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Abstract The parallel product of two rooted maps was introduced by S.E. Wilson in
1994. The main question of this paper is whether for a given reflexible map M one
can decompose the map into a parallel product of two reflexible maps. This can be
achieved if and only if the monodromy (or the automorphism) group of the map has at
least two minimal normal subgroups. All reflexible maps up to 100 edges, which are
not parallel-product decomposable, are calculated and presented. For this purpose, all
degenerate and slightly-degenerate reflexible maps are classified.

In this paper the theory of F -actions is developed including a classification of
quotients and parallel-product decomposition. Projections and lifts of automorphisms
for quotients and for parallel products are studied. The theory can be immediately
applied on rooted maps and rooted hypermaps as they are special cases of F -actions.

Keywords Rooted map · F -Action · Map quotients · Normal quotient · Parallel
product · Reflexible map · Parallel-product decomposition

1 Introduction

The central problems of reflexible maps are their systematic construction and clas-
sification. The most common constructions arise from quotients of extended triangle
group [7]. In the classification of reflexible maps, three natural groupings are used,
namely by the number of edges [31], by the underlying surface [8] and by the under-
lying graph [30].

Before the age of fast computers, many authors (Bergau and Garbe [2], Bra-
hana [4], Coxeter and Moser [9], Garbe [11], Sherk [22]) worked on the classifi-
cation of reflexible and orientably regular maps and managed to classify all such
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maps on surfaces of orientable genus up to 7 and non-orientable genus up to 8. In the
1970s, Wilson in his Ph.D. thesis [26] calculated most reflexible and orientably reg-
ular maps up to 100 edges [31] using a computer and running his Riemann surface
algorithm [27]. The recent breakthrough in this field is due to Conder and Dobc-
sányi [7], who calculated all orientably regular maps on surfaces from genera 3 up
to 15 and all non-orientable reflexible maps on surfaces from non-orientable gen-
era 2 up to 30 (Conder–Dobcsányi’s census [8]). In 2006 Conder [6] extended the
classification to orientable genera up to 100 and non-orientable genera up to 200.

The purpose of this work is to provide an alternative method for calculation and
a shorter description of reflexible maps in terms of certain “primitive” maps from
which all other maps can be obtained using some set of operations. The algorithms
for performing the operations need to be of relatively low time complexity so the
computations of “non-primitive” maps remain simple. It turns out that the appropriate
operation is the parallel product introduced by Wilson [29].

The theory in this paper is developed for F -actions, a generalization of rooted
maps. In this paper it is applied only to reflexible maps, but the same concepts can
be used with orientably regular maps, edge-transitive maps [19, 20], hypermaps and
abstract polytopes.

Overview of main results Usually, a map on a surface is represented by a set of flags
and by three involutions, two of which commute, treated as permutations of the flags
and intuitively giving instructions for gluing the flags together to form a surface [10,
17, 25]. The group generated by these three involutions acts transitively on the set
of flags and is called the monodromy group of the map. The automorphism group
of a map is the group of permutations of the flags respecting the action of the mon-
odromy group. A map is reflexible if the automorphism and the monodromy group
are regular and isomorphic. A reflexible map is normally parallel-product decompos-
able if it is a parallel product of two smaller reflexible maps.

The main results of this paper are the following group theoretical characterizations
of parallel-product decomposability. In the language of reflexible maps, Theorem 4.5
reads:

Theorem 1.1 A reflexible map is normally parallel-product decomposable if and
only if the monodromy group (or the automorphism group) contains at least two dif-
ferent non-trivial minimal normal subgroups.

The theorem is a consequence of the main result of the paper:

Theorem 4.4 (Decomposition theorem) An F -action M = (f,G,Z, id) is parallel-
product decomposable if and only if there exist two different subgroups K1,K2 ≤ G,
such that Gid � Ki � G, i = 1,2, and Gid = K1 ∩ K2. Furthermore, M is normally
parallel-product decomposable if and only if there exist two different non-trivial nor-
mal subgroups H1,H2 � G acting non-transitively on Z and GidH1 ∩ GidH2 = Gid.
Also, M is normally parallel-product decomposable if and only if it is strictly
parallel-product decomposable.
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Among all the groups up to order 1000, only 0.1% of groups have unique minimal
normal subgroup (the actual ratio is 12860/11758814). According to Theorem 4.5,
only these groups may support reflexible maps which are “primitive”.

Paper layout The sections of this paper are organized as follows.
Section 2 provides us with basic definitions for F -actions and establishes the al-

gebraic machinery necessary to discuss them in a manner similar to the article about
Cayley maps [21].

In Sect. 3 we establish the correspondence between F -actions and the lattice of
subgroups of the finitely presented group F in a manner similar to [5]. The corre-
spondence helps us to analyze and characterize F -action morphisms. We introduce
K-quotients and normal quotients. In Theorem 3.5 we prove that any F -action mor-
phism arises from some K-quotient. A normal quotient has the special property that
all automorphisms project, and it is used in the normal parallel-product decomposi-
tion in the next section.

Section 4 contains the main result and some propositions describing properties of
the parallel product, mainly focusing on lifts of automorphisms. If factors have high
symmetry, then their parallel product is also highly symmetric. Using the correspon-
dence from the previous section we are able to characterize parallel-product decom-
posability of an F -action through the subgroup lattice of its monodromy group.

Section 5 classifies all degenerate and slightly degenerate reflexible maps. These
are basically the maps containing vertices of valence less than 3 or some kind of de-
generacy of edges, such as loops or semi-edges. All the maps obtained from those
by triality are also included. These degeneracies arise naturally in quotients. All
non-degenerate normally parallel-product indecomposable reflexible maps up to 100
edges are listed.

In Sect. 6 decomposability of degenerate and slightly degenerate reflexible maps
is characterized and all parallel-product indecomposable reflexible maps up to 100
edges are listed.

2 Definitions

A right action of a group G on a finite set Z is an operation · : Z × G → Z,
such that z · 1 = z and z · (gh) = (z · g) · h, for every z ∈ Z and g,h ∈ G. We
denote the action by a pair (Z,G). Denote by SymR(Z) the symmetric group on
the set Z, where the bijections (permutations) are composed from the left to the
right and naturally act on Z from the right. For g ∈ G, a mapping πg : Z → Z,
πg : x �→ x · g is a bijection on Z and therefore an element of SymR(Z). The map-
ping χ : G → SymR(Z), χ : g �→ πg is a group homomorphism and is called the
action homomorphism. The image χ(G) ≤ SymR(Z) is called the image of the ac-
tion and kerχ is called the kernel of the action. The stabilizer of an element z ∈ Z

is the group Gz = {g ∈ G | z · g = z}. The kernel of the action is exactly the inter-
section of all the stabilizers. The action is semi-regular if all Gz are trivial, faithful
if the kernel is trivial, transitive if for any two z, z′ ∈ Z there exists g ∈ G, such that
z · g = z′. Denote by CoreG(K) = ⋂

g∈G Kg , the core of a subgroup K in G, which
is the intersection of all the conjugates of K and also the maximal normal subgroup
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in G contained in K . All stabilizers of a transitive action (Z,G) are conjugate and the
kernel equals CoreG(Gz), for any z ∈ Z. A transitive semi-regular action is regular.

An action epimorphism of two right actions (Z,G) and (W,H) is a pair (φ,ψ),
where φ : Z → W is an onto mapping, ψ : G → H is a group epimorphism, and
for every z ∈ Z and g ∈ G we have φ(z · g) = φ(z) · ψ(g). If both φ and ψ are
one-to-one, then (φ,ψ) is an action isomorphism.

In a similar manner, but changing the sides, a left action is defined and denoted by
(G,Z). In the case of a group G acting on itself, the notation (G,G) is confusing;
therefore the nature of the action (left or right) is explained in the context. Mostly,
right actions will be used in the paper. Left actions will occur only when automor-
phism groups are involved.

A rooted transitive action (RTA) is a triple (Z,G, id), where (Z,G) is a transitive
action and id ∈ Z is the distinguished element called the root. An RTA morphism is
an action epimorphism which maps a root to a root.

Let F = 〈a1, . . . , ak | R1 = · · · = Rn = 1〉 be a finitely presented group with gen-
erators {ai}ki=1 and relations {Rj }nj=1. An F -group is a pair (f,G), where f : F → G

is a group epimorphism. An F -group morphism of two F -groups Ai = (fi,Gi),
i = 1,2, is a group epimorphism ψ : G1 → G2, such that ψ ◦ f1 = f2. Note that
this implies that if a morphism exists, then it is unique. If ψ is an isomorphism, we
denote this by A1 � A2. An F -group should be viewed as a group with a specified
subset of (labelled) generators. Also it can be viewed as a quotient of F , as its finite
presentation is just the presentation of F with additional relations.

A (finite) F -action is a 4-tuple M = (f,G,Z, id) = (fM,GM,ZM, idM), where
Z is a set of flags, (Z,F, id) is an RTA, (Z,G, id) is a faithful RTA, (Id, f ) :
(Z,F, id) → (Z,G, id) is an RTA morphism (here Id denotes the identity mapping)
and (f,G) is an F -group. Let χM denote the action homomorphism χM : G →
SymR(Z). Then Mon(M) = (χM ◦ f,χM(G)) is an F -group called the monodromy
group. It is considered as a permutation group with labelled generators and as such
a particularly convenient representation of an F -action when doing computer calcu-
lations. Define SF (M) = Fid = f −1(Gid), the stabilizer of id in F .

Example 2.1 A finite map on a closed compact surface S is an embedding of a fi-
nite connected graph X on S, where S \ X consists of connected parts homeo-
morphic to disks (faces). According to [10, 17, 25], such a map can be combina-
torially represented by a finite set of flags Z and three fixed-point-free involutions
T,L,R ∈ SymR(Z), where T and L commute and TL is also fixed-point-free. The
involutions act on the set of flags and generate the monodromy group. Imagine the
flags as triangles with the sides labelled by T , L and R and glue two triangles a and
b along the side labelled by T , if aT = b, and do similarly for the labels L and R.
The conditions on the involutions imply that the surface obtained by gluing is a com-
pact closed surface and the sides labelled by T define an embedding of a graph. If
we do not insist on the involutions being fixed-point free, we obtain algebraic objects
called holey maps as defined in [1]. If we additionally root them, we get M-actions
for M = 〈T,L,R | T2 = L2 = R2 = (TL)2 = 1〉, where the involutions correspond to
labelled generators of monodromy groups.

Example 2.2 An orientable map can be described in terms of half-edges called darts,
a permutation R on darts, which encodes local rotations in vertices, and an involu-
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tion L, where for a dart z, z · L denotes the other half of the edge (dart). By addition-
ally rooting such a map, we get an O-action for O = 〈R,L | L2 = 1〉.

Example 2.3 A hypermap can be described in terms of three involutions acting on
the set of flags. Allowing certain degeneracies and rooting a hypermap, it can be
considered as an H-action for H = 〈r0, r1, r2 | r2

0 = r2
1 = r2

2 = 1〉 (see [5]).

Example 2.4 A k-constellation is a sequence of permutations [φ1, . . . , φk] in Sn,
where

∏k
i=1 φi = 1 and the permutations admit certain relations (see [32] for ex-

amples). Constellations are exactly generator sequences of monodromy groups of
certain F -actions.

As we can see, an F -action is nothing but a transitive action of the finitely pre-
sented group F on a finite set together with its faithful presentation (in practice it is
usually a permutation representation).

Let M and N be F -actions. An F -action morphism is a pair (φ,ψ), that is an
RTA morphism (φ,ψ) : (ZM,GM, idM) → (ZN,GN, idN) and ψ : (fM,GM) →
(fN ,GN) is an F -group morphism. A map morphism is called strict provided that
kerψ is non-trivial. If φ, ψ are one-to-one, we have an F -action isomorphism, and
we write M � N . Note that Mon(M) � Mon(N) if and only (fM,ZM) � (fN ,ZN).
While M � N implies Mon(M) � Mon(N), the converse is far from being true.
If there is a map morphism (φ,ψ) : M → N between two F -actions, then it is
unique: let x = idM · fM(v), v ∈ F ; then φ(x · fM(w)) = φ(idM · fM(vw)) =
idN · ψ(fM(vw)) = idN · fN(vw), for any w ∈ F . The existence of a morphism
M → N is denoted by N ≤ M .

An automorphism of an F -action M is an action isomorphism (φ, Id) : (ZM,GM)

→ (ZM,GM), where Id denotes the identity mapping. Note that contrary to an
F -action morphism, here the condition φ(idM) = idN is omitted and therefore in
general, an F -action automorphism is not an F -action morphism in the categorical
sense. The group of all automorphisms is denoted by Aut(M). Since an automor-
phism is completely determined by the image of a single flag, the action of Aut(M)

on Z is semi-regular. We write automorphisms on the left, so that the image of z un-
der p is p(z). Thus the action of Aut(M) is a left action. An F -action M is regular
if Aut(M) acts regularly on flags. The symbol αw will denote the automorphism in
Aut(M) (if it exists) that takes idM to idM ·w, where w ∈ F . If p ∈ Aut(M) is such an
automorphism, we will denote this by p ≡ αw ∈ Aut(M) and say that M contains αw .

The flag graph of an F -action M is the directed multi-graph with labelled edges,
where the set of the vertices is ZM and for each z ∈ ZM and each a ∈ {a±1

i }ki=1, there
is a directed edge from z to z · fM(a) with the label a. Note that in a situation where
z · a = z we have a loop, if the order of a in F is greater than 2, or a semi-edge
otherwise.

Denote by F+ the subgroup of even length words in F . Depending on the relations
in F , F+ can be either equal to F or a subgroup of index 2. In the latter case, we
call an F -action M orientable if and only if F+ has exactly two orbits on ZM . For
an interpretation of orientability see Example 2.5 below.

If a root flag idM of an F -action M is changed to the flag idM · w, w ∈ F , a re-
rooted F -action Rw(M) is obtained. Note that SF (Rw(M)) = w−1SF (M)w.
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Let d ∈ Aut(F ) and M = (f,G,Z, id). Then d induces an F -action operation
Od(M) = (f ◦ d,G,Z, id). If d is an inner automorphism, say conjugation by w,
then it is quite easy to see that Od(M) � Rw−1(M).

For a subgroup K ≤ F and an F -action M , the orbits of K acting on ZM are
called K-orbits and are blocks of imprimitivity for the left action of the automor-
phism group.

Let p : M → N be a morphism of F -actions and f ∈ Aut(M). If there exists f ′ ∈
Aut(N), such that p ◦f = f ′ ◦p, then we say that f projects (along p). On the other
hand, if there is f ′ ∈ Aut(N) and there exists f ∈ Aut(M), such that p ◦ f = f ′ ◦ p,
we say that f lifts (with p). Note that for w ∈ F , if αw ∈ Aut(M) projects, it projects
to αw ∈ Aut(N).

Example 2.5 For holey maps (M-actions), combinatorial edges, vertices, faces and
Petrie circuits are the 〈T,L〉-, 〈T,R〉-, 〈L,R〉- and 〈LT,R〉-orbits, respectively. Con-
sider the automorphisms d,p ∈ Aut(M), defined by the assignments d : T �→ L,
L �→ T , R �→ R and p : T �→ T , L �→ TL, R �→ R. They induce the well known map
operations, the dual D(M) = Od(M) and the Petrie dual P(M) = Op(M). The orbits
of the left action of the group 〈D,P〉 on the set of all holey maps are called the triality
classes and since 〈D,P〉 � S3 (according to [15]), a triality class can contain 1,2,3 or
6 holey maps. Regular holey maps on surfaces are called reflexible maps. Note that
here M+ = 〈RT,LR〉. A holey map M is embedded on a orientable closed compact
surface S if and only M is orientable as an M-action.

Example 2.6 In an orientable map (see Example 2.2) vertices can be considered as
〈R〉-orbits, edges as 〈L〉-orbits and faces as 〈RL〉-orbits. For an automorphism g of
O = 〈R,L | L2 = 1〉 taking R to R−1 and keeping L fixed we get an operation Og

returning a mirror image of an orientable map. Note that the map is chiral if and only
if M is not isomorphic to Og(M) as an O-action.

Example 2.7 Automorphism groups of edge-transitive maps (holey maps; automor-
phism group transitive on 〈T,L〉-orbits) admitting type T are quotients of certain fi-
nitely presented groups FT (see [23]; FT is called a partial presentation). The follow-
ing paragraph describes how edge-transitive maps admitting type T can be viewed as
regular FT -maps.

For the type 2exP , F2exP = 〈σx1, ϕ | ϕ2 = 1〉, where σx1 ≡ αRT and ϕ ≡ αTL.
Consider the action of Aut(M) on 〈T 〉-orbits, i.e. darts, which happens to be regular.
As we will see later (Theorem 3.6), the mapping 	 : F2exP → 〈RT,TL〉 defined by
σx1 �→ RT , ϕ �→ TL, is a group isomorphism. Define R = RT and L = TL. Then the
finite presentation of 〈R,L〉 is 〈R,L | L2 = 1〉. The maps admitting type 2exP are
exactly orientably regular maps (see Example 2.2).

Similar approach leads us to the conclusion that edge-transitive maps admitting
type T are exactly regular FT -maps.

Using this approach and the presentations from [23], edge-transitive maps ad-
mitting types 2, 2∗ and 2P can be considered as regular F -actions, where F =
〈a, b, c | a2 = b2 = c2 = 1〉. Therefore, all three types are algebraically equivalent
to regular hypermaps (or H-actions, see Example 2.3).
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3 Quotients of F -actions

This section extends the results by Wilson [29] and by Breda d’Azevedo and
Nedela [5]. Different parts of similar topics were discussed also in [18] (for orientably
regular maps), [12, 13] (for abstract polytopes) and [21] (for Cayley maps). Wilson
was the first to introduce the parallel product, while Breda d’Azevedo and Nedela
discovered the connection between regular H-actions and the normal subgroup lat-
tice of H (hypermaps). Their idea is used to show the connection between F -actions
and the subgroup lattice of F which is then used to prove some interesting results.
The connection is established through the stabilizer of the root flag.

If (Z,G) is a transitive action with the kernel H , then the induced action
(Z,G/H) is faithful. For example, if K ≤ G are groups, then (G/K,G,K) is
an RTA and if H = CoreG(K), then (G/K,G/H,K) is a faithful RTA explic-
itly defined by Kw · Hv = Kwv, for w,v ∈ G. For K ≤ F , define MF(K) =
(q,F/CoreF (K),F/K,K), where q : F → F/CoreF (K) is the natural epimor-
phism. Obviously, MF(K) is an F -action. Note that for K ≤ F , SF (MF(K)) = K .

Proposition 3.1 Let M be an F -action. Then M � MF(SF (M)).

Proof Let M = (f,G,Z, id), K = SF (M), H = CoreF (K), q : F → F/H be the
natural epimorphism and MF(SF (M)) = (q,F/H,F/K,K). Let w ∈ F , z ∈ Z, such
that z = id · w and define φ(z) = Kw. Since id · w = id · v, if and only if wv−1 ∈ K ,
φ is well defined and one-to-one. Obviously, φ is onto and φ(id) = K . As (Z,G) is
faithful, kerf = H . Since f is an epimorphism with kernel H and image G, there
exists an isomorphism ψ : G → F/H , such that ψ ◦ f = q .

Let z ∈ Z, g ∈ G and w,v ∈ F be such that f (w) = g and id · v = z. Then
φ(z · g) =φ(z · f (w)) = φ((id · v) · w) = φ(id · (vw)) = Kvw, while φ(z) · ψ(g)

= φ(z) · ψ(f (w)) = Kv · q(w) = Kv · Hw = Kvw. Hence (φ,ψ) is the isomor-
phism. �

Proposition 3.2 Let K1,K2 ≤ F be subgroups. Then K1 ≤ K2 if and only if there
exists an F -action morphism (φ,ψ) : MF(K1) → MF(K2).

Proof For i = 1,2, let Hi = CoreF (Ki), qi : F → F/Hi be the natural epimorphisms
and MF(Ki) = (qi,F/Hi,F/Ki,Ki).

If K1 ≤ K2, then H1 ≤ H2 and the mappings ψ : F/H1 → F/H2, ψ : H1w �→
H2w and φ : F/K1 → F/K2, φ : K1w �→ K2w, for any w ∈ F , are well defined.
Also, ψ is an epimorphism and ψ ◦ q1 = q2. For every w,v ∈ F , it follows that
φ(K1w · H1v) = φ(K1wv) = K2wv and φ(K1w) · ψ(H1v) = K2w · H2v = K2wv.
Since φ(K1) = K2 and φ and ψ are onto, (φ,ψ) : MF(K1) → MF(K2) is an F -action
morphism.

On the other hand, let (φ,ψ) : MF(K1) → MF(K2) be an F -action morphism.
Then q2 = ψ ◦ q1 and φ(K1) = K2. Let x ∈ K1. Then q1(x) ∈ K1/H1 = (F/H1)K1 .
Since (φ,ψ) is an F -action morphism, it is true that ψ((F/H1)K1) ≤ (F/H2)K2 =
K2/H2. Therefore (ψ ◦ q1)(x) = q2(x) ∈ K2/H2, implying that x ∈ K2. Hence,
K1 ≤ K2. �

From the last two propositions the next corollary immediately follows.
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Corollary 3.3 Let M and N be F -actions. Then there exists an F -action morphism
(φ,ψ) : M → N if and only if SF (N) ≤ SF (M). Therefore, M � N if and only if
SF (M) = SF (N).

Recall the elementary theorem known as the fourth isomorphism theorem for
groups (the correspondence theorem).

Theorem 3.4 Let G,G′ be groups and f : G → G′ epimorphism. Let A = {K :
kerf ≤ K ≤ G} and B = {K ′ : K ′ ≤ G′}. Then the mapping 
 : A → B defined by

 : K �→ f (K) is a bijection. Under this bijection normal subgroups correspond to
normal subgroups. For any two groups K,H ∈ A, it follows 
(K ∩ H) = 
(K) ∩

(H), 
(〈K,H 〉) = 〈
(K),
(H)〉 and if K ≤ H , then 
(K) ≤ 
(H).

Note that the sets of groups A and B are actually lattice intervals in lattices of
subgroups of G and G′, respectively. The theorem is also called the lattice theorem
for groups, since it basically says that f induces a lattice isomorphism between the
two lattice intervals with a special property of mapping normal subgroups to normal
subgroups.

For an F -action M = (f,G,Z, id) and a subgroup K ≤ G, where Gid ≤ K , define
M/K = (q ◦ f,G/H,G/K,K), where H = CoreG(K) and q : G → G/H is the
natural epimorphism. The right action of G/H on G/K is faithful and M/K is an
F -action called the K-quotient of the F -action M . A K-quotient of M is strict if
CoreG(K) is not trivial.

Theorem 3.5 Let M and N be F -actions, such that there exists an F -action mor-
phism (φ,ψ) : M → N . Let K = ψ−1((GN)idN

) ≤ GM . Then (GM)idM
≤ K and

M/K � N .
For any two N,N ′ ≤ M , where N � M/K , N ′ � M/K ′ for some K,K ′ ≤ GM , it

follows N ≤ N ′ if and only if K ′ ≤ K . Also, N � N ′ if and only if K = K ′.

Proof Since (Id, fM) : (ZM,F, idM) → (ZM,GM, idM) is an RTA morphism and Id
is a bijection, it follows fM(Fid) = (GM)id and f −1

M ((GM)idM
) = Fid. As N ≤ M ,

it follows X = SF (N) ≥ SF (M) = FidM
, by Corollary 3.3. Let K = fM(X).

Since fM is an epimorphism and kerfM ≤ FidM
≤ X, it is true that f −1

M (K) = X

and (GM)idM
≤ K , by Theorem 3.4. But for M/K = (q ◦ fM,GM/H,GM/K,K),

where H = CoreGM
(K) and q : GM → GM/H is the natural epimorphism, it

follows (GM/H)K = K/H , and thus SF (M/K) = (q ◦ fM)−1(K/H) = f −1
M (K)

= X. By Corollary 3.3, M/K � N . As fM is an epimorphism, K = fM(X) =
fM(f −1

N ((GN)idN
)) = fM(f −1

M (ψ−1((GN)idN
))) = ψ−1((GN)idN

).

Let N,N ′ ≤ M . Then N ≤ N ′ if and only if SF (N) ≥ SF (N ′), if and only if
K = fM(SF (N)) ≥ fM(SF (N ′)) = K ′, by Theorem 3.4 and Corollary 3.3. There-
fore, K = K ′ if and only if SF (N) = SF (N ′) if and only if N � N ′. �

The role of Theorem 3.5 for F -actions is similar to the role of the first isomor-
phism theorem for groups. From a computational point of view, it enables us to cal-
culate all the quotients of an F -action from the monodromy group.
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Theorem 3.6 Let M = (f,G,Z, id) and SF (M) = K . For w ∈ F , αw ∈ Aut(M)

if and only if w ∈ NF (K), where NF (K) is, as usual, the normalizer of K in F .
Furthermore, Aut(M) � NF (K)/K .

Proof Let H = CoreF (K) and L = MF(SF (M)) = (q,F/H,F/K,K). As L � M

by Proposition 3.1, αw ∈ Aut(L) if and only if αw ∈ Aut(M).
Let αw ∈ Aut(L) and x ∈ w−1Kw. Then x = w−1kw, for some k ∈ K , and

αw(Kw−1) = αw(K) · w−1 = Kww−1 = K . Also Kx = αw(Kw−1) · x =
αw(Kw−1wkw−1) = α(Kw−1) = K and x ∈ K . Hence, wKw−1 = K and w ∈
NF (K).

If w ∈ NF (K), then wKw−1 = K and wK = Kw. Let φ : F/K → F/K be de-
fined by φ : Kx �→ wKx = Kwx, for any x ∈ F . Obviously, φ is well defined and
a bijection. Then for any v ∈ F , φ(Kx) · v = Kwxv and φ(Kx · v) = φ(Kxv) =
Kwxv. Since φ(K) = Kw, (φ, Id) ≡ αw ∈ Aut(L).

Define a mapping 	 : Aut(L) → NF (K)/K , where 	 : αw �→ Kw. Since αw

and αv represent the same automorphism in Aut(L) if and only if wv−1 ∈ K , 	 is
well defined and one-to-one. Also, 	(αwv) = Kwv = KwKv = 	(αw)	(αv), since
K � NF (K). By the above discussion, 	 is onto. �

Note that the Theorem 3.6 appears in similar forms in several papers which deal
with different types of F -actions (Cayley maps [21], hypermaps [5], abstract poly-
topes [13]).

Two corollaries immediately follow.

Corollary 3.7 An F -action M is regular if and only if SF (M) � F . M is regular if
and only if Aut(M) and Mon(M) are isomorphic as abstract groups.

Proof The first part follows directly from Theorem 3.6. If M is regular, let H =
SF (M) � F and q : F → F/H the natural epimorphism. Then MF(SF (M)) =
(q,F/H,F/H,K), Mon(M) � (q,F/H) (as F -groups) and Aut(M) � F/H , by
Theorem 3.6. If M is not regular, then |Aut(M)| < |ZM | ≤ |Mon(M)|, since Mon(M)

is transitive. �

Corollary 3.8 Let M , N be F -actions and p : M → N be an F -action morphism.
Then Aut(M) projects if and only if NF (SF (M)) ≤ NF (SF (N)).

Proof Note that αw ∈ Aut(M) projects if and only if it projects to αw ∈ Aut(N). �

Let M = (f,G,Z, id) and let H � G. Consider the RTA morphism (Id, f ) :
(Z,F, id) → (Z,G, id) of M . By Theorem 3.4, SF (M/GidH) = f −1(GidH) =
f −1(Gid) · f −1(H) = SF (M)f −1(H). Since f −1(H) � F , it follows NF (SF (M))

≤ NF (SF (M/GidH)). Therefore Aut(M) projects, by Corollary 3.8. A K-quotient,
where K = GidH , H � G is called a normal quotient and is denoted by M�H . The
following proposition summarizes the discussion.

Proposition 3.9 Let M be an F -action and p : M → M�H be the F -action mor-
phism onto the normal quotient. Then Aut(M) projects along p.
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The reader can easily verify the following construction. Let M be an F -action
and H � GM . Let ZM/H denote the set of the orbits of H acting on ZM . Then
the induced action (ZM/H,GM) is transitive. If [idM ] denotes the orbit in ZM/H

containing idM and q : GM → GM/H is the natural epimorphism, then the stabi-
lizer of [idM ] is GidH , and (q ◦fM,GM/CoreG(GidH),Z/H, [idM ]) is an F -action
isomorphic to M�H .

Projecting of the whole automorphism group along a normal quotient makes
normal quotients special. An interesting observation made by Tucker [24] is
that any F -action morphism (φ,ψ) : M → N factors through a normal quotient
M → M�kerψ → N , since SF (M) ≤ SF (M) · CoreF (SF (N)) ≤ SF (N) (by Theo-
rem 3.4, CoreF (SF (N)) � F corresponds to kerψ � GM ).

4 Parallel product and parallel-product decomposability

The parallel product of two F -actions M and N is defined by

M ‖ N = ((fM,fN),G,Z, (idM, idN)),

where G = (fM,fN)(F ) ≤ GM × GN and Z is the orbit of the induced action of G

on Z1 × Z2 which contains (idM, idN). Since (z1, z2) · (g1, g2) = (z1, z2) if and only
if g1 ∈ (GM)idM

and g2 ∈ (GN)idN
, the kernel of the action is the direct product of the

kernels of (ZM,GM) and (ZN,GN) and therefore trivial. The action (Z,G) is faith-
ful and transitive on Z, M ‖ N is an F -action and SF (M ‖ N) = SF (M) ∩ SF (N).
From the definition it follows that the parallel product is an associative and commuta-
tive operation (see also [5, 29]). The definition enables us to construct Mon(M ‖ N)

from Mon(M) and Mon(N) which is useful for computational purposes.
For examples on use of the parallel product, see [29].

Proposition 4.1 Let M and N be F -actions that both contain αw . Then M ‖ N

contains αw .

Proof NF (SF (M)) ∩ NF (SF (N)) is a subgroup of NF (SF (M) ∩ SF (N)). �

The next proposition describes the relation between automorphisms, re-rootings
and parallel products of re-rootings of an F -action M through monodromy groups.

Proposition 4.2 Let M be an F -action. Then for each w ∈ F ,

1. Mon(M) � Mon(Rw(M)) � Mon(M ‖ Rw(M)).
2. M � Rw(M) if and only if αw ∈ Aut(M).
3. If w2 = 1 then αw ∈ Aut(M ‖ Rw(M)).
4. Let MM denote the parallel product of all re-rootings of M . Then MM is regular

and for any regular F -action M ′, such that M ≤ M ′, it follows MM ≤ M ′.

Proof Let K = SF (M), H = CoreF (K) and q : F → F/H be the natural epi-
morphism. Since for any w ∈ F , SF (Rw(M)) = w−1Kw and CoreF (w−1Kw) =
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CoreF (K ∩ w−1Kw) = H , all of the three monodromy groups in (1) are isomor-
phic to (q,F/H) as F -groups. Since SF (Rw(M)) = w−1Kw = K if and only
if w ∈ NF (K), (2) follows. Since w−1(K ∩ w−1Kw)w = w−1Kw ∩ w−2Kw2 =
w−1Kw ∩ K it follows w ∈ NF (K ∩ w−1Kw) and (3) follows.

As SF (MM) = H , MM is regular. For any N � F , N ≤ w−1Kw, for all w ∈ F ,
and it follows N ≤ H . Hence, for any regular F -action M ′ ≥ Rw(M), for all w ∈ F ,
it follows M ′ ≥ MM , yielding (4). �

A consequence of the proposition is that for a regular F -action, the root can be
ignored, since all re-rootings are isomorphic.

Proposition 4.3 Let M and N be F -actions and f ∈ Aut(F ). Then Of (M ‖ N) =
Of (M) ‖ Of (N).

Proof The claim follows from the fact that f −1(SF (M)∩SF (N)) = f −1(SF (M))∩
f −1(SF (N)) as f is an isomorphism. �

A trivial F -action is a map N , such that SF (N) = F . A decomposition pair
for an F -action M is any pair of F -actions (N1,N2), such that M � N1 ‖ N2 and
neither of N1,N2 is isomorphic to M or to a trivial map. This is equivalent to
SF (M) � SF (Ni) � F , i = 1,2. An F -action M is parallel-product decomposable if
there exists a decomposition pair for M . If there exists a decomposition pair consist-
ing of normal quotients, then M is normally parallel-product decomposable. If there
exists a decomposition pair of strict K-quotients, then M is strictly parallel-product
decomposable.

Theorem 4.4 (Decomposition theorem) An F -action M = (f,G,Z, id) is parallel-
product decomposable if and only if there exist two different subgroups K1,K2 ≤ G,
such that Gid � Ki � G, i = 1,2, and Gid = K1 ∩ K2. Furthermore, M is normally
parallel-product decomposable if and only if there exist two different non-trivial nor-
mal subgroups H1,H2 � G acting non-transitively on Z and GidH1 ∩ GidH2 = Gid.
Also, M is normally parallel-product decomposable if and only if it is strictly
parallel-product decomposable.

Proof Consider the RTA morphism (Id, f ) : (Z,F, id) → (Z,G, id) in the
F -action M . Then SF (M) = f −1(Gid) = Fid. By Theorem 3.4, such K1,K2 exist if
and only if there exist Li , i = 1,2, where Fid � Li � F , f (Li) = Ki , Li = f −1(Ki),
and L1 ∩ L2 = Fid. By Theorem 3.5, this is true if and only if M is parallel-product
decomposable and one of decomposition pairs is (M/K1,M/K2).

Since (Z,G) is faithful and transitive, CoreG(Gid) = {1} and non-triviality and
non-transitivity of H1 and H2 is equivalent to Gid � GidHi � G. Together with the
condition GidH1 ∩GidH2 = Gid this is equivalent to normal parallel-product decom-
posability, where one of decomposition pairs is (M/GidH1,M/GidH2).

A map is strictly parallel-product decomposable if and only if there is a decom-
position pair (M/K1,M/K2), where the cores Ni = Core(Ki), i = 1,2, are non-
trivial. But since CoreG(Gid) is trivial, Gid � GidNi ≤ Ki , i = 1,2, and obviously
GidN1 ∩ GidN2 = Gid (as K1 ∩ K2 = Gid and Gid ≤ GidN1 ∩ GidN2). �
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Fig. 1 Normal quotients of
a 4-cycle on the sphere that
yield a non-trivial normal
parallel-product decomposition

When computing with F -actions we mostly operate with (permutation) mon-
odromy groups. The theorem tells us exactly how to determine decomposability of
a map and how to decompose it, if possible. Often, we would like to decompose
a monodromy group into a parallel product of monodromy groups of strictly smaller
orders, i.e., we want strict parallel-product decomposability. The theorem says that if
we are able to achieve this for a map M , we can do this in a way where both factors
preserve the symmetry of M .

Let M = (f,G,Z, id) be an F -action. There exist two normal non-trivial and
non-transitive subgroups H1,H2 � G, such that GidH1 ∩ GidH2 = Gid if and only if
there exist two minimal normal non-trivial and non-transitive subgroups N1,N2 � G,
Ni ≤ Hi , i = 1,2, with GidN1 ∩ GidN2 = Gid. Therefore, it is sufficient to check
minimal normal subgroups of G to determine normal (or strict) parallel-product de-
composability. Together with the fact that in a regular F -action the stabilizer in the
monodromy group is trivial, the following theorem holds.

Theorem 4.5 A regular F -action M is normally parallel-product decomposable if
and only if Mon(M) (and thus also Aut(M)) contains at least two non-trivial minimal
normal subgroups. In this case both of the factors are regular F -actions.

Example 4.6 Figures 1 and 2 demonstrate an application of Theorem 4.5 and the dif-
ference between a normal and a general map quotient, both on the map M , a 4-cycle
on the sphere. The monodromy group of M is isomorphic to Z2 × D4 and has ex-
actly 3 minimal normal subgroups which induce three normal quotients. In Fig. 1, M

and the three normal quotients are represented by flag graphs. By Theorem 4.5, M is
isomorphic to a parallel product of any two of the quotients.

In Fig. 2, a non-normal quotient N is presented. Still, N ‖ RL(N) � M . Both of
N and RL(N) contain αT and αR which lift to N ‖ RL(N), by Proposition 4.1. Also,
by Proposition 4.2, αL lifts. Since T,L and R generate F , N ‖ RL(N) is reflexible.
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Fig. 2 A non-normal quotient of C4

Consider a regular F -action M and the F -action MF(SF (M)) = (q,F/H,F/

H,H), for H = SF (M) � F and q : F → F/H , the natural epimorphism. Recall
that F = 〈a1, . . . , ak | R1 = · · · = Rn〉. Since F/H is finite, H can be expressed as
the normal closure of a finite set of words {Rn+j }mj=1 and F/H = 〈a1, . . . , ak |R1 =
· · · = Rn+m〉. Note that the presentation of F/H completely encodes all the informa-
tion about M up to isomorphism. Therefore a regular F -action can be represented by
a finite presentation of F/H , which will be called a map group. Such presentations
will be used in the remainder of the paper.

Consider a regular F -action M represented with a map group M = 〈a1, . . . , ak |
W

e1
1 = · · · = W

es
s = 1〉, where ei is the exact order of the word Wi in M , i = 1, . . . , s.

A sequence of words (Wi)
s
i=1 is called the context. In the given context, M can be

encoded by the vector (ei)
s
i=1 and we will write M = (ei)

s
i=1. Let some other regular

F -action M ′ be presented in a different context C′. The common context C′′ is any
context which contains exactly all the words from C and C′. The F -action M (and
similarly M ′) can be represented in C′′ by calculating the orders of the words in C′′
and replacing the initial relations in M with the new ones. For a given context C and
a regular F -action M , we will say that C is sufficient for M , if M has a presentation
in C.

Let M and N be regular F -actions and w ∈ F . Let a denote the exact order of
fM(w) and b denote the exact order of fN(w). Then the exact order of (fM,fN)(w)

is obviously lcm(a, b). The following lemma is straightforward.
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Lemma 4.7 Let M = (ai)
s
i=1, N = (bi)

s
i=1 be two regular F -actions represented in

a common context (Wi)
s
i=1. Suppose that the common context is sufficient for the map

M ‖ N . Then M ‖ N = (lcm(ai, bi))
s
i=1.

With this lemma the part of the paper dealing with F -actions in general is con-
cluded. From now on we will deal with reflexible maps only.

5 Degeneracy of reflexible maps

In this section reflexible maps are classified into three families according to their
degeneracy. For a given reflexible map M , let e1, . . . , e7 be the exact orders of the
words T , L, R, TL, TR, LR, TLR, respectively. A map M is slightly-degenerate if it
satisfies ei ≥ 2, for all i = 1, . . . ,7, and at least one of e5, e6, e7 equals to 2. It is
degenerate if at least one of ei , i = 1, . . . ,7, equals to 1. If a map is not degenerate
or slightly-degenerate then it is non-degenerate. In this case ei ≥ 3, i = 5,6,7.

Note that the set of the chosen words represents exactly the generators whose
orders determine the map’s properties, such as the degrees of the vertices, the co-
degrees of the faces and the sizes of the Petrie circuits.

Let C = (Wi)
7
i=1 = (T , L, R, TL, TR, LR, TLR) be the context and (ei)

7
i=1 be

a vector denoting a map for which C is sufficient. In analysis we use triality. Note
that the operations D and P permute the triple (e1, e2, e4) with the same permutation
as the triple (e5, e6, e7). To describe the action of D and P on the indices i = 1, . . . ,7
of ei , we can represent D as a permutation (1,2)(5,6) and P as (2,4)(6,7).

Proposition 5.1 All degenerate reflexible maps are shown in Table 1.

Proof First we prove that all the map groups in Table 1 are uniquely determined by
the context C. For all the maps in the table except DM5(k), DM6(k) and EM3(k),

Table 1 Degenerate reflexible maps

Name (T , L, R, TL, TR, LR, TLR) |F(M)|

DM1 (1, 1, 1, 1, 1, 1, 1) 1

DM2 (1, 1, 2, 1, 2, 2, 2) 2

DM4 (2, 1, 1, 2, 2, 1, 2) 2

DM3 (1, 2, 1, 2, 1, 2, 2) 2

DM8 (2, 2, 1, 1, 2, 2, 1) 2

DM5(k), k > 0 (2, 1, 2, 2, k, 2, k) 2k

DM6(k), k > 0 (1, 2, 2, 2, 2, k, k) 2k

EM3(k), k > 0 (2, 2, 2, 1, k, k, 2) 2k

DM7 (2, 2, 1, 2, 2, 2, 2) 4

K2 (2, 2, 2, 2, 1, 2, 2) 4

ε1 (2, 2, 2, 2, 2, 1, 2) 4

δ1 (2, 2, 2, 2, 2, 2, 1) 4
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Table 2 A map group of each map in this table is obtained as 〈T,L,R | T2 = L2 = R2 = (TL)2 = (RT)2 =
· · · = 1〉, where instead of “. . . ” one should put the additional relations. All slightly-degenerate reflexible
maps can be constructed from the maps in this table by using the operations D and P. Note that ε1 and δ1
are degenerate and so not included in this table

Name Additional relations Order

εk , k > 0 even (LR)k, (TLR)k 4k

εk , k > 1 odd (LR)k, (TLR)2k 4k

δk , k > 0 even T(LR)k,T(TLR)k 4k

δk , k > 1 odd (LR)2k, (TLR)k 4k

this is pretty obvious. By triality it is enough to check the group of DM5(k). The
relations here determine a dihedral group D2k generated by a = T and b = TR and
D2k = 〈a, b | a2 = bk = (ab)2 = 1〉. One can easily see that any quotient of D2k

strictly decreases the orders of at least one of the (projected) generators.
Now we will make an analysis of what kind of degenerate maps can occur. Let

e1 = e2 = 1. Then e4 = 1. If e3 = 1 we get DM1. If e3 = 2 then it must be e5 =
e6 = e7 = 2 (DM2). Now, let e1 = 1 and e2 = 2. Since e4 = 1 implies e2 = e1, it
must be e4 = 2. If e3 = 1 then it must be e5 = 1, e6 = e7 = 2 (DM3 and by triality
DM4 and DM8). If e3 = 2 then e5 = 2 and e6 = e7 = k ≥ 1 (DM6(k) and by triality
DM5(k) and EM3(k)). By triality, all the possibilities where one of e1, e2, e4 is 1 are
exhausted. Assume e1 = e2 = e4 = 2. If e3 = 1 then e5 = e6 = e7 = 2 (DM7). Let
now e3 = 2. Since a map has to be degenerate, one of e5, e6, e7 must be equal to 1.
By triality we can assume e5 = 1. Then it must be e6 = e7 = 2, otherwise the orders
e1, e2 collapse (K2, ε1, δ1). This exhausts all the possibilities for degenerate maps. �

A similar analysis of degenerate maps was done in [16], but their definition
of degeneracy is different from ours and uses an automorphism group. According
to [16], a reflexible map M is degenerate if one of the generators x = αL, y = αT ,
z = αR ∈ Aut(M) equals to the identity. It is easy to see that their degeneracy is equiv-
alent to saying that one of e1, e2 or e3 is equal to 1. (Note that the list in [16] omits
the map DM8.)

In Fig. 3 all the flag graphs for degenerate maps are shown.
If a reflexible map is not degenerate then all the involutions T , L, R, TL are fixed-

point-free. Such a map corresponds to a reflexible 2-cell embedding of some graph
into a compact closed surface. Slightly-degenerate maps can be constructed using the
operations D and P from a reflexible embedding of a cycle in some compact closed
surface. The only possible such 2-cell embeddings are the embeddings of k-cycle in
the sphere, denoted by εk , and in the projective plane with the k-cycle embedded as
a non-contractible curve, denoted by δk . Here the names are adopted from [28].

The map group presentations of maps εk and δk are shown in Table 2.

6 Normal parallel-product decomposition of reflexible maps

Proposition 6.1 The map DM5(k) (DM6(k), EM3(k)), k > 2 is normally parallel-
product decomposable if and only if k is not a prime power.
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Fig. 3 Flag graphs of degenerate reflexible maps

Proof An integer k is not a prime power if and only if there exist a, b > 1, such that
gcd(a, b) = 1 and k = ab. Using Lemma 4.7 and Table 1 it is easy to see that for any
a, b > 1, DM5(a) ‖ DM5(b) � DM5(lcm(a, b)). Nontrivial factors of DM5(k) can
be only degenerate maps with L = 1, so only: DM5(l), l ≥ 1, DM2 and DM4. Since
DM2 and DM4 are quotients of any DM5(l), l > 2, a parallel product with DM5(l)

absorbs them. Also DM2 ‖ DM4 � DM2 ‖ DM5(1) � DM4 ‖ DM5(1) � DM5(2).
So if k > 2 and DM5(k) is normally parallel-product decomposable, then it must
be a product of two factors of the form DM5(l). By Table 1 and Lemma 4.7 this is
possible only when the conditions of this proposition are fulfilled. Using triality, the
proofs for DM6(k) and EM3(k) immediately follow. �

The monodromy groups of the maps DM7,K2, ε1 and δ1, are isomorphic to
Z2 × Z2 and thus by Theorem 4.5 the maps are normally parallel-product decom-
posable. The monodromy groups of DM1, DM2, DM3, DM4 and DM8 are either
trivial or isomorphic to Z2, implying that those maps are normally parallel-product
indecomposable.

The following corollary immediately follows.



J Algebr Comb (2007) 26: 507–527 523

Corollary 6.2 All degenerate reflexible maps are normally parallel-product inde-
composable except:

1. DM5(k), DM6(k) and EM3(k), for k = 2 and any k > 2 which is not a power of
a prime,

2. DM7, K2, ε1 and δ1.

Note that K2 is a parallel product of any two maps in {DM3,DM5(1),EM3(1)},
DM7 of any two in {DM3,DM4,DM8}, ε1 of any two in {DM4,DM6(1),EM3(1)},
δ1 of any two in {DM5(1),DM6(1),DM8} and DM5(2) of any two in {DM2,DM4,

DM5(1)}.

Proposition 6.3 The only normally parallel-product indecomposable slightly-dege-
nerate maps are the maps δk , where k = 2n, n ≥ 1.

Proof Since P(εk) � δk , for k odd, we have to consider only the normal parallel-
product decompositions of maps εk for all k > 1 and δk , for k > 1 even.

By Proposition 4.7, it is easily seen that εk � DM6(k) ‖ DM4, for any k > 1.
Now, let k > 0 and let l ≥ 1 be any odd number. The following map groups are

defined by relations:

F(δ2k ) : T2 = L2 = R2 = (TL)2 = (RT)2 = 1, (RL)2k = (TLR)2k = T ,

F (DM6(2
kl)) : T = L2 = R2 = (TL)2 = (RT)2 = (RL)2k l = (TLR)2k l = 1.

A pretty straightforward relation chasing helps us to see that δ2k l � DM6(2kl)‖δ2k .
This means that for any even u not equal to the power of 2, δu is normally parallel-
product decomposable.

For a given map M , denote by e5(M), e6(M) and e7(M) the exponents of the
words RT , RL, TLR, respectively. For δ2n , e5 = 2, e6 = e7 = 2n+1. Since these values
are powers of 2 and lcm(2x,2y) = max(2x,2y), at least one of e5, e6, e7 must be
reached with the corresponding values e′

5, e
′
6, e

′
7 and e′′

5, e′′
6 , e′′

7 in two possible factors.
Since the factors must be either degenerate or slightly degenerate maps, one of them
must be one of DM6(2n+1), δ2n or ε2n+1 . A map δ2n is not admissible factor in a non-
trivial decomposition, while a map ε2n+1 in a product would yield an orientable map
(see [29]). Thus one of the factors must be DM6(2n+1). Since the context C is not
sufficient to obtain the map δ2n , one of the maps must be δl , for some l = 2u, u < n.
But since DM6(2n+1) ‖ δl � ε2n+1 this is not possible. Thus δ2n , n ≥ 1 is normally
parallel-product indecomposable. �

Using computer programs LOWX [7] and MAGMA [3] all non-degenerate reflexi-
ble maps were calculated up to 100 edges. The results of the calculation match with
Wilson’s census of rotary maps [31]. Among them, the ones with the monolithic map
group (i.e. having a unique minimal normal subgroup) were selected and they are
shown in Table 3.

Claim 6.4 Up to triality, all normally parallel-product indecomposable non-
degenerate reflexible maps up to 100 edges are presented in Table 3.
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Table 3 Normally parallel-product indecomposable non-degenerate reflexible maps up to triality and up
to 100 edges. The second column is a reference to Wilson census [31]. A triple e, s −f,n, denotes that the
corresponding map has the code (e, n) in Wilson census, where e denotes the number of edges. The map
represents the triality class on maps with codes (e, s), (e, s + 1), . . . , (e, f ). A presentation of any of the
maps in the table can be obtained by using a presentation 〈T,L,R | T2 = L2 = R2 = (TL)2 = (RT)e5 =
(RL)e6 = (TLR)e7 = · · · = 1〉, where the corresponding additional relations should be put instead of “. . . ”.
The last column (Monolith) describes the minimal normal subgroups of the monodromy groups

Name Wilson cen. e5 e6 e7 Additional relations Monolith

MN1 6,1-3,1 3 3 4 Z
2
2

MN2 8,2-4,2 4 8 8 (RTRL)2, (LRT)2(LR)2 Z2
MN3 15,1-3,2 3 5 5 {1} ≤ A5
MN4 16,1-1,1 4 4 4 Z2
MN5 16,5-7,5 4 8 8 ((LR)2T)2 Z2
MN6 16,2-4,2 4 16 16 (RTRL)2, TLRT(LR)7 Z2
MN7 18,1-3,1 4 4 6 (RTRL)3 Z

2
3

MN8 24,19-24,21 3 8 12 (LRTLR)2T(LR)2T Z2
MN9 24,28-33,30 6 8 12 TL(RT)2(LR)3 Z2
MN10 27,1-3,3 3 6 6 Z3
MN11 30,28-33,30 4 5 6 L(RTRL)2(RT)2 A5 ≤ S5
MN12 30,37-37,37 6 6 6 L(RT)2RL(RT)3, T(LR)3TR(LR)2 A5 ≤ S5
MN13 32,4-6,4 4 4 8 (RTRL)4 Z2
MN14 32,19-21,19 4 16 16 (LRT)2(RL)2(RT)2, (LR)2T(LR)6T Z2
MN15 32,1-3,1 4 32 32 (RTRL)2, (LRT)2(LR)14

Z2
MN16 32,26-26,26 8 8 8 (LRT)2(RL)2(RT)2, (LRT)2(LR)2(TR)2 Z2
MN17 32,13-18,16 8 16 16 (RTRL)2, (LRT)4(LR)4 Z2
MN18 40,19-21,21 4 5 5 Z

4
2

MN19 48,19-24,21 3 6 8 Z
2
2

MN20 48,70-72,72 4 6 6 (T(LR)2)3 Z
2
2

MN21 48,76-78,78 6 6 8 LRTRLRTLRL(RT)2 Z2
MN22 48,73-75,75 8 12 12 (RT)2(LR)2TRLRTL, (LR)3TL(RL)2RT Z2
MN23 48,61-63,63 8 24 24 (RT(RL)2)2, (TLR)3(LR)3 Z2
MN24 48,64-66,66 8 24 24 (RT(RL)2)2, T(LR)2T(LR)2LTRLR Z2
MN25 50,1-3,1 4 4 10 (RTRL)5 Z

2
5

MN26 54,10-15,13 4 6 12 T(LRTR)3 Z3
MN27 54,19-21,21 6 12 12 L(RT)2RL(RT)3, (TLRLR)3 Z3
MN28 64,4-6,4 4 4 8 Z2
MN29 64,49-54,51 4 8 8 (LRTR)2(LR)2LTRLRT Z2
MN30 64,40-42,42 4 16 16 (RTRL)4, (RTRL(RL)2)2,(LRT)4(LR)4 Z2
MN31 64,25-27,25 4 32 32 (LRT)2(RL)2(RT)2, (LR)2T(LR)14T Z2
MN32 64,1-3,1 4 64 64 (RTRL)2, TLRT(LR)31

Z2
MN33 64,58-60,59 8 8 8 (LRT)2(LR)2(TR)2, T(RTRL)T(RTRL)3 Z2
MN34 64,34-36,34 8 16 16 (LRTRLRT)2, (RT)2RL(RT)2(RL)3 Z2
MN35 64, 43-45,45 8 16 16 (LRT)2(RL)2(RT)2,((RT)3RL)2, Z2

(LRT)2(LR)2T(LR)3LTR

MN36 64, 7-9,7 8 16 16 ((LR)2T)2 Z2
MN37 64, 19-24,24 8 32 32 (RTRL)2, (LRT)4(LR)12

Z2
MN38 75,7-12,9 3 6 10 Z

2
5

MN39 80,37-39,39 5 5 8 (LRTR)2T(LR)2TRLRT Z2
MN40 80,40-45,42 5 8 10 (RT(RL)3)2, (TLR)3TR(LR)2TR Z2
MN41 80,46-48,46, 8 10 10 (RT)3(LR)4TL,(TLR)3LR(TR)2LR Z2
MN42 81,1-6,3 3 6 18 ((LR)2T)6 Z3
MN43 81,28-33,31 6 6 9 (LRTLR)2T(LR)2T , T(LR(TR)2)3 Z3
MN44 81,22-27,27 6 9 18 (RT(RL)2)2, (LRT)4RL(RT)2 Z3
MN45 84,28-33,30 3 7 8 PSL(2,7)

MN46 84,49-51,49 3 8 8 (TLR)2(LRT)2(LR)3LT(RL)2R PSL(2,7)

MN47 84,43-48,44 4 6 8 T(RTRL)4, (RT(RL)2)3 PSL(2,7)

MN48 84,37-42,39 4 7 8 (RTRL)3 PSL(2,7)

MN49 84,53-55,55 6 6 8 (L(TR)2)3, (T(LR)2)3 PSL(2,7)

MN50 84,34-36,34 6 7 7 RTL(RT)2RL(RT)2 PSL(2,7)

MN51 84,52-52,52 8 8 8 (RTRL)3, TL(RT)2LRTRL(TR)2, PSL(2,7)

(T(LR)2)3

MN52 96,82-87,85 4 6 24 (LRT)3(RL)2TRL(RT)2 Z2
MN53 96,73-78,76 4 12 24 (LRTLR)2LTRLRT Z2
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Table 3 (Continued)

Name Wilson cen. e5 e6 e7 Additional relations Monolith

MN54 96,184-186,186 6 6 8 (RTRL)3, L(RT)2(LR)2L(TR)2T(LR)2T Z2
MN55 96,187-189,189 6 6 8 (LRT)3(RTRL)2R Z2
MN56 96,178-180,180 8 12 12 (T(LR)2)3, ((RT)3RL)2, Z2

(RTRL)4, L(RT)3(LR)5T

MN57 96,181-183,183 8 12 12 ((RT)3RL)2, (RTRL)4, Z2
T(LR)2T(RL)3RTRLR, L(RT)3(LR)5T

MN58 96,97-99,99 8 24 24 L(RT)2(LR)2TRLRT , Z2
((LR)3T)2(LR)6

MN59 96,64-69,68 8 48 48 (RT(RL)2)2, (LRT)2RTLRLT(RT)2, Z2
(TLR)3(LR)9

MN60 98,1-3,1 4 4 14 (RTRL)7 Z
2
7

Table 4 The normally parallel-product indecomposable non-degenerate reflexible maps MN1 to MN10
in detail. A genus symbol contains genera of the maps M , P(M) and PDP(M). Note that the operation
D preserves the genus of a map while the operation P preserves its underlying graph. An entry x ≥ 0 in
a genus symbol denotes orientable genus x, while x < 0 denotes nonorientable genus −x. The hexagonal
number is the number of nonisomorphic maps in the triality class. Underlying graphs of maps M , D(M)

and PDP(M) are described in the last column. An edge multiplicity k > 1 of an underlying graph X is
denoted by X(k)

Name Genus symbol Hex. n. Underlying graphs

MN1 [0,−1,−1] 3 K4, K4, C3(2)

MN2 [2,2,3] 3 C4(2), K2(8), K2(8)

MN3 [−1,−1,−5] 3 Petersen, K6, K6
MN4 [1,1,1] 1 K4,4, K4,4, K4,4
MN5 [3,3,5] 3 K4,4, C4(4), C4(4)

MN6 [4,4,7] 3 C8(2), K2(16), K2(16)

MN7 [1,−5,−5] 3 DK3,3,3, DK3,3,3, K3,3(2)

MN8 [2,3,−16] 6 Gen. Petersen G(8,3), K2,2,2(2), K4(4)

MN9 [6,7,−16] 6 Q3(2), K2,2,2(2), K4(4)

MN10 [1,1,−11] 3 Pappus, K3,3,3, K3,3,3

There are exactly 2424 reflexible maps up to 100 edges. Among them, there are
1223 non-degenerate and they are presented in [31]; 229 of non-degenerate are nor-
mally parallel-product indecomposable and are obtained from Table 3 (calculating
whole triality classes). There are 1201 degenerate and slightly degenerate maps,
among which 203 are normally parallel-product indecomposable and are obtained
from the classification above.

As an example of an application of the results in this paper, Table 5 provides
some decompositions of representatives of triality classes for all reflexible normally
parallel-product decomposable maps in Wilson census up to 20 edges. Note that for
each map in the table there are in general several other possible decompositions (some
of them might also have normally parallel-product decomposable factors).

7 Conclusion

The main results of the paper are establishing the theory of F -actions, a charac-
terization of F -action morphisms through K-quotients, the decomposition theorem
and its application to the classification of reflexible maps of at most 100 edges. The
most important conclusion of the paper is that the classification of reflexible maps
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Table 5 Some decompositions of representatives of the first 10 decomposable triality classes from Wilson
census [31]. A triple e, s − f,n, denotes that the corresponding map has the code (e, n) in Wilson census,
where e denotes the number of edges. The map represents the triality class on maps with codes (e, s),

(e, s + 1), . . . , (e, f )

Wilson cen. e5 e6 e7 Name Some decompositions

8, 1-1, 1 4 4 4 (4,4)2,0 DM6(4) ‖ EM3(4), δ2 ‖ D(δ2), EM3(4) ‖ DM5(4), DM6(4) ‖ DM5(4)

9, 1-3, 2 3 6 6 B∗(3,6) EM3(3) ‖ DM5(3)

12, 1-6, 1 3 4 6 Cube EM3(1) ‖ P (MN1), P (MN1) ‖ DM3
12, 7-12, 7 4 6 12 (6,4|2) DM6(3) ‖ DM5(4), DM6(3) ‖ D(δ2)

12, 13-15, 15 4 6 6 D(2) DM2 ‖ DP(MN1), DP(MN1) ‖ DM3
15, 4-9, 5 6 10 15 P (M ′(15,4)) DM6(5) ‖ DM5(3)

16, 8-10, 10 4 8 8 B(4,8,3,0) EM3(4) ‖ MN2, MN2 ‖ δ4, DM6(8) ‖ DM5(4), δ4 ‖ D(δ2)

18, 4-6, 5 6 6 6 D(B(6,6)) EM3(3) ‖ DM2 ‖ DM6(3), EM3(3) ‖ DM5(1) ‖ DM6(3)

18, 7-9, 9 4 9 9 D(3) DP (MN1) ‖ DM6(9)

20, 1-6, 2 4 10 20 P (M ′(20,9)) DM6(5) ‖ D(δ2), DM6(5) ‖ DM5(4)

can be reduced to monolithic groups generated with three involutions, two of which
commute. In [19, 20] the application of the theory of this paper is extended to edge-
transitive maps. Similarly it can be extended to orientably regular maps, hypermaps
and abstract polytopes.
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Thomas W. Tucker and to Dragan Marušič for their guidance and support. I would also like to thank
Dušanka Janežič and the National Chemical Institute in Ljubljana for letting me use their computer cluster
Vrana [14]. Also, the author acknowledges the extensive use of programs LOWX [8] and MAGMA [3].
I thank the referees for many valuable suggestions.

References

1. Archdeacon, D., Gvozdjak, P., & Širán, J. (1997). Constructing and forbidding automorphisms in
lifted maps. Mathematica Slovaca, 47(2), 113–129.

2. Bergau, P., & Garbe, D. (1989). Non-orientable and orientable regular maps. In Proceedings of
groups-Korea 1998, Lecture notes in mathematics (Vol. 1398, pp. 29–42). New York: Springer.

3. Bosma, W., Cannon, C., & Playoust, C. (1997). The MAGMA algebra system I: the user language.
Journal of Symbolic Computation, 24, 235–265.

4. Brahana, H. R. (1927). Regular maps and their groups. American Journal of Mathematics, 49, 268–
284.

5. Breda d’Azevedo, A., & Nedela, R. (2001). Join and intersection of hypermaps. Acta Universitatis
M. Belii Series Mathematics, 9, 13–28.

6. Conder, M. http://www.math.auckland.ac.nz/~conder/.
7. Conder, M., & Dobcsányi, P. (2001). Determination of all regular maps of small genus. Journal of

Combinatorial Theory Series B, 81, 224–242.
8. Conder, M., & Dobcsányi, P. (1999). Computer program LOWX, censuses of rotary maps. http://www.

math.auckland.ac.nz/~peter.
9. Coxeter, H. S. M., & Moser, W. O. J. (1984). Generators and relations for discrete groups (4th ed.).

Berlin: Springer.
10. Ferri, M. (1976). Una rappresentazione delle n-varieta topologiche triangolabili mediante grafi

(n + 1)-colorati. Bollettino Unione Matematica Italiana Sezione B (5), 13(1), 250–260.
11. Garbe, D. (1969). Über die regulären Zerlegungen geschlossener orientierbarer Flächen. Journal für

die Reine und Angewandte Mathematik, 237, 39–55.
12. Hartley, M. I. (1999). All polytopes are quotients, and isomorphic polytopes are quotients by conju-

gate subgroups. Discrete & Computation Geometry, 21(2), 289–298.
13. Hartley, M. I. (1999). More on quotient polytopes. Aequationes Mathematicae, 57, 108–120.
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