is a partition, the
semistandard tableau T# is defined to be the tableau of type p with T# (i, j) =i for

@ j) €[l

Example 2.1 Let u = (3,2,1). Then the semistandard tableaux of type u are
1[1]1] [1]1]1]2]
TH =12]2

2] , 11,111|2|,111|3\,11\1|2\2|,11|1|2|3|,and
13] 13] 2[2[3]"[2]3 2[2 13] 2]
, as in Example 4.1 of [8]. All the semistandard tableaux of type u are

obtainable from T by “moving nodes up” in T*.

If X and p are partitions of 7, the set of semistandard A—tableaux of type n will be
denoted by 7g(A, ). Further, given a A—tableau t and a partition u of n, then p(t) is
defined to be the A—tableau of type p obtained from t by replacing each entry i in t
with k if i appears in the k—th row of the superstandard tableau t* € Std(u).

1]2]3]
415
Example 2.2 Letn =7, and u = (3,2, 1, 1), so that t* =g .Ifv=(4,3) and
7]
11237 1(1(1(4
t=rT516 ‘,thenu(t):223 |.

Let o and v be partitions of n. If S is a semistandard v—tableau of type w, and t is
a standard v—tableau, define in #,(¢?) the element

Cst = Z qf(d(s))cst. (26)
seStd(v)
n(s)=S

Given a partition  of n, let M* be the right #,(¢%)—module generated by cy- The
next statement is a special instance of a theorem of E. Murphy (Theorem 4.9 of [8]).

Theorem 2.2 Let (1 be a partition of n. Then the collection
{cst: S €To(v, n), te Std(v), for v a partition of n}
freely generates M* as an R—module.

If « and A are partitions of n — 1 and n respectively, for the purposes of the present
Sect. 2.2, we write  — A to mean that the diagram [A] is obtained by adding a node
to the diagram [u], as exemplified by the truncated Bratteli diagram associated with
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H, (qz) displayed in (2.7) below (Sect. 4 of [6]).

%)

|

N
N\
N\

/

[] [l:l:l]l
n - Q2.7)

\EED
/

If A is a partition of n then, as in [6], define a path of shape X in the Bratteli diagram
associated with #,(g?) to be a sequence of partitions

(@0, am)

satisfying the conditions that (9 = & is the empty partition, A" = 1, and A¢~D —
A9 for 1 <i <n. As observed in Sect. 4 of [6], there is a natural correspondence
between the paths in the Bratteli diagram associated with #,,(¢?) and the elements
of Std(x) whereby t— (A @, A 2®) and AD) = Shape(t|;) for I <i <n.

Example 2.3 Let n = 6 and A = (3,2, 1). Then the identification of standard A—
tableau with paths of shape A in the Bratteli diagram associated with #,(¢%) maps

3

1]3]6] |
t=é4 I—)(D,B,_ l, , , )

Taking advantage of the bijection between the standard A—tableaux and the paths of
shape A in the Bratteli diagram of #,(¢2), we will have occasion to write

t=(A000,.20),

explicitly identifying each standard A—tableau t with a path of shape A in the Bratteli
diagram.
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For each integer i with 1 <i < n, consider #; (qz) as the subalgebra of #, (qz)
generated by the elements X1, X», ..., X;_1, thereby obtaining the tower of algebras

R=H#1(q>) C #2(q*) - C Hulq?). (2.8)

Given a right #, (qz)—module V, write Res(V) for the restriction of V to J#,_ (qz)
by the identifications (2.8). Lemma 2.3 below, which is a consequence of Theorem 7.2
of [9], shows that the Bratteli diagram associated with #, (qz) describes the behav-
iour of the cell modules for J¢, (qz) under restriction to J€,_| (qz).

Lemma 2.3 Let A be a partition of n. For each partition ( of n — 1 with u — X, let
A" denote the R—submodule of C* freely generated by

{cy 1 0 € Std(X) and Shape(v|,—1) > u}
and write A for the R—submodule of S* freely generated by
{cy : v € Std(X) and Shape(v|,_1) > n}.
If v € Std, () and v|,—1 = t*, then the R—linear map determined on generators by
coXdaw) + AP ey, foru e Std(w),
is an isomorphism A“/A“ = CH of Hy_1(g?)—modules.
B The Jucys—Murphy operators ﬁi in #, (qz) are usually defined (Sect. 3 of [8]) by
=0 and

Di:ZX(k’i)’ fori=1,...,n. 2.9)

As per an exercise in [8], we define D; =1 and set D; = X;_1D;_1X;_1. Since
Di=1+(q— ¢~YD;, and the D; can be cumbersome, we work with the D; rather
than the D;. We also refer to the D; as Jucys—Murphy elements; this should cause no
confusion. The following proposition is well known.

Proposition 2.4 Let i and k be integers, 1 <i <nand 1 <k <n.

1. X; and Dy commute ifi #k — 1, k.
2. D; and Dy commute.
3. X; commutes with D; Dj 1 and D; + Dj41.

Let t= (A(O), A A(")) be a standard A—tableau identified with the correspond-
ing path in the Bratteli diagram of #,,(¢?). For each integer k with 1 < k < n, define

P(k) = ¢g*tu=D where 2% =[2*"D1U{G, ). (2.10)

The next statement is due to R. Dipper and G. James (Theorem 3.32 of [8]).
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Theorem 2.5 Suppose that A is a partition of n and let s be a standard A—tableau. If
k is an integer, 1| <k <n, then there exist a, € R, for v > s, such that

cs D = Ps(k)cs + Z ApCyp.

veStd(n)
o5

One objective at hand is to provide an extension of Lemma 2.3 and Theorem 2.5 to
the Brauer and Birman—Murakami—Wenzl algebras.

3 The Birman—Murakami—Wenzl algebras

Let ¢, r be indeterminates over Z and R = Z[g*!, r*!, (¢ — g~')~']. The Birman—
Murakami—Wenzl algebra B, (g, r) over R is the unital associative R—algebra gener-

ated by the elements 71, T3, ..., T,,—1, which satisfy the defining relations
(Ti —)(Ti +¢~ (T =r~H =0 for 1 <i <n;
LiTinTi =T TiTin forl<i<n-2;
LT =T;T; for2 <|i — jl;
E T E =r*'E; for2<i<n-—1;
E T\ Ei =r*'E forl<i<n-—2;
T,E;=E;T, =r"'E; forl<i<n-—1,

where E; is the element defined by the expression
@—q¢ HA—-E)=T;—T7".
Writing

_ (g+r)gr—1)
r(g+1D(g—1)

then (Sect. 3 of [12]) one derives additional relations

3.1

E,~2:in,

ETH =/ ¥E =T E,
T?=1+(q—q (T —r ' E)
Eit1iTiTit1 =TiTit1 E;

EiTi1\Ei =TE;

ET Ei=r"E

EiEi+ E; =E;

EiEit1 =EiTin1Ti =Tit1Ti Eix.
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If w € &, is a permutation and w = s;,s;, - - - §;, is a reduced expression for w, then
Tw =Ti1Ti2"'Tik
is a well defined element of B, (g, r).

Remark 3.1 The generator T; above differs by a factor of g from the generator used
in [4] but coincides with the element g; of [6] and [12].

If f is an integer, 0 < f < [n/2], define B,{ to be the two sided ideal of B,(q,r)
generated by the element E1E3--- Ex¢_1. Then

) c Bl c /P c...c B < BY=B,(q.r) (3.2)

gives a filtration of B, (q,r). As in Theorem 4.1 of [4] (see also [13]), refining the
filtration (3.2) gives the cell modules, in the sense of [5], for the algebra B, (g, r). If
f is aninteger, 0 < f <[n/2], and A is a partition of n — 2 f, define the element

Xy = Z qz(W)Twy
wes;,

where G, is row stabiliser in the subgroup (s; : 2f < i < n) of the superstandard
tableau * € Std, (1) as defined in Sect. 2; finally define

my =E\E3---Exf_1x;,

which is the analogue to the element c; in the Iwahori-Hecke algebra of the symmet-
ric group.

Example 3.1 Let n =10 and A = (3,2, 1). From the A-tableau displayed in (2.2)
comes the subgroup &, = (ss, s¢, sg), and

my=EE; ) ¢"™T,
wEGx
= E1E3(1+qT5)(1 4+ qTs + ¢*TTs)(1 + qT3).
If f is an integer, 0 < f < [n/2], define

RQi+Hv<@j+HvforO0<i<j<f;
Din=1ve6, Qi+ Hv<@i+2vfor0<i< f;
and v< @+ Dvfor2f <i<n

As shown in Sect. 3 of [4], the collection Dy, is a complete set of right coset repre-
sentatives for the subgroup B¢ x &,_>¢ in &, where &,,_» ¢ is identified with the
subgroup (s; : 2f <i <n) of &, and By = (1), B = (s1) and, for f > 1,

B = (5211, 82082 +152i—152; : 1 <i < f).

Additionally, it is evident (Proposition 3.1 of [4]) that if v is an element of Dy,,, then
L(uv) =€)+ €(v) foralluin (s; : 2f <i <n).
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Remark 3.2 After fixing a choice of over and under crossings, there is a natural bi-
jection between the coset representatives Dy,, and the (n, n — 2 f)—dangles of Defi-
nition 3.3 of [13].

For each partition A of n — 2 f, define Z,, (1) to be the set of ordered pairs
Z,(A) ={(s,v) :5 € Std,(X) and v € Dy, } (3.3)

and define B} to be the two—sided ideal in B, (g, r) generated by m; and let
B =Y B
w>A

so that B,{ +1 - é,f, by the definition of the dominance order on partitions given in
Sect. 2. Let * be the algebra anti—involution of B, (g, r) which maps T, — T,,-1 and
E,’ — E;.

That B, (g, r) is cellular in the sense of [5] was shown in [13]; the next statement
which is Theorem 4.1 of [4], gives an explicit cellular basis for B, (g, r).

Theorem 3.1 The algebra B,(q,r) is freely generated as an R—module by the col-
lection

s5,v), (t, u) € Z,(L), for A a partition
{T:T;@mﬂdmn (5. v). (t.u) € T, (V). for hap }

ofn —=2f,and0 < f <[n/2]
Moreover, the following statements hold.

1. The algebra anti-involution * satisfies
* 0 Tv*Tj(g)kad(t)Tu = TM*T;(t)mATd(s)Tv
forall (s,v), (t,u) € T, (A).
2. Suppose that b € B,,(q,r) andlet f be an integer, 0 < f < [n/2]. If A is a partition
ofn—2f and (t,u) € L, (1), then there exist aq, ) € R, for (u, w) € L, (A), such
that for all (s,v) € Z,,()),

Ty TsymiTawTub = a@w Ty TjeymiTaeTw mod B). (3.4)

(u,w)

As a consequence of the above theorem, éé‘ is the R—module freely generated by
the collection

{TU*T;(S)mMTd(t)Tu 2 (s,0), (t,u) € T (w), for > A},

If f is an integer, 0 < f < [n/2], and A is a partition of n — 2 f, the cell module S*
is defined to be the R—module freely generated by

{kad(t)Tu + B (tu) eIn(,\)} (3.5)
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and given the right B, (g, r) action

myTayTub+ By = Y aquwymaTaw Tw + B} forb € B,(q,r),

(u,w)

where the coefficients a( ) € R, for (u, w) in Z, (1), are determined by the expres-
sion (3.4).

Example 3.2 Letn =6, f =1,and A = (3, 1).If i, j are integers with 1 <i < j <n,
write v; j = $283---85;_15182 - Si—1, 50 that

Dyp={vij:1<i<j=<n}.

Since

Std,(2) = {fk: 2 4‘5|,t)‘s5=

4
6] phgss =2 56|}

[o]es

and my = E1(1 +qTx)(1 +qT3 + q2T3T4), the basis for S*, of the form displayed
in (3.5), is
{mTu) Ty, + By :s€Std, (M) and 1 <i < j <nl}.
As in Proposition 2.4 of [5], the cell module S* for B, (g, r) admits a symmetric
associative bilinear form ( , ) : $* x §* — R defined by

(M Taay Ty, m). Ty Tw)my = my Tagan Ty TufT;(u)mA mod ér)z\ 3.6)

We return to the question of using the bilinear form (3.6) to extract explicit informa-
tion about the structure of the B-W—W algebras in Sect. 8, but record the following
example for later reference.

Example 3.3 Let n =3 and A = (1) so that I§,)l‘ = (0) and m) = E{. We order the
basis (3.5) for the module $* as v; = Ej, vo = E1T» and v3 = E;T»T; and, with
respect to this ordered basis, the Gram matrix (v;, v;) of the bilinear form (3.6) is

z r 1
red(@—qg Hoe—r=hHr!
1 rl Z

The determinant of the Gram matrix given above is

r—DXr+ D@ +r@*r -1
r3g —1)*(gq+ 13

3.7)

Remark 3.3 (i) Let « be a field and 7, §, (§ — §~") be units in «. The assignments
@ :r+—>Fand ¢ : g — ¢ determine a homomorphism R — «, giving k¥ an R—module
structure. We refer to the specialisation B, (q,7) = B,(q,r) Qg k as a B-M-W al-
gebra over k. If 0 < f <[n/2] and A is a partition of n — 2 f then the cell module
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S* @ « for B, (g, 7) admits a symmetric associative bilinear form which is related
to the generic form (3.6) in an obvious way.

(ii)) Whenever the context is clear and no possible confusion will arise, the abbre-
viation $* will be used for the B, (g, #)—-module S* ®x k.

The proof of Theorem 3.1 given in [4] rests upon the following facts, respectively
Proposition 3.2 of [12] and Proposition 3.3 of [4], stated below for later reference.

Lemma 3.2 Let f be an integer, 0 < f < [n/2], write Cy for the subalgebra of
By, (q,r) generated by the elements Tryy1, ..., Ty—1, and Iy for the two sided ideal
of Cy generated by the element Es 1. Then the map defined on algebra generators

of Hn—27(q%) by
¢:Xi> Toyqi+ 1y, forl<i<n—2f,

and extended to all of #H,_25 by ¢(h1h2) = ¢ (h1)$(h2) whenever hi, hy € Hy,_2y,
is an algebra isomorphism #,_ s (g% = Cr/ly.

Lemma 3.3 Let f be an integer, 0 < f < [n/2], and Cy and Iy be as in Lemma 3.2
above. If i is an integer, 2 f <i <n,and b € Cy, then

E\E3---Eyy 1bE;=E(E3---Exp_1Eib=0 mod B,{-H.

Since an_gf(q2) C Ha(g?) is generated by {X; : 1 < j <n — 2f}, from Lem-
mas 3.2 and 3.3 we obtain Corollary 3.4; cf. Sect. 3 of [4].

Corollary 3.4 If f is an integer, 0 < f < [n/2], then there is a well defined R-

module homomorphism vy Jf,,,zf(qz) — B,{C/B,{Url , determined by

Vr: Xy —> E1E3---Exp 1Ty + B,{-H,

where v = sj,Si, - - - Si, IS a permutation in (s; : 2 f <i <n) and W is the permutation
O =i, —2fSi,—2f - - - Sig—2 f. Additionally, the map Uy satisfies the property

V(X5 X)) =0rXe)Tapy ), (3.9)
whenever 1 < j <n—2f.

Remark 3.4 The fact that 9 ¢ is an isomorphism of R—modules was not used in the
proof of Theorem 3.1; however it may be deduced from Theorem 3.1 which implies
that the dimension over R of the image space of ¥ is equal to the dimension of
Huof (qz) over R.

Lemma 3.5 Let f be an integer, 0 < f < [n/2]. If b € B,(q,7), w € Dy, and
1 <i < n, then there exista, , in R, foruin(s; :2f <i <n) andvin Dy, uniquely
determined by

1
E\E3---Erp 1Tyb= Zau,vElE?: - Epp 1T, T, mod B,{+ . 3.9)

u,v
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Proof For the uniqueness of the expression (3.9), observe that there is a one—to—one
map

E\E3---Eyp 1 T,T, + B,‘,H_l > Z ds t T;(s)mATd(t)Tv +an+l,
5,teStd, (L)
An—=2f

foru e (s; : 2f < j <n)andv € Dy, determined by the map ¥ ; and the transition
between the basis {X,, : w € &, 3} and the Murphy basis for Jf’n_zf(q2), where
the expression on the right hand side above is an R-linear sum of the basis elements
for B,{ / B,{ i given by Theorem 3.1.

The proof of the lemma makes repeated use of the following fact. If u’ € (s; : 2f <
i <n)and v € G,, then E1E3--- Eyr 1T,/ Ty is expressible as a sum of the form
that appears on the right hand side of (3.9). To see this, first note that, given an integer
iwith2f <i <nand (i + v < (i),

N £ if L) < e's);
e (Twrs; +(q —q (T —r " Ty E)) Ty,  otherwise.

Thus, using Lemma 3.3, we have a, , € R, foru e (s; : 2f <i <n) and v € G,

such that

1
E\E3z---Exy 1 TyTy = Zau,vElES < Epp 1T,T, mod B,{+ ,

u,v

where (i)v < (i + 1)v, for 2f < i < n, whenever a, , # 0 in the above expres-
sion. Noting that E1E3---Eyp1Ty = r 'E\E3---Eap 1Ty, v if 1 <i < f and
£(s2i—1v) < £(v), and applying Proposition 3.7 or Corollary 3.1 of [4], we may as-
sume that v € Dy ,, whenever a, , # 0 in the above expression.

Proceeding with the proof of the lemma, first consider the case where b = E; for
some 1 <i<n.Letk=@@w 'and =G+ Dw L. If (@ + Dw ' < @w™!, then
TwE; = r‘lTwsi E;, where ws; € Dy,,. We may therefore suppose that k < [. Using
Proposition 3.4 of [4],

maziﬁﬁgz o =k (3.10)
I, 1,5 T ExTy, otherwise,

where w' = sg118¢+2 -+ si—1w and, for k < j <1,

o 1, ifi+1<()w;
I —1, otherwise.

Considering the two cases in (3.10) separately, multiply both sides of the expres-
sion (3.10) by E1E3--- Eyp_1. If I =k + 1, then

ZEVE3---Exf 1Ty, if k <2 f and k is odd;
E\E3---Exy \TyEi={E1E3-- “Exp Tk Tk—1Ty, ifk <2f andk iseven;
E\E3---Exp_1 Ex Ty, if2f <k.
(3.11)
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By Proposition 3.8 of [4], there exist a, € R, for v’ € &,, such that, given w’ € G,
satisfying (2j)w’ + 1 = (2j + Dw’, together with &2;_1, &2; € {£1},

E;,'_IT;;-"T;]?Q]T =Y ayEyjTy. (3.12)

vVed,

Using (3.12) with k = 2j, the term appearing in the second case on the right hand
side of (3.11) can be rewritten as

E\E3---Epp 1 Ti Tr—1 Ty = Z ayE\Ez---Exj_1Ty.
vVed,

As already noted, the right hand side of the above expression may be rewritten mod-

B,{ *1 a5 an R-linear combination of the required form. On the other hand, the
f+1
B, .

ulo

term appearing on the right in the last case in (3.11) above is zero modulo
The second case on the right hand side of (3.10) gives rise to three sub—cases as
follows. First, if 2 f < k < n, then

E\Es- Eyp T/ TS - IO Ex Ty =0 mod B

if 1 <k <2f and k is odd, then

BT T BT = i B TS TP T (B3)

if 1 <k <2f and k is even, then

Exa T TS T ExTy = Ecn T TS T Tl T (3.14)

When 1 <k <2f and k is odd, using (3.10) and (3.13), and successively apply-
ing (3.12) with j =k, k —2,..., we obtain

El— E1— €,
E\E3---Exp T, T) 7 - T Ex Ty

_ E1—1 p€l-2 E2f+1
= § : ay Ty Ty Ty EvEs-- - Exp Ty
Ve,

El—1 €12 €2f+1
where T, "' T, 75" - - - T2f+1 can be expressed as a sum

El—1 rEI-2 &2f+1 __ /
LTy Ty, = Z ay Ty + b,
u'elsj:2f<j<n)

and &’ lies in the two sided ideal of (T : 2f < j <n) generated by E 1. Since b’
satisfies E1E3--- Eyp_1b' € B,{Jrl, it follows that

E1_1 rEl— &k
E\Es- Exy T 515 T Ty

1
= Y awwEiEs-ExpaTy T, mod BF

Ved,
u'e(sj:2f<j<n)
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As already noted, the right hand side of the above expression may be rewritten mod-
ulo B,{ *1 a5 an R-linear combination of the required form. In the same way, if

1 <k <2f and k is even, then using (3.14), we obtain the product

E\E3- Exp T/ TS T i1 Ty

which is also expressible as a sum of the required form using the arguments above.
Thus we have shown that the lemma holds incase 1 <i <n and b = E;.
Letw e Dy, If 1 <i <n, and £(w) < £(ws;) then

E\E3---Exy 1TyT; =E\E3---Eyr 1Ty,
and, if £(ws;) < £(w), then
E\E3---Eyp 1 TyTi = E\E3--- Eap—1(Tys, +(q — ) (Tyy — r ' Ty E)).

We have already observed that the terms appearing on the right hand side in each
of the two above expressions may be expressed as an R—linear combination of the
required form. Thus we have shown that the lemma holds when b € {T; : 1 <i < n}.

Now, given that the lemma holds when b € {T; : 1 <i < n}, Lemma 3.3 shows
that any product

E1E3-- - Exy 1T, T,T;, forue(s;:2f <i<n)andv € Dy,

can also be written as an R-linear combination of the form appearing on the right
hand side of (3.9). Since {T; : 1 <i < n} generates B, (q, r), the proof of the lemma
is complete. O

If f is an integer, 0 < f <[n/2], and p is a partition of n — 2 f, define L" to be
the right B, (g, r)—submodule of B,{ / B,{ + generated by the element m,, + B,{ +
The next result will be used in Sect. 5 below; the element ms; defined in the next

lemma is an analogue to the element cs; € J¢, (qz) given in (2.6).

Lemma 3.6 Let f be an integer, 0 < f < [n/2], and given partitions ., of n —2 f,
with A > u, define

msg = Z q"O Ty mi Ty, for SeTo(h, ) and t € Std, ().

seStd, (L)
w()=S

Then the collection

{mStTv + B (3.15)

for S € 76()\7 H’)? te Stdn()"),
Abn—2fandve Dy,

freely generates L* as an R—module.

Proof If b € B,(q,r) and w € Dy,;,, then by the previous lemma, there exist a, , €
R,forue(s;:2f <i <n)and v e Dy, such that

1
E\E3- Eyf1Tyb= ay,E1Es---Eyp1T,T, mod B *'.

u,v
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Multiplying both sides of the above expression by x, on the left, and using the prop-
erty (3.8) and Theorem 2.2, we obtain as ¢ € R, for S € 7y(x, u), t € Std, (1) and
AbEn —2f, such that

1 1
muTub+ B = auy E\Es- Exp 1, T,T, + Bl *
u,v

= Za“»v O (cpXi)Ty = Zau,v Z as,t U r(cgp)Ty

u,v u,v SeTy(h, i)
teStd, (A)
+1
= Zau,v Z as,tmstTy +Br{ .
u,v SeZp(r, )
teStd, (1)

This proves the spanning property of the set (3.15). The fact that each element of
the set (3.15) lies in L follows from an argument similar to the above, using Theo-
rem 2.2 and the property (3.8). We now outline the proof of the linear independence
of the elements of (3.15) over R.

(1) Let {S; : 1 <i < k} be the semistandard tableaux of type w, ordered so that
Si € To(A;, n) and j > i whenever A; > 1;, and take L; to denote the R—module
generated by

{ms T+ Bl 1< j<iteStd, () and v e Dy, ).

(i1) Using the property (3.8) and Theorem 2.2 as above, it is shown that the R—
module homomorphism L;/L;_1 — S* defined, for t € Std, (Ai) and w € Dy, by

ms,«Ty + Li—1 = my, Tay T + B} (3.16)

is an isomorphism of right B, (g, r)-modules. Thus, analogous to the filtration of
each permutation module of the Iwahori—-Hecke algebra of the symmetric group given
in Corollary 4.10 of [8], there is a filtration of L* by B, (g, r)-modules

0 =LpCSL S ---CLy=L", (3.17)

wherein each factor L;/L;_1 is isomorphic to a cell module S* for B, (g,r).

(iii) From (3.17), it is deduced that dimg (L*) = Zle dimg ($*). Since this sum
coincides with the order of the set (3.15) obtained by simply counting, the linear
independence over R of the elements of (3.15) now follows. [l

4 Representation theory over a field

We state for later reference some consequences, for B-M—W algebras over a field, of
the theory of cellular algebras constructed in [5]. These results of C.C. Xi appeared
in [13].
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Proposition 4.1 Ler B, (G, 7) be a B-M-W algebra over a field k. If f is an integer,
0 < f <[n/2], and X is a partition of n — 2 f, then the radical

rad($*) ={ve $*: (v,u) =0 forallu € §*}
of the form on S* determined by (3.6) is a B, (§, #')—submodule of S*.

Proposition 4.2 Let B, (G, 7) be a B-M-W algebra over a field k, and suppose that
f, f are integers 0 < f, f' <[n/2], and A, u are partitions of n — 2 f and n — 2 f'
respectively. If M is a B, (g, #)—submodule of S*, and  : S* — S*/M is a non—
trivial By, (g, 7)—-module homomorphism, then A > 1.

Let B, (g, 7) be a B-M-W algebra over a field «. If f is an integer with 0 < f <
[1n/2], and X is a partition of n — 2 f, define the B, (g, #)-module D* = §*/rad(S*).

Theorem 4.3 If k is a field and B,(§,7) is a B-M-W algebra over k, then {D*
D*#0,A-n—2fand 0 < f <[n/2]} is a complete set of pairwise inequivalent
irreducible B, (q, F)-modules.

Theorem 4.4 Let k be a field and B, (q,7) be a B-M-W algebra over k. Then the
following statements are equivalent.

1. B,(q,r) is (split) semisimple.
2. S*=D*forallxFn—2f and0< f <[n/2].
3. rad(8*) =0 forallA\Fn—2f and 0 < f <[n/2].

5 Restriction

Given an integer, 1 <i <n, regard B;(q,r) as the subalgebra of B, (q,r) generated
by the elements 77, T», - - - , T;_1, thereby obtaining the tower

R=Bi(q.r) S B2(q.r) S --- S Bulq.r). (5.1

If V is a By, (q,r)-module, using the identification (5.1), we write Res(V) for the
restriction of V to B,_1(q, ).

In order to construct a basis for the cell module S* which behaves well with respect
to both restriction in the tower (5.1) and with respect to the action of the Jucys—
Murphy operators in B, (g, r), we first consider in this section the behaviour of the
cell module S* under restriction from B, (¢, r) to B,_1(g, r). This description of the
restriction functor on the cell modules for the B-M—W algebras given here will be
used in Sect. 6 to construct a basis for the cell module S* which behaves regularly
with respect to restriction in the tower (5.1) and with respect to the Jucys—Murphy
operators in B, (g, r).

The material of this section is motivated by the Wedderburn decomposition of the
semisimple B-M-W algebras over a field C(g, 7) given by H. Wenzl in [12], and by
the bases for the B-M—-W algebras indexed by paths in the Bratteli diagram associated
with the B-M—-W algebras, constructed in the semisimple setting over C(g, ), by
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R. Leduc and A. Ram in [6]. As made clear by [6] and [12], paths in the Bratteli
diagram associated with the B-M—W algebras provide the most natural generalisation
to our setting of the standard tableaux from the representation theory of the symmetric
group. However, while the bases constructed in Sect. 6 and in [6] are both indexed
by paths in the appropriate Bratteli diagram, we have sought a generic basis over a
ring R = Z[g*", r*!, (¢ — ¢~")~']. Thus the construction here will not require the
assumptions about semisimplicity which are necessary in [6].

Let f be an integer, 0 < f < [n/2], and A be a partition of n — 2 f. Henceforth,
write @ — A to mean that either

1. w is a partition of n — 2 f + 1 and the diagram [u] is obtained by adding a node
to the diagram [A] or,

2. w is a partition of n — 2 f — 1 and the diagram [1] is obtained by deleting a node
from the diagram [A],

as illustrated in the truncated Bratteli diagram associated with B, (q, r) displayed
in (5.2) below (Sect. 5 of [6]).

1%}

/N

N

O @ | [T 52)

Let f be aninteger, 0 < f < [n/2], and A be a partition of n —2 f with f removable
nodes and suppose that

ORI FRN G (5.3)

is the ordering of the set {i : © — X and |A| > ||} by dominance order on partitions.
For each partition /L(k) in the list (5.3), define an element

yﬁ(k) =m) Ty + 1;’,)!‘ where s|,_1 = t“(k), 5.4)
and let N*“ denote the B,,_1(q, r)-submodule of S* generated by
(Ve Ta w € Stdy—1 (1O));
write N for the B,,_1(q, r)-submodule of S* generated by

{yﬁ(“ Taq) v € Stdy—1 (1) and j < k}.
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Example 5.1 Letn =10, f =2 and A = (3,2, 1). Then

m.=EEs Y q""T, = E\Es(1+qT5)(1 + qT6 + ¢*TeT5) (1 + ¢ Tk)

11)665)L

and the elements yﬁ(k) , for each partition w® — x with |A| > |u®], are as follows.

516[7]
1. If u = (3,2), then t* = s|,,_;, where s = 1%9 , SO

A DA
yu(” =m) + B,

5[6[7]
2. 1fu® =31, 1) and s =[S10, then % = 5],_1, s0

y2<2> =mTys) + By =my Ty + B}

610
8] . so

3.1 u® = (2,2, 1), then t*” =s],_|, where s =

EIEIE

Yﬁe) =m; Tyes) + é,? =m T7TgTy + lv?,ﬁ.
Write D1 ={v € Dy : (M)v =n}, so identifying Dy,,—1 € Dy p.
Lemma 5.1 Let f be an integer, 0 < f <|[n/2], and A be a partition of n — 2 f.
If w is a partition with |A| > |u| and u — A, then N*/N" is the R—module freely
generated by

Vi Ty Tw + N* s we Stdy—y (1) and w € Dy}

Additionally, the map defined, for u € Std,,_1 () and w € Dy p_1, by

Vi TaaTw + N* > my Ty Tw + BL.| (5.5)

determines an isomorphism N”/I\VJ" = S* of B,—1(q, r)-modules.

Proof Letb € B,_1(q,r) and w € Dy,—1. By Lemma 3.5, there exist a, , € R, for
ue(s:2f <i<n-—1)and v € Dy, 1, determined uniquely by

E1E3---Exp 1Tyb= Z(lu’vE]E:; -~ By 1T,T, mod Berl 5.6)

n—1"
u,v

Let v € Std,, (1) satisfy v|,—; = t"* so that yZ‘L =m; Ty + é,’} and letu € Std,, 1 (w).
Since B,{_Jrll C anH, we use (5.6) and Lemma 2.3 to obtain as,a¢ € R, for s €
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Std,,—1(w) and t € Std,, (A) such that
my Tawy T Twb + B,{'-H

= Zau,v 9 (e X6y Xacy Xa) T

u,v
=Y Y as¥r(e X Xa@) Ty
u,v seStd,—1(n)
+ Zau,v Z at O (e X @) To + Za“»” s (T,
u,v teStd, (L) ¥,V

Shape(f\n—l)DM

where h € J@_z ¥ and 9y (h) C é,i‘ We thus obtain,

+1
m3. Tao) Taw Tuwb + Byl =Y auy Y, asm T Tue T

u,v seStd,—1 ()
+Zau,u Z atkad(t)Tv+b/a
v teStd, (1)

Shape(t|p—1)>p

where b’ € 1§,)l‘ Since N* is generated as a B,_1(g,r) module by {m; Ty« + Eﬁ :
t € Std, (1) and Shape(t|,—1) > u}, it follows that

yl)l Ty Twb = Za“’” Z as yﬁ Ty)Ty, mod N*. 6.7
u,v seStd,—1(w)

Using (5.6) and Lemma 2.3 again the a,, for s € Std,_; (), given above also
satisfy
1
m/LTd(u)wa + B,{jl = Zau,v ﬂf(cu,Xd(ﬁ)Xﬁ)Tv

u,v
=Y auw Y asOs(cuXge)To+ Y auy ¥ (h)T,,

u,v s€Std,—1 (1) u,v
where i’ € }Vt’ffszl. Since ¥ ¢ (h') € Lvi‘r’ltl,
muTaaTwb+ By = avy Y asmuTysTy+ Bl (5.8)
u,v seStd,—1(u)

Comparing coefficients in (5.7) and (5.8) shows that the R—module isomorphism (5.5)
is also a B,,_1(g, r)-module homomorphism. [l

Corollary 5.2 Let f be an integer, 0 < f <[n/2], and A be a partition of n — 2 f. If
W is a partition of n —2 f — 1 with i — A, then N* is the R—module freely generated
by

{kad(g)Tv + B,)l‘ 5 € Std,, (1), Shape(s|,—1) > pnand v € <@f,n—l}-
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Let f be an integer, 0 < f < [n/2], with A a partition of n — 2 f having ¢ removable
nodes and (p — t) addable nodes, and suppose that

pD s D s () (5.9)

is the ordering of {i : & — X and || > |1|} by dominance order on partitions. By the
definition of the dominance order on partitions which we use here, the list (5.3) can
be extended as

In the manner of Lemma 5.1, we seek to assign to each partition ,u(k), with k > ¢,
in the list (5.9), a B,—1(gq, r)-submodule N n® of S*, and an associated generator
yﬁ(k) + N* in §* /N To this end, first let

Wp =Sp_28n—3 " 82f—1Sn—18n—2 """ 82f (5.1D)
and write N*” for the B,,_1(q, r)-submodule of S* generated by the element
yﬁ(m =kauj,} + B (5.12)

From the defining relations for B, (g, r), or using the presentation for B, (g, r) in
terms of tangles given in [1], it is readily observed that Ezf_lTujll =Eyr1T, -1,
. , >

pl is an element of Dy, with

2f) w;l = n, Corollary 5.2 implies that the element m; T, -1 + élﬁ‘ is contained in the
p

and consequently that m;LTujll =mT, 1. Since w,
4 14

complement of N TR Furthermore, using the relation E;T;+1T; = Ti11 T Ei 41
it can be seen that

E2f—lTw;1 =Ey 1\ Dfhhfy1 - Ty2Th1Tofp—1T2f - Tyu—3Th—2
=L 1Tf1Tof - Th2Ty3Ey 2Ty 1Ty—2,
whence, if s € Std,; (1),
mde(g)Tujpl = mATd(g)Tw;l =E\E3-- E2f—3E2f—1kad(s)Tw;l

=EE3---Eyp 3Ty TvEn 2Ty 1Th-2, (5.13)

—1

where v = w,

Sp—28p—1 lies in Dy, 1. From the defining relations of B,(q, 1),
E, 2T, 1Ty 2E, 2 =E, 2,
and, multiplying both sides of (5.13) on the right by the element E,_»,

-1
mde(s)Twﬁl E, > =mTye Ty, where v = Wy, Sp—2Sn—1.

Since v € Dy ,—1, Corollary 5.2 implies a strict inclusion N“m C N”(p) of
B,_1(gq, r)-modules.
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Recall that if A is a partition of n — 2 f and s € Std,, (1), then § is defined as the
standard tableau obtained after relabelling the entries of s by i i — 2 f and d(s)
is the permutation in (s; : 2f <i < n) defined by the condition that s = t*d(s). For
the lemmas following, we also recall the definition of the permutation w, in (5.11)
above.

Lemma 5.3 Let f be an integer, 0 < f < [n/2], and A be a partition of n —2 f . Sup-
pose that u'P) is minimal in {v : v — A and |v| > |A|} with respect to the dominance
order on partitions, let | be a partition of n —2 f +1 with u> P and s € Std,,_1 (1)
be a tableau such that 1P (8) € To(w, u'P). If T = Shape(s|,—2) > A, then

Exf 1Ty Tjigmu=Ei1E3 - Exp 1T, Ty x, =0 mod B,.
Proof Recall that x, = Zwegﬂ q“™T, where &, is the row stabiliser of t* €
Std,—1(u)in (s; :2f — 1 <i <n —1). Let

k=min{i :2f — 1 <i<n—2and (n — D)d(s)"" < ()d(s)" '},
so that

L(d(8)Sp_nsn_3---85k) =L(d(s)) —n+k+ 1.
If we write v =d(8)$,—28,—3 -+ - Sk and u = §gSg41 -+ - Sp—2Wp, then
Exf_i Tl;[} Tjoymu = Exf Tw_plEl E3-- Exf 3T %,
= E\E3- Exp 1Ty Ty X = E1Es -+ Eap 1 T, Txy.
(5.14)

Since v has a reduced expression v = s;,8;, - - - §;, in the subgroup (s; :2f —1<i <
. . . =1
n —2), we define v’ = s, 428,42 - - - $i;+2 and, using the braid relation T, TiJrl T, =
N .
Tit1T; " T; |, obtain

TiT71 if2f —1<i<k;

TT = 5.15
wo T,~+1Tu_1 ifk <i<n, ( )

which allows us to rewrite (5.14) as
Ezf_lTl;pl Td*(s)ml/« =FEE3--- Ezf_lT;; Tu_lx#. (5.16)

Now, to each row i of t* € Std,,_1(u), associate the subgroup
R i = (sp7:i’, i’ + 1 appear in row i of t*)

and define PR ; analogously for t* € Std, (7). Let us suppose that n — 1 appears as
an entry in row j of s; if i # j, then by (5.15)

o ¢, = Y ", T (5.17)
wEfRU/.,,- wEthr'i
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On the other hand, within R ; take the parabolic subgroup
P, j =(weRw j: (Hw =k)

and, noting that the set of distinguished right coset representatives for Pu ; in Reu
(Proposition 3.3 of [8]) is

D={vi:vo=1land v; =v;_15—; for 0 <i <7;},

we write

Z qé(w)Tufl Tw — Z qé(w)Tufl Tw Z qe(U)Tv

weR wePu ; veD

Using the last expression and (5.15), we obtain

Tu_l Z qﬁ(w) ’Iwu) — Z q(i(w) Tu) Tu—l’

wePu ; weRr ;

which, together with (5.17), implies that

—1 £ —1 L
T =15 Y ¢" 1,7, Y 4",

i>l weRr ; veD
=Tix. T, > q"VT,.
ved

Since v’ € (s; : 2f < i < n), multiplying both sides of the last expression by
E1E3--- E>¢_1 on the left and referring to (5.16), we obtain

Exp Ty, Tjigmu =THE1Es - Expoix T, Y~ q" VT,
vedD

As the term on the right hand side of the above expression lies in é,)l‘, the result now
follows. ]

The next example illustrates Lemma 5.3.

Example 5.2 In parts (a) and (b) below, let n =10, f =2 and A = (3.2, D). Since A
has three removable nodes and four addable nodes, the partitions wD with @ — a
and |pu®| > |A| are

=42, u9=03,310u9=03,2,2>n"=3,21,1).

(a) Taking p =7, we have w,, = 535756555453595857565554,

5]

(=2}

7]

|

t = and ¢ =

[o]oo[x]eo

\50001
o
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so that Xy = (1 + qT3)(1 +qT4 + q2T4T3)(1 + gT6). Using the braid relation

T TN Ty =TT 77 it verified that

J Jj+1 +1’

—1 _ —1
E3Twp mu(p) = m}»Twp .

(b)Letu=(4,3)and s = 2 471 8 9] s0 d(s) = se¢s7s3. Then

ot

112

A 7]
S=[4]5

—
—

~ 1 4
and M(p)(s): 21213 |7

3
6

as shown in Example 2.2. Now,
6=min{i [2f —1<i<n—2and (n — 1)d(s)"" < @(i)d(s)"'},
hence, writing u = 555453595357565554, one obtains
EsT, ' Tjgymu = ET, 'my = EsT, ' E1x,

where

X =L+ qT) (1 +qTh + ¢*TaT3) (1 + g Ts + ¢* 5Ty + > T5 T4 T3)
x (14+qT)(1+qTs + ¢*TsTy).
Using the braid relation,

T, xy =x T, (1 +qTs + ¢*TsTa + ¢ TsTuT3),

. _[5]6]7
where t* = 31910 and

xe =1 +qT5)(1+qTs + ¢*TsTs)(1 + g To) (1 + qTo + ¢ ToTy).
As 1 > A, it follows that
EsT, ' Tjigymu = E1E3xc T, (14 qTs + ¢ TsTa + ¢ TsTa T3)
=m, T (1 +qTs +q*TsTy + ¢*TsTyT3) =0 mod B,

Corollary 5.4 Let f be an integer O < f < [n/2] and A be a partition of n — 2 f
with (p — t) addable nodes. Suppose that u O > @ > ... > uP) s the ordering of
{m : u — A} by the dominance order on partitions. If i is a partition of n —2f + 1
such that > YtV and S € To(, 'P), then

Ezf_lT,;[}mSt =0 mod B}, for all t € Std,,_1 (1).

Proof There are p — t standard tableaux s labelled by the integers {2 f — 1,2f, ...,
n — 1} which satisfy the conditions (i) Shape(s|,_2) = A, and (ii) P (s) €
To(v, u'P)), for some partition v of n — 2 f + 1; each such tableau s additionally
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satisfies the condition that Shape(s) = ") for some i with t < i < p (the precise
form that any such d(s) must take is given in (5.19) below). Thus if u is as given in
the statement of the corollary and s € Std,,_1 () satisfies 1P (8) € To(u, uP), then
T = Shape(s|,—2) > A, so by Lemma 5.3,

Exf 1T, ' Tgymu =0 mod B}).
Using the definition of mgy¢, the result now follows. O

Lemma 5.5 Let f be an integer, 0 < f <[n/2],and At-n —2f, ubn—-2f +1
be partitions such that i — A. If WP is minimal with respect to dominance order
among {v:v — A and |v| > |A|}, and s € Std,_ (1) is a tableau such that 1P (8) €
To(w, '), then there exist a,w) € R, for (t, w) € Z,()), such that

Ezf_lTl;pl Tj(ﬁ)mll = Z awym Ty Ty mod Br);'
(tw)eZ, (1)

Proof There is a unique tableau s € Std,_j(u) satisfying the hypotheses of the
lemma, namely the tableau with s|,_1 = t* € Std,,_» (). Furthermore,

d(8) = SkSka1 -+ Sp—2 where k=(n—1ds)".

Suppose that k appears as an entry in the row j of s. As in the proof of Lemma 5.3,
we associate to row j of t* the subgroup

R, j = (s; 11,1 + 1 appear in row j of )

and take the parabolic subgroup P j = (w € R j : (H)w =k) € R ;. The set of
distinguished right coset representatives for Pu ; in Ru ; is

D={vi:vo=1land v; =v;_15k; for 0 <i <A;}.

As in the proof of Lemma 5.3, the coset representatives £ enable us to write

Exp T, Thgmu =m T, ' Y~ q"T,, (5.18)
ved
where u = SgSky1 - Sp—2Wp = Sk—185k—2 "+ S2f—18n—1Sp—2 - S2f . O

Let f be aninteger, 0 < f < [n/2], and A be a partition of n —2 f with  removable
and p — t addable nodes. Take £ +1 > 042 > ... > ;1 (P) a5 the ordering of the
set {i: w— A and || > |A|} by dominance order on partitions and, for t < k < p,
suppose that [A] is the diagram obtained by deleting a node from the row ji of [ ®].
There exists for each u® with u® — A and |u®| > |A|, a unique tableau s €
Std,—1 (1 ®) such that 1P (s;) € To(u®, uP)) and Shape(si|,—2) = A. To wit, s
is determined by

Jk
d(si) = sqSat1 - sn2  where  a=2(f—D+Y u (519

i=1
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Thus we let
wi =d(5) " Wy = Say—1Sa—2 2 f—1Su—15n—2 - S2f (5.20)
and write
Vo =Esr1 T \m,w + B} (5.21)
u® 2f =14y My n* .

By Lemma 5.5, we note that y/); ® 1is a well defined element in the B, (q,r)-module

S*. We define N“(k), fort <k < p, to be the B,_1(g, r)-submodule of s* generated
by yk(k)'
"

Example 5.3 Letn =4, f = 1.If A = (1, 1), and u = (2, 1), then s = (5 3]

unique tableau with s|,_; = t* € Std,_»(A). Thus yﬁ = ElTujp1 Tj(g)m;—i— éf =
ET T T (g + B

is the

Recall that N4 CN #? s a strict inclusion of B,—_1(g, r)-modules.

Lemma 5.6 Let f be an integer, 0 < f < [n/2], and A be a partition of n —2 f with t
removable nodes and (p —t) addable nodes. Suppose that 1+t > p 2 > ..o 1 (P)
is the ordering of {it : @ — A and || > |A|} by dominance order on partitions. Then

the right B,—1(q, r)—module N“(IZ)/N““) is generated as an R—module by

@
{yﬁ(k)Td(t)Tw N w) €T (W) and £ < k < p} .
Proof From the expression (5.21), observe that the B,,_1 (g, r)-module N T gen-
erated as an R—module by elements of the form

yﬁ(p)b =m;LTu7p1b + ér)} =Eyr | Tujplm#(p)b + é,),‘, forb e B,_1(q,r).

Letb € B,_1(g, r). Then, by Lemma 3.6, there exist S € To(u, u‘P), for > u(?)
and |u| = |u'P|, together and as.t,w» for (t, w) € Z,_1(u), such that

mupb= Y aswwmsTy+b, (5.22)

/LE/L(p)
(t,w)eZ,—1(n)
SeTo(.u'P)

where b’ € B,{_l. Since the process of rewriting a product
E\E3---Exp 3T, T,b, forue(s;:2f-2<i<n—1),veDr_1,-1,

in terms of the basis (3.5) depends only on (3.12), Proposition 3.7 of [4] and opera-
tions in the subalgebra (7; : 2f —2 <i <n — 1) € B,_1(q, r), we note that the term
b’ in (5.22) satisfies

b€ (E\Es - Eyp 3)Bu 1(g.1) N B_,.
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By decomposing the set {i : |u|=n —2f + 1 and « > 1P’} and using Lemma 5.3,
we obtain, for each w € Dy 1,1, an expression:

Z as,t,wmstTy = Z as,¢wmstTw + Z as,¢,wmstTy.
ul>p t<k<p u>p D
teStd,_1 (1) teStd, 1 (u®) teStd,_; ()
SeTo(u.ntP) SeTo(u® ) SeTo(u.utP)
(5.23)

Hence, multiplying both sides of (5.22) by E> 71 Tw_p1 on the left, and using (5.23)
together with Corollary 5.4, we obtain:

Esrf—1 Tz;plmu(p)b + é,);

:E2f—1Tu7p1 Z as,t,wms¢Ty +E2f—1T,;p1b’+B,?.
t<k<p
(tw)eZ,— (u®)
seTo(u™ )

We recall the definition of the tableaux s; € Std,_1(u®)), for t <k < p, in (5.19),
and also that the wy defined, for t < k < p, by (5.20), are chosen so that 7, Ly

p dsr) T
T,,!. Thus
—1 A
Eyr Tw,, mlu([))b + B,

= Z ai,tw E2f—1 Tl;klm,m TawyTw + E27—1 Tl;plb/ + B,
t<k<p
(tw)eZ, 1 (u®)

where ay ¢, = qe(d(sk))as,t,w whenever /L(”) (5¢) = S. Thus we have shown that

Eyp g Tujplmu(p)b + B,)lL = Z ak tw yl);(k) TayTw + Ezf_lTujplb/ + B,}l‘.
t<k<p
(tw)eZ, 1 (n®)

(5.24)

It now remains to show that E>y_; Tujpl b+ é,i‘ e N*". Noting the characterisation

of the B,_1(g, r)-module N u given in Corollary 5.2, to complete the proof of the
lemma, it suffices to demonstrate the statement following.

Claim 5.7 Ifbe (E1E3---Exy_3)By_1(q,r)N B,{_l then there exist as ¢ € R, for
5,teStd,(v), w € Dyy—1 andvi-n—2f, such that

_ 1
EypTy'b= Y aswuwliemoTawTu mod B ™. (5.25)
vEn—=2f
5,teStd, (v)
weng.nfl
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We now prove the claim. Letb € (E1E3--- Ex¢_3)B,_1(q, )N B{_l . As in the proof

f+1

of Lemma 3.5, we may write b, modulo B, ' C an i , as an R-linear combination

of elements of the form

{TU*E1E3--~E2/'_1T,,Tw v, wEDyfu_1,ue(s;:2f <i<n-— 1)}.

andve(s;:2f—-2<i<n—1)

Multiplying an element of the above set on the left by Eo ¢ T-!, we obtain:

wp
E1E3-~-E2f_3E2f_1Tw_plTv*Ezf_lTuTw. (5.26)

There are two cases following. In the first case, suppose that v has a reduced expres-
sion v =s;,8i, - -+, in (s; : 2f —2 < i <n — 2). Applying the relations
AT =Tn D' TL and T7'TGEi = En T T,

we obtain Tz_;lTv*EZf—l = Tv*,,Ezf_H.TJHl, Where vV = Siy+28i3+2 " Sip+2- As T,
commutes w1t£l’1 E1E3--- E>p_1, substitution into (5.26) yields:

E\E3---Exp_y T,;pl TFEys 1TuTy=THE\E3-- E2f+1Tujp1 T,T,

which is visibly a term in B,{H.

In the second case, suppose that v does not have a reduced expression in (s; :
2f —2 <i<n—2). To obtain an explicit expression for such v, we first enumerate
the elements of

Dpp-1N(si:2f =2<i<n—1). (5.27)
As in Example 3.2, the elements of the set (5.27) take the form
Vi =S2f82f41Sj—182f—182f " Si—1, for2f —2<i<j<n.

Now, v; ; does not have a reduced expressionin (s; : 2f —2 <i <n —2) if and only
if v; j does not stabilise n — 1; thus v; ; = v; , 1, forsome 2f —2 <i < n— 1. Define

Vi =Vin—1=82f82f+1"" " Sn-282f—152f - Si—1, for 2f —2<i<n-— 1,
so the elements of the set (5.27) which do not stabilise n — 1 are precisely
{vi:2f—-1<i<n-2}.

Let j beaninteger,2f —1 < j <n—2,and calculate Exp T, 71 T Eay—1 explicitly,
beginning with: '

E2f_1Tw;] T;} Eyf g
= E2f—1Tqul(Tj—1Tj—2"'T2f—1)(Tn—2Tn—3 T Erfog
= E2f—lT1;pl(Tn—2Tn—3 T )T jaTj2 - Ty )T jTj—1---Tof)Eny1

—1p—1 -1
=Ezypi (T2f T2f+1 e T,2)
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}(Ty Ty TP Tja - Top )T Tjoy -+~ Tap) Eap o

= Exp (T3 Toflyy o T Toy Tof o T (T Ty - Tag—1)
x(TiTj—y--- T2f)E2f—l(Tj7+12Tj7+]3 o Tnill)'

Using the relations

—1p—1 -1 -1 -1 -1
Expiyy Dypy o T )Ty Ly oo Ty ) = Eapa Eap e Ejp

and

(Ti1Tj—2--Top-1)T;Tj—1---Tap)Erp 1 =EjE;j_1-- - Ezf,
we now obtain:
Ezf—lTJpl TJ‘/.Ezf—l = (Exp—1E2p- - E;E;j 1 1)(EjEj—1---Ezf1)

—1 p—1 —1
x(TjJrszJr3 T ).
Further applying relations like E; (E;+1Ei2Ei+1)E; = E;E;+1 E; = E; in the right
hand side of the above expression gives:

Exy 1Ty Ty Eapoy = Eap (T LTS - T, ). (5:28)
Multiplying both sides of (5.28) by E1E3--- E2¢_3 on the left and by 7, Ty, on the
right, the term (5.26), with v; substituted for v, becomes

E\E3--Exp 1Ty ' T Eap 1T, Ty = E\Es - Eap (T LT - T, )T T,

Now (Tjjrlsz:_l3 e Tn__ll)Tu liesin (T 41, T2 f+2, ..., Tu—1) € By(q,r) and conse-
quently, using Theorem 3.1, can be expressed as an R-linear sum of elements from
the set {7,y : u’ € (s; : 2f < i < n)} together with an element &’ from the two-sided
ideal of (T2 ¢4y1, T2f 12, ..., Ty—1) generated by Esfy 1. By Lemma 3.3, the element

labelled »" immediately preceding satisfies
E\E3---Exp 1Eyp1b'Ty € an“,

and can be safely ignored in any calculation modulo éﬁ‘. If w e Dy,—1, then straight-
ening a term

E\E3--Eyp_ 1Ty Ty, foru e (s;:2f <i <n), (5.29)

into linear combinations of the basis elements given in Theorem 3.1, is achieved using
relations in #, ¢ (q2), via the map ¥ 7, and does not involve any transformation of
T it follows that there exist ay y,y, for u, v € Std, (v) and v = n — 2 f, such that the
term (5.29) can be expressed as

1
E\Es-Eyp1TuTu= Y dwowljumTaw Tu mod B .

vkn—=2f
u,veSstd, (v)
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This completes the proof of the claim. t

We continue to use the notation established in the statement of Lemma 5.6.
If t <k < p, then by Lemma 5.6, there is a proper inclusion of B,_j(q,r)—
modules N**’ CN n®

Corollary 5.8 Let f be aninteger, 0 < f < [n/2], and X be a partition of n —2 f with
t removable nodes and (p — t) addable nodes. Suppose that pV > pu® > ... > u(P)
is the ordering of {iu : t — A} by dominance order on partitions. Then

) _ yn© c Nt e o N

=Res(5%)
is a filtration of Res(S*) by B,_1(q,r)-modules, wherein each quotient
N“(k)/N“(k_l),for 1 <k < p, is isomorphic to the cell module S“(k) via

(k—1) v (K
yﬁ(k) TypyTy + NH* = m o TypyTy + B* (5.30)

n—1°
for (t, w) € Std,—1 (u®).

Proof 1t has been shown in Lemma 5.1 that the map (5.30) is an isomorphism
N© N = g ® for 1 <k <1

For each k with t <k < p, let Sy = ,u(l’) (sr), where s; is the tableau defined
by (5.19). If v € Std,,_; (1®) and b € B,_1(q, r), then using Lemmas 3.6 and 5.3,
there exist a; ¢ € R, for (t, w) € Z, 4 (,u(f)), and ¢t < j <k, such that

mSknb = Z aj,t,wms_,-tTw + Z aS,u,vauTv + b/a (5.31)
t<j<k u>p D
(tw)eZ,—1(u) SeTo(u. )

(w,v)€L,—1 (1)

where p runs over partitions of n — 2 f + 1 and
b eEE;--- Eyr 3B,_1(g,r) N Br{—l'

Multiplying both sides of the expression (5.31) by Ez 71 Tl;pl and using Lemma 5.3,
we obtain

qu(sk))yl);(k) Ta(o)b Ezf_lTuTklmM(k)b-F B%,)l”

_ Z aj qé(d(s_/))yl);(j) TayTw
t<j<k
(tw)eL, 1 (u)
+ Ezf—lTu;lb/ + B},
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where Ep /| Tw_p1 b + Bt e N by Claim 5.7. Thus

. (t)
gt @) yﬁm Tioyb = Z 4w PECIC) yﬁ o TawTw mod N*
t<j<k
(tw)eZ,—1 (u)

and

qf(d(ﬁk))yﬁ(k) Tiw)b = Z Ak, t,w q

(tw)eZ,—1 (u®)

Y gy

t<j<k
(tw)eZ,— (u)

A 2 Ty T,

()
l);(j) TywpyT,y mod Nt

(5.32)

From (3.16) and (5.31), the {a 1 € R : (t, w) € Z,_1(u®)} appearing in (5.32)
satisfy a ¢, = a¢,w, where
v, (k)
",k Tywb= Z Ag,wm k) TywyT,, mod B}lfil ,
(tw)eL,_1 (n®)

thus demonstrating that (5.30) determines a B,,_1(q, r)-module isomorphism when-
evert <k < p.
It remains to observe that N n? Res(S*). To this end,

P _ -
dimg(NV*") =Y " dimg W* /NPTy = 3 dimg(S*) = dimg ()
i=1 n—>xr

where the last equality follows, for instance, from the semisimple branching law
given in Theorem 2.3 of [12]. O

The statement below follows from Corollary 5.8.

Theorem 5.9 Let f be an integer, 0 < f < [n/2], and A be a partition of n — 2 f.
Suppose that for each partition @ with u — A there exists an index set T, _1 (i)
together with

{by € Bu—1(g,r):ueT,_1(w)}
such that
{my=muby+ Bl | :ueT, 1(w)}
freely generates S* as an R—module. Then

{(Vibu:uwe T_1(n) for p— A}
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is a free R—basis for S*. Moreover, ifl(”‘ denotes the B,_1(q, r)—submodule of S*
generated by

{y‘),‘bt te%,—1(v) forv— handv > u},
then
yi‘bbu—i—](f“ — mubu—i—ér’f_l forue X, () with u — A,

determines an isomorphism N*/ NH = gH of B,—1(q, r)—modules.

6 New bases for the B-M-W algebras

If f isaninteger, 0 < f <[n/2], and A is a partition of n — 2 f then, appropriating the
definition given in [6], we define a path of shape A in the Bratteli diagram associated
with B, (g, r) to be a sequence of partitions

t:(A®,M”“.”AMO

where 1,9 = & is the empty partition, 20 = and A0D - A whenever 1 <i <
n. Let T, (1) denote the set of paths of shape A in the Bratteli diagram of B, (g, r). If
t=0O@ AW A™)isin T, (1), and i is an integer, 0 < i < n, define

= (x0.0,...20).
The set ¥, (1) is equipped with a dominance order > defined as follows: given paths

(000 s (O, )

in T, (\), write > u if A® > /L(k) fork=1,2,...,n. As usual, we write t > u to
mean that t > u and t # u. There is a unique path in T, (1) which is maximal with
respect to the order >. Denote by t* the maximal element in T, (1).

Example 6.1 Letn =10, f =2 and A = (3,2, 1). Then

9:(@@,@@,@@,@,@], HH, ')

is the maximal element in ¥, (A) with respect to the order .

Let A be a partition of n —2 f, for 0 < f < [n/2]. Theorem 5.9 will now be applied
iteratively to give the B, (g, r)—module St a generic basis indexed by the set %, (1).
Assume that for each partition p© with £ — A, we have defined a set

{my=muby+ By :ueT, 1(w) (6.1)
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which freely generates S* as an R—module. To define {b; : t € ¥, (1)}, we refer to the
definition of yﬁ given in (5.4) and (5.21), and write

mg = yﬁbu whenever u e T,,_1(n) and t|,,—1 = u. (6.2)

By Theorem 3.1 there exist a,, for w € &,,, depending only on b,,, such that the term
yﬁbu on the right hand side of the expression (6.2) can be expressed in terms of the
basis (3.5) as

mg= yf;bu = Z awm; Ty + B,)l‘ (6.3)

wesS,

Thus, given t € T, (A) and u € T,,_1 () with t|,,_1 = u, define

b= Y auTu 64)

wesS,

where the elements a,, € R, for w € G, are determined uniquely by the basis (3.5)
and the expression (6.3).
From Theorem 5.9 it follows that set

{m¢ =mybi+ B} 1 te T, (1)} (6.5)

constructed by the above procedure is a basis for S* over R and that, for 1 <i <n,
the basis (6.5) admits natural filtrations by B, (g, r)-modules, which is analogous to
the property of the Murphy basis for #,(¢>) given in Lemma 2.3.

With little further ado, the above construction allows us to write the following.

Theorem 6.1 The algebra B, (q,r) is freely generated as an R module by the col-
lection

M={mge=bimb¢:6,t€ T, (M), Abn—2f,and0 < f <[n/2]}.

Moreover the following statements hold:

1. The algebra anti—involution * satisfies * : mg¢ > Mys, for all mg¢ € M,

2. Suppose that b € B,(q,r) and let f be an integer 0 < f <[n/2].If X is a partition
ofn—2f and t € ,,(L), then there exist ay € R, for v € T, (1), such that, for all
5 € S:n ()“)»

meth = Z ApMgy modB,)[.
0eT, (1)

If X is a partition of n — 2 f, then as a consequence of the theorem, lv?,? is the free
R-module generated by {mg¢ : s,t€ T, (u) and p > A}.

Example 6.2 We explicitly compute a basis of the form displayed in (6.5) for the
B4(q,r)-modules $* and S* where A = (2) and A’ = (1, 1). Our iterative construc-
tion the basis for $* entails explicit computation of by, for all u € T; (A®)) for which

(@,... . A0 2O e,

with similar requirements for computing the basis for s,
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(a) The algebra B>(q,r) has three one dimensional cell modules; if @ is one of
the partitions &, (2) or (1, 1), associate to the path in T,(u) an element of S# as

(@.[1.9) — Ei;
@, ,[T]) +~ (+qT)+BY
(@,D,H) - 1+ 8",

to obtain a cellular basis for B,(g, r) which is compatible with the ordering of parti-
tions @ > (2) > (1, 1).

(b) The algebra B3(q, r) has four cell modules, one corresponding to each of the
partitions, (1) > 3) > (2,1) > (13).

(i) If © = (1) then é? =0 and m, = Ey; since v — u precisely if v is one of
> (2) > (1, 1), using part (a) above, we associate to each path in T3(u) an element
of S* as

@,[1,.9,[]) = mw=E;

@..[10D = meTy ' T +qTh):

(Q,D,H,D) = thTz_lTl_]:mtuTle.

The transition matrix from the basis {m¢ = m; b + éé‘ :te T3(u)} for S* given
in (6.5) and ordered by dominance as above, to the ordered basis

vi=m, Ty, vy =1, v =52, V3 = 5251}
for S* given in (3.5) is:
0
qg O0f. (6.6)
q* 1
The elements {b¢ : t € T3(u)} of (6.5) are made explicit by the above transition ma-

trix.
(ii) If u = (3), then $* is one—dimensional and

(va,\:D,Djj) = mt/L:(1+qu)(1+qT2+q2T2T])+é§3)

@iii) If u = (2, 1), then m,, = (1 4+ ¢T1) and a basis for S is obtained by associ-
ating to each path in T3(u) an element as

<®,D,D:|, ') > mu=(1+qT)+ BV

BEP) - o
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(iv) Finally, if u = (1, 1, 1), then S* is the right B3(g, r)-module generated by
¥ (1,1,1)
1+ B; .
(c) Let n =4 and A = (2). Then m; = E1(1 + ¢7T3) and u — A if p is one of
the partitions " = (1) > u® = 3) > u® = (2, 1). Thus, based on (b) above, we
associate to each path t € T4(1) a basis element of the cell module S* as follows:

@, e .1 = Yﬁ(1)=mt*=E1(1+‘]T3)+1§Zf;
@, L. L LD = yk(l)Tzilel(l‘f‘f]Tl);
”w
®7D751D9D:]) = yl);(l)Tz_lTl_lzmthle;

(@.0.[10.[IT1.[1D = v =E(DLNTT) 'mye + B}

=Ei(1 +qT3) (BT TT) !
x (1+qT+¢*T2T) + B}

=mp (LN TT) (1 49T+ ¢* T Th);

@, 0D = vie = EWBOTT)  'mye + B
=mu(TaTh T3Tz)_1 =mp 13T Tz;
@.[1.H [T = YT =ma(BNTT) ' T

_ —Ap—1p—1
=mu T, T T

Expanding the terms on the right hand side above using results from Sect. 3 of [4],
we obtain the transition matrix from the basis {m¢ = myb¢ + B} : t € T4(1)} for $*
given in (6.5) and ordered by dominance as above, to basis

5.
(vi,j=muTy, . + By 1 v j =5283---85j15152- - Si—1}

Vi, j

for §* given in (3.5), ordered lexicographically, as:

[11-¢4%0 1—¢> 0 0 ]
0 g 0g(1—g»H0 0

0 0 0 ¢* 0 0

2 2 nol—¢*
0 ¢ 1¢°(1-¢7)0—
0 0 0 ¢ o0 1
0

0 00 g 1t
It may be observed that the elements {by : t € T4(A)}, given by the above matrix, are
consistent with (6.6) above and reflect the existence of an embedding si s §* of
Bs(q, r)-modules, as N“(l)/l\vf’*“) = S“(l), where I\VI“(U =0.

(d) Now consider the partition A" = (1, 1); here m;, = E; and u — A" if u is
one of the partitions " = (1) > u® = (2,1) > u® = (1, 1, 1); thus, based on
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Example 5.3 and the calculations (b) above, we associate to each path t € T4(1)
a basis element in the cell module S* as follows:

(®9D7®7D75) = yl);(l):mt/»/:El—i_é;],;
@. .00 0.H) = v s ' 17 A+ gTh:

(gs DvHaDs = yi:/(l)Tz_lTl_l zmtATle;

@, 1. 11, |, —) = yﬁ,@ =E(I2Th T3T2)_1T2mﬂ(1) + éf

=mp Ty T TN (L4 qT);

@. . HHH) = Vel =me T 717 0+ g0 Ty

(2., ﬂ,ﬂ = yhe = EBNTT)  'mye + B

=mu (1T 3T = my LT Ts.

The transition matrix from the basis {m¢ = m/ by + éﬁ/ 1te %4(\)} for s given
in (6.5) and ordered by dominance, to the basis

2
{vij=muyTy; + By 1vij=s283---5j—15152Si—1}

for $* given in (3.5) and ordered lexicographically, is:

[11-¢%20g@G2 -1 1—¢%0]
21
0 ¢>2 0 1—¢42 ‘fTo
I &
0 ¢> 1q(1—¢*) 70
0 0 0 4 0 0
0 0 0 0 q*> 1]

The elements {b; : t € (1)} are made explicit by the above transition matrix.

Example 6.3 Letn =5 and A = (2, 1). Then  — A if p is one of the partitions
W= u®=0,0eu¥=61D>uY=22>u®=@21D.

By considering a suitable basis for N n? /N “(1), we make explicit the elements by,
for t € T,,(A), defined by (6.3) and

{Viobu=my by :teT,() and tly—y =u € Ty ()},
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5]

For brevity, write u = u®. Since s = j satisfies s|,_1 = t*, we have yﬁ =

mpTys) =mp Ty, where mp. = E1(1 4+ qT3) + E,); The transition matrix from the
basis

{Vibu+N*=mub + N":te T, (1) and t|,—1 =u e T (W)},
which is ordered by dominance, to the basis

{V,-,j = mtde(s)Tvi‘j + NH: Vi j = 5283+ Sj_18152*Si—] },
which we order lexicographically, is given by (6.7) above. Observe that though
N*/ NH = S“(z) as B,_1(g, r)-modules, the construction does not give an embed-

ding s s gk of B,_1(q, r)-modules.

7 Jucys—Murphy operators

Define the operators L; € B,(q,r), for i = 1,2,...,n, by L1 =1 and L; =
Ti—1Li—1T;—1 wheni =2, ...,n.Let £ = L, denote the subalgebra of B, (g, r) gen-
erated by L1, ..., L,. The next statement, which is the analogue to Proposition 2.4,
is easily obtained from the braid relation 7; ;41 T; = T;117; Ti 1.

Proposition 7.1 Leti and k be integers, 1 <i <n and 1 <k < n. Then the following
statements hold.

T; and Ly commute if i 2k — 1,k.

. L; and L commute.

. T; commutes with L;L;+.

. Ly--- L, belongs to the centre of B,(q,r).

AW =

Remark 7.1 (i) The elements L; are a special case of certain operators defined in
Corollary 1.6 of [6] in a context of semisimple path algebras.

(i1) The elements L; bear an analogy with the Jucys—Murphy operators D; defined
in Sect. 2.2; we therefore refer to the L; as “Jucys—Murphy operators” in B, (g, r).

For integers j, k, with 1 < j, k < n, define the elements L,((j) by L(lj) =1and

L]((]) — Tj+k—2L/({J,)1Tj+k—27 for k > 2.
In particular L,(Cl) ,fork =1, ..., n, are the usual Jucys—Murphy operators in B, (q, r).

The next proposition is a step on the way to showing that the set {m¢ = m; b+ éﬁ‘ :
te T, (A1)} defined in (6.5) above is a basis of generalised eigenvectors for the action
of Jucys—Murphy operators on the cell module S*.
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Proposition 7.2 Let i, k be integers with 1 <i <nand 1 <k <n. Then

r=2E; ifk=2;
EL"=1E ifk=3;
EL{TY ifk>4.

Proof If k = 2, then El-L,(j) = E;T? = r2E;. For k = 3, we use the relations
EiEi1=ETinTi=Tin\/TiEiy) and E; Ei1| E; = E; to obtain

EiLgl) =ETinTiTiTis1=EEiTiTiy1 =EiEinEi = E;. (7.1
If k > 4, then using (7.1),
EiL]((l) =EiTitk—2Ti+k-3"- Ti+2L§l)Ti+2 o Tipk—3Ti k-2

=Titk—2Titr—3--- Ti+2E1L§')Ti+2 < Tipk—3Tivk—2

i+2
=EiTivk2Tivk—3TivoTiqo - Tiqp—3Tirk—2 = EiL,(sz).
O
Corollary 7.3 Let f, k be integers, 0 < f <[n/2]and 1 <k <n. Then
E\E3---Expg ifkisodd, 1 <k <2f+1;
E\E3---Exp_1Lp = V_2E1E3 o Eypg ifkiseven,1 <k <2f;
Proof If kisodd, 1 <k <2f + 1, then by the proposition above,
_ @1 _ 3 _
E\E3-- ExLy = E\E3---ExL;’ =E\E3---ExL}> )=
~--=E1E3--~EkL(1k)=E1E3--~Ek. (7.2)

Since Eyx42E14--- E2y—1 commutes with Ly, the first statement has been proved. If
kiseven, 1 <k <2f, then use the relation E; T; = r~17; and (7.2) so that

E\Es---Exf 1Ly =FE(E3---Ex¢ 1Tp 1 Lp—1Ti—
=r'E\E3--- Exp1Lg—1Tp—1 = r2E|E;--- Exp—1,
as above. The final case where 2 f + 1 < k <n is similar to (7.2) above. O

Let f be an integer, 0 < f < [n/2], and XA be a partition of n — 2 f. Suppose that
t= (k(o), A A<”>) is a path in T, (1), and that k is an integer, 1 <k <n. Then
generalise the definition (2.10) by writing

PRI if (A O] = % DU {a, )}

PUOY=10 2602 g 0] 2 D) (6, ),

@ Springer



330 J Algebr Comb (2007) 26: 291-341

Since g does not have finite multiplicative order in R, the next result which is similar
in flavour to Lemma 5.20 of [6], follows immediately from Lemma 3.34 of [8].

Lemma 7.4 Let f be an integer 0 < f < [n/2] and .7~V be a partition of n — 1 —
2f Ifs = O AW A=y s a path in T,_1 (A"~D), then the terms (Pg(n) :
t|,—1 = s) are all distinct.

The next proposition is essentially a restatement of Theorem 2.5. Recall that if f
is an integer, 0 < f <[n/2], and X is a partition of n — 2 f, then t* is the element in
%, (A) which is maximal under the dominance order.

Proposition 7.5 If A is a partition of n and k is an integer 1 <k <n, then myu Ly =
Pf.)‘ (k)m the

Proof By definition, my = m; + é,),‘ s0, using the property (3.8),
my L + B, = 90(c Di) = Py (k)Do(c)

where the last equality follows from Theorem 2.5. Now, given that B} C Lvi‘,f when-
ever A is a partition of n, the result follows. O

Proposition 7.6 Let f be an integer, 0 < f < [n/2], and ) be a partition ofn — 2 f.
Then my. Ly = Py (k)m..

Proof 1f k is an integer, 1 <k <2f + 1, the statement follows from Corollary 7.3;
otherwise, using the corollary and property (3.8),

miLi+Bj ™ =x,E\E3---Eap 1Ly + B "
2/+1 1
=x,\E1E3~~E2f—1L,(<_f2? '+ Bl
=07(c)Dr—2y) = Pu(k —21)0r(c))

= Pp.(kymy, + B+,
whence the result follows, since B,{ +1 - é,)} whenever A is a partition of n — 2 f. [

Proposition 7.7 Let [ be an integer, 0 < f <[n/2] and X be a partition of n — 2 f.
Then there exists an invariant « € R such that (Ly - -- Ly,) acts on S* as a multiple by
o of the identity.

Proof Consider an element Zwe@,, aym; Ty + é,f[ for a,, € R. Since (Ly---L,) is
central in By, (q,r),

> awmTy(Lay-+-Ly)= Y awmu(Ly--Ly) Ty,

wes, weS,

s0 & = [[;_, Py.(k), by the previous proposition. O
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For the proof of Theorem 7.8 we use the filtration of the B,(q,r) module s> by
B, _1(g, r)-modules given in Theorem 5.9.

Theorem 7.8 Let [ be an integer, 0 < f <[n/2], and A be a partition of n — 2 f. If
t € %, (A), then there exist a,, € R, for u € T,,(X), such that

mLy = Pukyme+ Y aymy.

ue<,(\)
up>t

Proof We proceed by induction. Let t be in ¥, (1) and suppose that s = t|,—_1 is an
element of ¥,,_{ (). Then m¢ + NH > mg under the isomorphism N”/N“ — S* of
B, _1(g, r)-modules given in Theorem 5.9. Hence, if 1 < k < n, there exist a, € R,
for v € T,,_1(w), such that

mLi + N* > Ps(k)ms + Z apMy

veT, 1 (n)
oD>s

under the B,_1(g,r)-module isomorphism N“/N” — S#. Thus the a, € R, for
veT,_1(n), satisfy

mLy = Ps(k)m¢ + Z anyﬁbb mod N*.
veT, 1 (1)
o>

If v € T,_1(n) and v > s, then, using the definition (6.3), yﬁbn = my, Where u|,_| =
b>5=1t|,_1, and thus u > t. Since P¢(k) = P5(k) whenever 1 < k < n, the above
expression becomes

miLy = Pu(kym¢+ Y aym, mod N, (7.3)
ue®, (1)
up>t

where a,, = a, whenever u|,_; = v. Now, N* is the B,,—1(q, r)—module freely gen-
erated by

{my=y}by:ueT,W),v—> A v pandul,_1=0eT,_ (1},

and so it follows that N# is contained in the R—submodule of S* generated by {my, :
u e %, (M) and ur> t}. Thus (7.3) shows that the theorem holds true whenever 1 <k <
n.

That L, acts triangularly on S*, can now be deduced using Proposition 7.7:

n
mLy = | Pckymi(LaLy--Ly—1)~".
k=1

Thus the generalised eigenvalue for L,, acting on my¢ is P¢(n). (]
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8 Semisimplicity criteria for B-M-W algebras

Let k be afield and take g, 7, (§ —§ ) to be units in «. In this section we consider the
algebra B, (¢, 7) = By(q,r) Qpk.Forte T,(\) andk=1,...,n,let Pt(k) denote
the evaluation of the monomial P¢(k) at (g, 7),

b 19T ROT=05N0G D)
W= p2-0p-2 i ] = KD\ (G

q P At A=A VINAG D

and define the ordered n-tuple f’(t) = (13t( n,..., ﬁt(n)). The next statement is the
counterpart to Proposition 3.37 of [8].

Proposition 8.1 Let f be an integer, 0 < f <[n/2], and ) be a partition of n — 2 f.

(i) Let p = (p1, - - ., pn) be a sequence of elements of k such that there exists a path
teT,(A) with p= IS(t). Then there exists a one—dimensional L—module £, = kx,
such that

x,oLkZ,kap fork=1,2,...,n

Moreover, every irreducible L—module has this form.

(ii) Let f be an integer, 0 < f <[n/2], and suppose that A is a partition of n —2 f.
Fix an ordering t, ..., 4 = % of €y (A) so thati > j whenever t; > t;. Then S* has
a L—module composition series

P =81>85>>8>841=0
such that S;/Si+1 = £pz , for each i, where pi = IS(ti).

Proof As in [8], we prove (ii) from which item (i) will follow. Order the elements
of T, (1) as in item (ii), and for i = 1,...,k, let S; be the k—module generated by
{my; :i < j <k}. By Theorem 7.8, each S is an L—module, andso S* = §; > -+ >
Sk > 0 is an L-module filtration of S*. Further, by Theorem 7.8 again, S;/S;.1 =
k(my; + Siy1) is a one dimensional module isomorphic to £;. U

Theorem 8.2 Suppose that for each pair of partitions A of n —2f and  of n — 2 f,
for integers f, f' with 0 < f, f' <[n/2], and that for each pair of paths s € T, (k)
and t € T, (), the conditions A >  and P(5) P(t) together imply that A =
Then B, (q, F) is a semisimple algebra over k.

Proof The hypotheses of the theorem imply that given a pair of partitions A and p
with A > u, there are no L—module composition factors in common between S*
and S*. However, if B, (g, 7) is not semisimple, then using Theorem 4.4, D is a
B, (g, #)—-module composition factor of §* for some pair of partitions A and u for
which, by Proposition 3.6 of [5], A > u; in particular, by Proposition 8.1, there must
be L—module composition factors in common between S* and S, which as already
noted, is an impossibility. (]
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From the next statement (Lemma 5.20 of [6]), it will follow that the Jucys—Murphy
operators do in fact distinguish between cell modules of B, (g, r).

Lemma 8.3 Let f be an integer 0 < f < [n/2] and A"~V be a partition of n — 1 —
2f Ifs=AO AW A=y s a path in T,_ 1 (A*7D), then the terms (Pt(n) :
th—1 = 5) are all distinct.

For the case where ¥ = C(q, 7), a form of the following statement can be found in
Corollary 5.6 of [12].

Corollary 8.4 If « is a field, then a B-M-W algebra B, (q,F) over ik is semisimple
Sor almost all (all but finitely many) choices of the parameters g and 7. If B,(q,F) is
not semisimple then necessarily q is a root of unity or F = :I:cjk for some integer k.

Theorem 8.5 may be compared with Theorem 11.2 below. Theorem 8.5 gives a
semisimplicity criterion for B, (g, r).

Theorem 8.5 Let A be a partition of n — 2 f and u be a partition of n — 2g, where
0< f<g<I[n/2]. IfHomBn@’;)(S’\, S*Y #£0, then

;2(g—f)é22(i,j)em (=0 — ézza,j)e[/tj G-

Proof Suppose that u € §*, v € S* are non—zero and that u > v under some element
in HomBn@’;)(S’\, S#). Then, using Lemma 7.7, on the one hand u(LyL3---L,) =
7721 §?LapemU~Dy, while on the other VLyL3--- L, = #=284> XUy,
Since v is the homomorphic image of u, it follows that ?’zfcjzzﬁ-j)e[ﬂ(j*i) =
f‘zgézai-ﬁdﬂl("*"); hence the result. O

As the next example shows, Theorem 8.2 gives a sufficient but not the neces-

sary condition for B, (g, 7) to be a semisimple algebra over «; it can also be seen
from the example that Theorem 8.5 gives a necessary but not sufficient condition for
Homg, (5 7)(S*, S*) to be non—zero.
Example 8.1 Letn =3, » = (1), u = (3), k = Q(§, #), and suppose that 7 = —§ 3,
where ¢ is not a root of unity. Since ¢ is not root of unity, the cell modules for
B3(q,7) corresponding to the partitions (3), (2,1) and (1, 1, 1) are absolutely irre-
ducible (Theorem 3.43 of [8] together with Lemma 3.2 with f = 0). On the other
hand, if

s=,[,[11.[De%® and t=@,[ ], 11,111 e%uun),

then P(s) = (1,42, 42/~ = (1,42, §*) and P(t) = (1, §%, §*). Since P(s) = P(t)
whilst A > u, the pair s, t violates the hypotheses of Theorem 8.2. But we note by
reference to the determinant of Gram matrix associated to S* in Example 3.3 that S*
is absolutely irreducible and hence that B3(g, 7) remains semisimple over « (Theo-
rems 4.3 and 4.4).
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9 Brauer algebras

The foregoing construction for the B-M—-W algebras applies with minor modification
to the Brauer algebras over an arbitrary field. We begin once more by considering
Brauer algebras over a polynomial ring over Z. Take z to be an indeterminate over Z;
we write R = Z[z] and define the Brauer algebra B, (z) over R as the associative uni-
tal R—algebra generated by the transpositions s1, 52, ..., S,—1, together with elements
E1, Ey, ..., E,_1, which satisfy the defining relations:

sl-2=1 forl <i <mn;
SiSi+18i = Si418iSi+1 forl<i<n-—1;
SiSj =S;Si for2 <|i —j|;
E?:in forl <i <n;
siEj=Ejs; for2 <|i — jI;
EiE; =E;E; for2 <li —jl;
E;si=s;Ei =E; forl <i <n;
Eisit1si =sit15iEiv1 = EEixq forl <i,i+1<n;
EisisEi=E;E;\E; =E; forl <i,i+1<n.

Regard the group ring RS, as the subring of B, (z) generated by the transpositions
{si=@G,i+1):for 1 <i <n}.If fisaninteger, 0 < f <[n/2], and A is a partition
of n — 2 f, define the elements

X = Z w and m, =E{E3---Exf_1x;,
wGG)\

where &, is the row stabiliser in (s2741,52742,...,8,—1) of the superstandard
tableau t* € Std, (1). Let B} be the two sided ideal of B,(z) generated by m; and

write
B
B, = E B,

A cellular basis in terms of dangles has been given for the Brauer algebra in [5].
Replacing cellular bases for #, (q2) with cellular bases for RS,;, the process used to
construct cellular bases the B-M-W algebras in [4] will produce also cellular bases
for B, (z) as follows.

If f is an integer, 0 < f < [n/2], and A a partition of n — 2 f, then Z,, (1) retains
the meaning assigned in (3.3).

Theorem 9.1 The algebra B, (z) is freely generated as an R—module by the collec-
tion

{(d(s)v)_lmxd(t)u (s,v), (t,u) € Z,(}) for 1 apartition}

ofn—2fand0< f <[n/2]
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Moreover, the following statements hold.

1. The R-linear map determined by
(d(s)v) ' myd (Ou > (d(Ou) " myd(s)v

is an algebra anti—involution of B, (z).

2. Suppose that b € B, (z) and let f be an integer, 0 < f < [n/2]. If X is a partition
ofn —2f and (t,u) € L, (1), then there exist aq, ) € R, for (u, w) € L, (A), such
that for all (s, v) € Z,,(\),

(d()v) ' mudOub= > aqu)(dEv) 'mydww mod By.  (9.1)

(u,w)
As a consequence of the above theorem, ér); is the R—module freely generated by

[(@d&)v) ' mud®u: (5, v), (4 u) € Ty(w), for 1> 1}

If f is an integer, 0 < f <[n/2], and A is a partition of n — 2 f, the cell module
S* is defined to be the R—-module freely generated by

{m,\d(t)u + B (Lu) e, ()\)} 9.2)
with right B, (z) action
(mdu)b+ By = Y aquymid(Ww + B} for b € B,(2),
(u,w)

where the coefficients a,, ) € R, for (u, w) in Z,, (1), are determined by the expres-
sion (9.1).

The construction of cellular algebras [5] equips the B, (z)-module S* with a sym-
metric associative bilinear form (compare (3.6) above). Following is the counterpart
to Example 3.3, stated for reference in Sect. 11.

Example 9.1 Let n =3 and A = (1) so that lvil’} = (0) and m) = E;. We order the
basis (9.2) for the module S* as vi = E;, vo = E1sp and v3 = Eysys1 and, with
respect to this ordered basis, the Gram matrix (v;, v;) of the bilinear form on the
B, (z)-module S* is

z11
1z1
11z

The determinant of the Gram matrix given above is
(z—D*(z+2).

By Theorem 2.3 of [12], the Bratteli diagram associated with B, (z) is identical
to the Bratteli diagram for B, (q,r). Thus u — A retains the meaning assigned in
Sect. 5.
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Let f be aninteger, 0 < f < [r/2], and A be a partition of n —2 f with  removable
nodes and (p —t) addable nodes. Suppose that £V > 1 > ... > () is the ordering
of {i : w — A} by dominance order on partitions. If 1 <k <, define

Vi =mad(s) + B where sl = ¢’ € Std,_; (1)
and, if r < k < p define wy by (5.20) and, by analogy with (5.21), write
yl);(,o = Ezf_lwk_lmu(k) + éé‘

Given the elements yl); in §* for each partition ;& — A, define N* to be the B,_1(z)—
submodule of S* generated by

{yﬁ:v—)kandvku}

and let N* be the B, (z)-submodule of $* generated by
{y,))‘:v—>)»andv>u}.

Theorem 5.9 and the construction given for the B-M-W algebras in Sect. 6 have
analogues in the context of B, (z). Thus the cell module (9.2) has a basis over R,

{m¢=mbi+ B} : te T, (L))

indexed by the paths %, () of shape A in the Bratteli diagram associated with B, (z),
and defined in the same manner as the basis (6.5).

10 Jucys-Murphy operators for the Brauer algebras
Define the operators L;, fori =1,...,n,in B, (z) by L1 =0 and
Li=si—1—Ei_1+si—1Li—15i—1 forl <i <n.

Remark 10.1 The elements L; as defined above bear an obvious analogy with the

elements D; defined in Sect. 2.2; thus we refer to the elements L; as the “Jucys—
Murphy operators” in B, (z).

In [10], M. Nazarov made use of operators x; with are related to the L; defined
above by x; = % + L;. Since the difference of L; and the x; of [10] is a scalar
multiple of the identity, we derive the next statement from results in Sect. 2 of [10].

Proposition 10.1 Let i and k be integers, 1 <i <nand 1 <k <n.

1. s; and Ly commute ifi <k — 1,k.

2. L; and L commute.

3. s; commutes with L; + L.

4. Ly+ L3+ ---+ Ly belongs to the centre of B,(2).
a)
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For integers j, k with 1 < j, k <n, we define the elements L,(j) by Lij) =0and
LY =sju1 — E; 1LY fork > 1
k1 = Sj+k—1 jk—1 T Sjrk—1Ly S jrk—1, org = 1.

In particular, L,((l) =Ly, fork=1,...,n, are the Jucys—Murphy elements for B, (z).
The objective now is to show that m . is a common eigenvector for the action of
the Jucys—Murphy elements L on the cell module S*.

Proposition 10.2 Let i, k be integers with 1 <i <n and 1 <k <n. Then

(I-2E; ifk=2;
EL" =10 ifk=3;
ELYY  ifk>4.

Proof Tf k=2 then E; L\’ = E;(s; — E;) = (1 — 2) E;. For k = 3 we have
EiLY = Ei(si+1 — Eig1 + si415i8i41 = Si+1 Eisi1)
= Ei(si+1 — Ei1) + Ei(Eit15i+1 — si+1) = 0.
If k = 4 then,
EiLff) =Ei(si+2 — Eiy2) + Si+2EiL;i)Si+2
= E;(sis2 — Ei2) = EiLS ™,
and when k > 4,

EiL,(f) =Ei(Sith—2 — Eiyk—2) + Si+k—2EiL;(fllSi+k—2
=Ei(Sitk—2 — Eiyk—2) + Si+k—2EiL,(f_+32)Si+k—2
=Ei(Sitk—2 — Eiyk—2 + Si+k—2L1(<ij_32)si+k—2) = EiL,(szz)

by induction. ]
Corollary 10.3 Let f, k be integers,0 < f <[n/2]land 1 <k <n. Then

0, ifkisodd, 1 <k <2f+1;

E\E3---Exp (Ly=1(1—-2)E1E3---Exp_1,  ifkiseven,1 <k <2f;

E\Ey- EypaLELED. if2f+1<k<n.

Proof If kisodd, 1 <k <2f + 1, then by Proposition 10.2,
- M _ G _ ...
E\E3---ExLy = E1E3---ExL, " =E\E3---Ex L, =
= E1E3--- E LY =o0. 10.1)
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Since Ex42Ej+3--- E2p—1 commutes with Ly, the first case follows. If & is even and
1 <k <2f, then the relations E;s; = E; and E? = zE;, together with (10.1), show
that
E\E3---Epp 1Ly=E\E3---Epp_1(sk—1 — Ex—1 + Sk—1Lr—15¢)
=1 —-2)E\E3---Exp 1+ E1E3-- Exp_1Li—15k-1
=0 —-2)E1E3---Ezpi.

The final case follows in a similar manner. O

Let f be an integer, 0 < f < [n/2], and X be a partition of n — 2 f. For each path
t € T, (1), define the polynomial

j—i if (A 0] =2 DU, )

Py(k) = ii —j4+1—z if AT =E&D\ (G, ).

The proof of the next statement is identical to the proof of Proposition 7.5 given
above; for the proof of Proposition 10.5, we refer to the proof of Proposition 7.6.

Proposition 10.4 If A is a partition of n and k is an integer with 1 < k < n, then
mp. Ly = Pp.(k)m .

Proposition 10.5 Let f be an integer, 0 < f <[n/2], and A be a partition of n —2 f.
Then my. Ly = P (k)mg..

Proposition 10.6 Let f be an integer, 0 < f <[n/2], and ) be a partition of n —2 f.
Then there exists an invariant o € R such that Ly + L3 + --- + L, acts on S* as a
scalar multiple by a of the identity.

Proof As in the proof of Proposition 7.7, we obtain & =) ;_, Py. (k). O

Theorem 10.7 Let f be an integer 0 < f <[n/2] and A be a partition of n — 2 f. If
te T,/ (1), then there exist ay € R, for v € T, (L) with v > t, such that

thk = Pt(k)n’lt+ E ApMy.
veT,(A)
o>t

Proof By repeating word for word the argument given in the proof of Theorem 7.8,
we show that the statement holds true when 1 <k < n.
That L, acts triangularly on S*, can then be observed using Proposition 10.6:

n
miLy =) Pukym¢—m(La+ L3+ +Ly_1).
k=1

Thus the generalised eigenvalue for L,, acting on my¢ is P¢(n). (]

@ Springer



J Algebr Comb (2007) 26: 291-341 339

11 Semisimplicity criteria for Brauer algebras

Below are analogues for the Brauer algebras of the results of Sect. 8. Let « be a field
and take Z € k. Then z — Z determines a homomorphism R — k, giving x an R—
module structure. A Brauer algebra over « is a specialisation B, (Z) = B, (2) Qg k.

Forte%,(A) and k=1,...,n, let f’t (k) denote the evaluation of the monomial
P(k) at Z,
j—i if A0O] =& =Dju (G, j
Pt(k) . k) (k—1) { . ])}
i—j+1-z if[A"]=[xr NG DY

and as previously, define the ordered n-tuple IS(t) = (ﬁt(l), R ﬁt(n)). The opera-
tors L; provide conditions necessary for the existence of a homomorphic image of
one cell module for B, (2) in another cell module for B, (Z).

Theorem 11.1 Let k be a field. Suppose that for each pair of partitions X of n — 2 f
and w of n — 2f/, for integers f, f' with 0 < f, f' < [n/2], and for each pair of
partitions s € T, (L) and t € T, (), the conditions . > u and 13(5) = f’(t) together
imply that » = . Then B, (Z) is a semisimple algebra over k.

By an analogous statement to Lemma 8.3, the Jucys—Murphy elements do in fact
distinguish between the cell modules of B, (z) in Theorem 11.1.

The results of this section can be used to derive the next statement which is The-
orem 3.3 of [3]. As in Theorem 8.5, the statement may be generalised to the setting
where |A| > |u].

Theorem 11.2 Let A be a partition of n and  be a partition of n — 2 f, where f > 0.
IfHomBn(g)(S)‘, SH) #0, then

Y==Y. (-d=fl-2).

(@, ))elr] (i, ))€ln]

Proof Suppose that u € §*, v € S* are non—zero and that u > v under some element
in Homg (3 (S)‘, S#). Then, using Proposition 10.6,

ZuL = Z (J—Du

(0, )€Elr]

while

ZVL =f(1-2)v+ Z (j—=i)v.

@i, j)€elul
Since v is the homomorphic image of u, it follows that
YooG-d=fa-+ Y G-i.
@, J)€lr] @, J)€lul
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Hence the result. u

Theorem 11.1 gives a sufficient but not the necessary condition for B, (Z) to be a
semisimple algebra over «. Necessary and sufficient conditions on the semisimplicity
of B, (Z) have been given by H. Rui in [11].

Example 11.1 Letk =Q and Z =4. Taken =3, A= (1) and & = (1, 1, 1). In char-
acteristic zero the cell modules corresponding to the partitions (3), (2, 1) and (1, 1, 1)
are absolutely irreducible. But, taking

t:(@,D,B,D)GTn(A) and u:(@,D,H,@)G‘Iﬂ(M),

then
Pt)=(0,-1,2—%)=(0,—1,-2) and P =(0,—-1,-2).

Since f’(t) =P (u) whilst A > p, the pair t,u violates the hypotheses of Theo-
rem 11.1. However, by reference to the determinant of Gram matrix associated to
S* in Example 9.1, it follows that S* is absolutely irreducible and hence that B3(Z)
remains semisimple by appeal to appropriate analogues of Theorems 4.3 and 4.4.

12 Conjectures

Define a sequence of polynomials (p;(z)|i=1,2,...,) by p1(z2) =z +2)(z—1)
and

(@) = (z+2)(z—i)z+i—2)pi—1(z) ifiisodd;

T @420z =D pisi(2) if i is even.
Conjecture 12.1 For k afield, 7 € k and an algebra over k, withn > 2, the following
statements hold:

(i) If n = 2k + 1, then the bilinear form on the By, (Z)-module S determined

by (3.6) is non—degenerate if and only if py(Z) # 0.

(ii) If n = 2k, then the bilinear form on the B, (2)—-module S determined by (3.6)
is non—degenerate if and only if 7 # 0 and pi(Z) # 0.

Conjecture 12.2 For k a field, 7 € k and an algebra over k, with n > 2, the following
statements hold:

@) If n =2k + 1, then B, (2) is semisimple and only if kS, is semisimple and
p2u—1(2) #0.

(ii) If n = 2k, then B, (Z) is semisimple and only if kS, is semisimple, 7 # 0 and
p2u—2(2) #0.
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