Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle

Eugenia O'Reilly-Regueiro

Received: 31 October 2005 / Accepted: 9 March 2007 / Published online: 21 April 2007 © Springer Science+Business Media, LLC 2007

Abstract In this paper we prove that if a biplane *D* admits a flag-transitive automorphism group *G* of almost simple type with classical socle, then *D* is either the unique (11,5,2) or the unique (7,4,2) biplane, and $G \le PSL_2(11)$ or $PSL_2(7)$, respectively. Here if *X* is the socle of *G* (that is, the product of all its minimal normal subgroups), then $X \le G \le \text{Aut } G$ and *X* is a simple classical group.

Keywords Automorphism group · Biplanes · Flag-transitive

1 Introduction

A *biplane* is a (v, k, 2)-symmetric design, that is, an incidence structure of v points and v blocks such that every point is incident with exactly k blocks, and every pair of blocks is incident with exactly two points. Points and blocks are interchangeable in the previous definition, due to their dual role. A *nontrivial* biplane is one in which 2 < k < v - 1. A *flag* of a biplane D is an ordered pair (p, B) where p is a point of D, B is a block of D, and they are incident. Hence if G is an automorphism group of D, then G is *flag-transitive* if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are k = 3, 4, 5, 6, 9, 11, and 13 [7, pp. 76]. Due to arithmetical restrictions on the parameters, there are no examples with k = 7, 8, 10, or 12.

For k = 3, 4, and 5 the biplanes are unique up to isomorphism [6], for k = 6 there are exactly three non-isomorphic biplanes [13], for k = 9 there are exactly four non-isomorphic biplanes [26], for k = 11 there are five known biplanes [3, 10, 11], and for k = 13 there are two known biplanes [1], in this case, it is a biplane and its dual.

E. O'Reilly-Regueiro (⊠)

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico, DF 04510, Mexico a mail: autonia@matem.unom.mv

e-mail: eugenia@matem.unam.mx

In [24] it is shown that if a biplane admits an imprimitive, flag-transitive automorphism group, then it has parameters (16,6,2). There are three non-isomorphic biplanes with these parameters [4], two of which admit flag-transitive automorphism groups which are imprimitive on points, (namely 2^4S_4 and ($\mathbb{Z}_2 \times \mathbb{Z}_8$) S_4 [24]). Therefore, if any other biplane admits a flag-transitive automorphism group *G*, then *G* must be primitive. The O'Nan-Scott Theorem classifies primitive groups into five types [22]. It is shown in [24] that if a biplane admits a flag-transitive, primitive, automorphism group, it can only be of affine or almost simple type. The affine case was treated in [24]. The almost simple case when the socle of *G* is an alternating or a sporadic group was treated in [25], in which it is shown that no such biplane exists. Here we treat the almost simple case when the socle *X* of *G* is a classical group. We now state the main result of this paper:

Theorem 1 (Main Theorem) If D is a nontrivial biplane with a primitive, flagtransitive automorphism group G of almost simple type with classical socle X, then D has parameters either (7,4,2), or (11,5,2), and is unique up to isomorphism.

This, together with [24, Theorem 3] and [25, Theorem 1] yield the following:

Corollary 1 If *D* is a nontrivial biplane with a flag-transitive automorphism group *G*, then one of the following holds:

- (1) D has parameters (7,4,2),
- (2) *D* has parameters (11,5,2),
- (3) *D* has parameters (16,6,2),
- (4) $G \leq A\Gamma L_1(q)$, for some odd prime power q, or
- (5) *G* is of almost simple type, and the socle *X* of *G* is an exceptional group of Lie type.

For the purpose of proving our Main Theorem, we will consider *D* to be a nontrivial biplane, with a primitive, flag-transitive, almost simple automorphism group *G*, with simple socle *X*, such that $X = X_d(q)$ is a simple classical group, with a natural projective action on a vector space *V* of dimension *d* over the field \mathbb{F}_q , where $q = p^e$, (*p* prime).

For this we will proceed as in [27], in which the case for finite linear spaces with almost simple flag-transitive automorphism groups of Lie type is treated.

2 Preliminary results

In this section we state some preliminary results we will use throughout this paper.

Lemma 2 If D is a (v, k, 2)-biplane, then 8v - 7 is a square.

Proof The result follows from [24, Lemma 3].

Corollary 3 If D is a flag-transitive (v, k, 2)-biplane, then $2v < k^2$, and hence $2|G| < |G_x|^3$.

Deringer

Proof The equality k(k-1) = 2(v-1), implies $k^2 = 2v - 2 + k$, so clearly $2v < k^2$. The result follows from $v = |G: G_x|$ and $k \le |G_x|$.

From [9] we get the following two lemmas:

Lemma 4 If D is a biplane with a flag-transitive automorphism group G, then k divides $2d_i$ for every subdegree d_i of G.

Lemma 5 If G is a flag-transitive automorphism group of a biplane D, then k divides $2 \cdot \text{gcd}(v-1, |G_x|)$.

Lemma 6 (Tits Lemma [28, 1.6]) *If X is a simple group of Lie type in characteristic p, then any proper subgroup of index prime to p is contained in a parabolic subgroup of X.*

Lemma 7 If X is a simple group of Lie type in characteristic 2, $(X \ncong A_5 \text{ or } A_6)$, then any proper subgroup H such that $[X : H]_2 \le 2$ is contained in a parabolic subgroup of X.

Proof First assume $X = Cl_n(q)$ is classical (q a power of 2), and take H maximal in X. By Aschbacher's Theorem [2], H is contained in a member of the collection C of subgroups of $\Gamma L_n(q)$, or in S, that is, $H^{(\infty)}$ is quasisimple, absolutely irreducible, and not realisable over any proper subfield of $\mathbb{F}(q)$.

We check for every family C_i that if H is contained in C_i , then $2|H|_2 < |X|_2$, except when H is parabolic.

Now we take $H \in S$. Then by [18, Theorem 4.2], $|H| < q^{2n+4}$, or H and X are as in [18, Table 4]. If $|X|_2 \le 2|H|_2 \le q^{2n+4}$, then either $X = L_n^{\epsilon}(q)$ and $n \le 6$, or $X = Sp_n(q)$ or $P\Omega_n^{\epsilon}(q)$ and $n \le 10$. We check the list of maximal subgroups of X for $n \le 10$ in [15, Chapter 5], and we see that no group H satisfies $2|H|_2 \le |X|_2$. We then check the list of groups in [18, Table 4], and again, none of them satisfy this bound.

Finally, assume X to be an exceptional group of Lie type in characteristic 2. By [20], if $2|H| \ge |X|_2$, then H is either contained in a parabolic subgroup, or H and X are as in [20, Table 1]. Again, we check all the groups in [20, Table 1], and in all cases $2|H|_2 < |X|_2$.

As a consequence, we have a strengthening of Corollary 3:

Corollary 8 Suppose *D* is a biplane with a primitive, flag-transitive almost simple automorphism group *G* with simple socle *X* of Lie type in characteristic *p*, and the stabiliser G_x is not a parabolic subgroup of *G*. If *p* is odd then *p* does not divide *k*; and if p = 2 then 4 does not divide *k*. Hence $|G| < 2|G_x||_{D'}^2$.

Proof We know from Corollary 3 that $|G| < |G_x|^3$. Now, by Lemma 6, p divides $v = [G : G_x]$. Since k divides 2(v - 1), if p is odd then (k, p) = 1, and if p = 2 then $(k, p) \le 2$. Hence k divides $2|G_x|_{p'}$, and since $2v < k^2$, we have $|G| < 2|G_x||G_x|_{p'}^2$.

Deringer

From the previous results we have the following lemma, which will be quite useful throughout this chapter:

Lemma 9 Suppose p divides v, and G_x contains a normal subgroup H of Lie type in characteristic p which is quasisimple and $p \nmid |Z(H)|$; then k is divisible by [H : P], for some parabolic subgroup P of H.

Proof The assumption that p divides v and the fact that k divides 2(v - 1) imply $(k, p) \le (2, p)$. Also, we know $k = [G_x : G_{x,B}]$ (where B is a block incident with x), so $[H : H_B]$ divides k, and therefore $([H : H_B], p) \le (2, p)$. By Lemmas 6 and 7 we conclude that H_B is contained in a parabolic subgroup P of H, and P maximal in H implies that H_B is contained in P, so k is divisible by [H : P].

Lemma 10 ([21, 3.9]) If X is a group of Lie type in characteristic p, acting on the set of cosets of a maximal parabolic subgroup, and X is not $PSL_d(q)$, $P\Omega_{2m}^+(q)$ (with m odd), nor $E_6(q)$, then there is a unique subdegree which is a power of p.

3 X is a linear group

In this case we consider the socle of *G* to be $PSL_n(q)$, and $\beta = \{v_1, v_2, \dots, v_n\}$ a basis for the natural *n*-dimensional vector space *V* for *X*.

Lemma 11 If the group X is $PSL_2(q)$, then it is one of the following:

- (1) $PSL_2(7)$ acting on the (7,4,2) biplane with point stabiliser S_4 , or
- (2) $PSL_2(11)$ acting on a (11,5,2) biplane with point stabiliser A₅.

Proof Suppose $X \cong PSL_2(q)$, $(q = p^m)$ is the socle of a flag-transitive automorphism group of a biplane D, so $G \le P\Gamma L_2(q)$. As G is primitive, G_x is a maximal subgroup of G, and hence X_x is isomorphic to one of the following [12]: (Note that $|G_x|$ divides $(2, q - 1)m|X_x|$):

- (1) A solvable group of index q + 1.
- (2) $D_{(2,q)(q-1)}$.
- (3) $D_{(2,q)(q+1)}$.

(4) $L_2(q_0)$ if (r > 2), or $PGL_2(q_0)$ if (r = 2), where $q = q_0^r$, r prime.

- (5) S_4 if $q = p \equiv \pm 1 \pmod{8}$.
- (6) A_4 if $q = p \equiv 3,5,13,27,37 \pmod{40}$.
- (7) A_5 if $q \equiv \pm 1 \pmod{10}$.

(1) Here v = q + 1, so k(k - 1) = 2(v - 1) = 2q, hence q = 3, but $PSL_2(3)$ is not simple.

(2) and (3) The degrees in these cases are a triangular number, but the number of points on a biplane is always one more than a triangular number.

(4) First assume r > 2. Clearly, q_0 divides $v = q_0^{r-1} \left(\frac{q_0^{2r}-1}{q_0^{2}-1}\right)$, so k divides $2(v-1, mq_0(q_0^2-1))$, hence $k = \frac{2m(q_0^2-1)}{n}$ for some n. Say $q_0 = p^b$, so m = br and (except for p = 2 and $2 \le b \le 4$), we have $b < \sqrt{q_0}$, (since $b^2 < p^b = q_0$).

Now, $k^2 > 2v$ implies

$$\frac{4m^2(q_0^2-1)^2}{n^2} > 2q_0^{r-1} \bigg(\frac{q_0^{2r}-1}{q_0^2-1} \bigg),$$

so

$$n^{2} < \frac{2m^{2}(q_{0}^{2}-1)^{3}}{(q_{0}^{2r}-1)q_{0}^{r-1}}.$$

First consider r > 3, so $(r \ge 5)$. Here $q_0^r > b^2 r^2 = m^2$. On the other hand, $2m^2 > \frac{q_0^{r-1}(q_0^{2r}-1)}{(q_0^2-1)^3}$, therefore

$$2q_0^r < \frac{q_0^{r-1}(q_0^{2r}-1)}{(q_0^2-1)^3},$$

which is a contradiction.

Next consider r = 3. From $k^2 > 2v$, we obtain $18b^2(q_0^2 - 1)^3 > n^2q_0^2(q_0^6 - 1)$, this together with $b^2 < q_0$, imply $n^2(q_0^6 - 1) < 18q_0^5$, therefore $q_0 \le 17$. We check for all possible values of q_0 that 8v - 7 is not a square, contradicting Lemma 2.

Now assume r = 2. Then $v = \frac{q_0(q_0^2+1)}{(2,q-1)}$. As $q = q_0^2 \neq 2$, we have $m^2 < q$, so $4b^2 < q_0^2$, which implies $q_0 \neq 2$.

First consider q even. From 2(v - 1) = k(k - 1), we have $2(q_0^3 + q_0 - 1) = \frac{2m(q_0^2 - 1)}{n} (\frac{2m(q_0^2 - 1)}{n} - 1)$, however $gcd(q_0^3 + q_0 - 1, q_0^2 - 1)$ divides 3, which implies $k = \frac{6m}{t}$, with t = 1, 3.

If t = 3 then $q_0^3 + q_0 - 1 = 2m^2 - m = m(2m - 1) < 2m^2$, but $m < q_0$, so this is a contradiction.

If t = 1 then $q_0^3 + q_0 - 1 = 18m^2 - 6m$, which implies $q_0 < 18$, that is $q_0 = 4, 8$, or 16. However m = 2b implies k = 12b, so v - 1 is divisible by 6, but this is not the case for any of these values of q_0 .

Now consider q odd. The equality 2(v-1) = k(k-1) yields $q_0^3 + q_0 - 2 = \frac{4m^2}{n^2}(q_0^2 - 1)^2 - \frac{2m}{n}(q_0^2 - 1)$, and the inequality $k^2 > 2v$ implies $\frac{4m^2}{n^2}(q_0^2 - 1)^2 > q_0(q_0^2 + 1)$. In this case m = 2b, so $k = \frac{4b(p^{2b}-1)}{n}$, and $v = \frac{p^{3b}+p^b}{2} > \frac{b^6+b^2}{2}$, hence we have the following inequalities:

$$b^{6} + b^{2} < p^{3b} + p^{b} < \frac{4b(p^{2b} - 1)}{n} < \frac{4b \cdot p^{2b}}{n}$$

This implies $\frac{n(p^{3b}+p^b)}{p^{2b}} < 4b$, so $n(p^b + p^{\frac{b}{2}}) < 4b < 4p^{\frac{b}{2}}$, therefore $n(p^{\frac{b}{2}} + 1) < 4$ which implies n = 1 = b, and p = 3, 5, or 7, but in all these cases k > v, which is a contradiction.

(5) In this case $q = p \equiv \pm 1 \pmod{8}$, and m = 1, so $G_0 \cong S_4$. We have q odd, $v = \frac{q(q^2-1)}{48}$, and k divides $2\left(\frac{q(q^2-1)-48}{48}, 24\right)$, so $k \mid 48$. Now $k^2 > 2v$ implies $q \le 37$, hence q = 7, 17, 23, or 31. The only one of these values for which 8v - 7 is a square (Lemma 2) is q = 7, so v = 7 and k = 4, that is, we have the (7,4,2) biplane and $G = X \cong PSL_2(7)$.

(6) Here $q = p \equiv 3, 5, 13, 27$, or 37 (mod 40), so m = 1 and $G_x \cong A_4$. Here $v = \frac{q(q^2-1)}{24}$, and so k divides $2(\frac{q(q^2-1)-24}{24}, 12)$, so $k \mid 24$. As $2v < k^2$, we have q = 3, 5, or 13. For q = 3 we have v = 1, which is a contradiction. For q = 5 we have v = 5, but there is no such biplane. Finally, q = 13 implies v = 91, but then 8v - 7 is not a square, contradicting Lemma 2.

(7) Here q = p or $p^2 \equiv \pm 1 \pmod{10}$, and $v = \frac{q(q^2-1)}{120}$, so k divides 120m, with m = 1 or 2. The inequality $2v < k^2$ implies $q^3 - q < 60k^2 < 60(120)^2m^2$, so q = 9, 11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 81, 89, or 121. Of these, the only value for which 8v - 7 is a square is q = 11. In this case, v = 11 and k = 5, that is, we have a (11,5,2) biplane, with $G = X \cong PSL_2(11)$, and $G_x \cong A_5$.

This completes the proof of Lemma 11.

Lemma 12 The group X is not $PSL_n(q)$, with n > 2, and $(n, q) \neq (3, 2)$.

Proof Suppose $X \cong PSL_n(q)$, with n > 2 and $(n, q) \neq (3, 2)$ (since $PSL_3(2) \cong PSL_2(7)$). We have $q = p^m$, and take $\{v_1, \ldots, v_n\}$ to be a basis for the natural *n*-dimensional vector space *V* for *X*. Since G_x is maximal in *G*, then by Aschbacher's Theorem [2], the stabiliser G_x lies in one of the families C_i of subgroups of $\Gamma L_n(q)$, or in the set *S* of almost simple subgroups not contained in any of these families. We will analyse each of these cases separately. In describing the Aschbacher subgroups, we denote by \hat{H} the pre-image of the group *H* in the corresponding linear group.

 C_1) Here G_x is reducible. That is, $G_x \cong P_i$ stabilises a subspace of V of dimension *i*.

Suppose $G_x \cong P_1$. Then G is 2-transitive, and this case has already been done by Kantor [14].

Now suppose $G_x \cong P_i$ (1 < i < n) fixes W, an *i*-subspace of V. We will assume $i \le \frac{n}{2}$ since our arguments are arithmetic, and for *i* and n - i we have the same calculations. Considering the G_x -orbits of the *i*-spaces intersecting W in i - 1-dimensional spaces, we see *k* divides

$$\frac{2q(q^i-1)(q^{n-i}-1)}{(q-1)^2}.$$

Also,

$$v = \frac{(q^n - 1)\dots(q^{n-i+1} - 1)}{(q^i - 1)\dots(q - 1)} > q^{i(n-i)},$$

but $k^2 > 2v$, so either i = 3 and n < 10, or i = 2.

First assume i = 3 and q = 2.

If n = 9 then $k = 2^2 \cdot 3^2 \cdot 7^2$, but the equation k(k - 1) = 2(v - 1) does not hold. If n = 8 then $k = 4 \cdot 7 \cdot 31$ but again the equation k(k - 1) = 2(v - 1) does not hold.

For n = 7 k = 420 or 210, but again, k does not divide 2(v - 1).

Finally, if n = 6 then k = 196 or 98, but neither is a divisor of 2(v - 1).

Now assume i = 3 and q > 2. Then n = 6 or 7.

If n = 7 then k divides

$$2\bigg(\frac{q(q^3-1)(q^4-1)}{(q-1)^2},\frac{(q^7-1)(q^6-1)(q^5-1)}{(q^3-1)(q^2-1)(q-1)}-1\bigg),$$

but then $k^2 < v$, which is a contradiction.

If n = 6 then k divides

$$2\left(\frac{q(q^3-1)^2}{(q-1)^2}, \frac{(q^6-1)(q^5-1)(q^4-1)}{(q^3-1)(q^2-1)(q-1)}-1\right)$$

But again $k^2 < 2v$.

Hence i = 2. Here $v = \frac{(q^n - 1)(q^{n-1} - 1)}{(q^2 - 1)(q - 1)}$, and G has suborbits with sizes: $|\{2\text{-subspaces } H : \dim(H \cap W) = 1\}| = \frac{q(q+1)(q^{n-2}-1)}{q-1}$ and $\begin{aligned} & |\{2\text{-subspaces } H: H \cap W = \overline{0}\}| = \frac{q^4(q^{n-2}-1)(q^{n-3}-1)}{(q^2-1)(q-1)}. \end{aligned}$ If *n* is even then *k* divides $\frac{q(q^{n-2}-1)}{(q^2-1)}$, since q+1 is prime to $\frac{(q^{n-3}-1)}{q-1}$, this implies

 $k^2 < v$, which is a contradiction.

Hence *n* is odd, and *k* divides $\frac{2q(q^{n-2}-1)}{q-1}(q+1, \frac{n-3}{2})$. First assume n = 5. Then $v = (q^2 + 1)(q^4 + q^3 + q^2 + q + 1)$, and *k* divides $2q(q^2 + q + 1)$. The fact that $k^2 > 2v$ forces $k = 2q(q^2 + q + 1)$. The condition k(k-1) = 2(v-1) implies

$$4q^{2}(q^{2}+q+1)^{2} - 2q(q^{2}+q+1) = 2(q^{6}+q^{5}+2q^{4}+2q^{3}+2q^{2}+q),$$

so

$$(q^{2}+q+1)\left(2q(q^{2}+q+1)-1\right) = (q^{5}+q^{4}+2q^{3}+2q^{2}+2q+1).$$

If we expand we get the following equality:

$$q^5 + 3q^4 + 4q^3 + q^2 - q - 2 = 0,$$

which is a contradiction. Therefore $n \ge 7$. Here

$$v = (q^{n-1} + q^{n-2} + \dots + q + 1)(q^{n-3} + q^{n-5} + \dots + q^2 + 1),$$

and k divides 2dc, where $d = q(q^{n-3} + q^{n-4} + \dots + q + 1)$ and $c = (q + 1, \frac{n-3}{2})$. Say $k = \frac{2dc}{e}$, then $v < k^2$ forces $e \le 2q$. We have the following equality:

$$\frac{v-1}{d} = q^{n-2} + q^{n-4} + \dots + q^3 + q + 1,$$

and also, since k(k-1) = 2(v-1), we have

$$k = \frac{2(v-1)}{k} + 1 = \frac{2e(v-1)}{2dc} = \frac{eq^{n-2} + eq^{n-4} + \dots + eq^3 + eq + e + c}{c}.$$

D Springer

Now, (kc, d) divides d, and also $(kc, q(eq^{n-3} + eq^{n-5} + \dots + eq^2 + e))$ $= (eq^{n-2} + eq^{n-4} + \dots + eq + e + c, q(eq^{n-3} + eq^{n-5} + \dots + eq^2 + e))$ $= (eq^{n-2} + \dots + eq + e + c, e + c), \text{ and}$ $(kc, \frac{ed}{q})$ $= (eq^{n-2} + \dots + eq + e + c, eq^{n-3} + eq^{n-4} + \dots + eq + e)$ $= (eq^{n-2} + \dots + eq + e + c, (2e + c)q + e + c).$

Therefore k divides c(e + c)((2e + c)q + e + c), and since $e \le 2q$ and $c = (q + 1, \frac{n-3}{2})$, the only possibilities for n and q are n = 7 and $q \le 3$, or n = 9 and q = 2. However in none of these possibilities is 8v - 7 a square, again contradicting Lemma 2.

 C'_1) Here G contains a graph automorphism and G_x stabilises a pair $\{U, W\}$ of subspaces of dimension *i* and n-i, with $i < \frac{n}{2}$. Write G^0 for $G \cap P \Gamma L_n(q)$ of index 2 in G.

First assume $U \subset W$. By Lemma 10, there is a subdegree which is a power of p. On the other hand, if p is odd then the highest power of p dividing v - 1 is q, it is 2q if q > 2 is even, and is at most 2^{n-1} if q = 2. Hence $k^2 < v$, which is a contradiction.

Now suppose $V = U \oplus W$. Here p divides v, so $(k, p) \le 2$. First assume i = 1. If $x = \{\langle v_1 \rangle, \langle v_2 \dots v_n \rangle\}$, then consider $y = \{\langle v_1, \dots, v_{n-1} \rangle, \langle v_n \rangle\}$, so $[G_x : G_{xy}] = \frac{q^{n-2}(q^{n-1}-1)}{q-1}$ and k divides $\frac{2(q^{n-1}-1)}{q-1}$. However $v = \frac{q^{n-1}(q^n-1)}{q-1} > q^{2(n-1)}$, which implies $k^2 < v$, a contradiction.

Now assume i > 1. Consider $x = \{\langle v_1, \ldots, v_i \rangle, \langle v_{i+1}, \ldots, v_n \rangle\}$ and $y = \{\langle v_1, \ldots, v_{i-1}, v_i + v_n \rangle, \langle v_{i+1}, \ldots, v_n \rangle\}$. Then $[G_x^0 : G_{xy}^0]_{p'}$ divides $2(q^i - 1)(q^{n-i} - 1)$, which implies $k < 2q^n$, but $v > q^{2i(n-i)}$, so again $k^2 < v$, a contradiction.

 C_2) Here G_x preserves a partition $V = V_1 \oplus \cdots \oplus V_a$, with each V_i of the same dimension, say, *b*, and n = ab.

First consider the case b = 1 and n = a, and let $x = \{\langle v_1 \rangle, \dots, \langle v_n \rangle\}$ and $y = \{\langle v_1 + v_2 \rangle, \langle v_2 \rangle, \dots, \langle v_n \rangle\}$. Since n > 2, we see k divides $4n(n-1)(q-1) = 2[G_x : G_{xy}]$. Now $v > \frac{q^{n(n-1)}}{n!}$ and $k^2 > v$, so n = 3 and $q \le 4$, that is $v = \frac{q^3(q^3-1)(q+1)}{(3,q-1)6!}$. As $k \mid 2(v-1)$, only for q = 2 can k > 2, so consider q = 2. Then $k \mid 6$ and v = 28, but there is no such value of k satisfying k(k-1) = 2(v-1).

Now let b > 1, and consider $x = \{\langle v_1, \ldots, v_b \rangle, \langle v_{b+1}, \ldots, v_{2b} \rangle, \ldots \}$ and $y = \{\langle v_1, \ldots, v_{b-1}, v_{b+1} \rangle, \langle v_b, v_{b+2}, \ldots, v_{2b} \rangle, \ldots, \langle v_{n-b+1}, \ldots, v_n \rangle\}$. Then k divides $\frac{2a(a-1)(q^{b}-1)^2}{q-1}$, so $v > \frac{q^{n(n-b)}}{a!}$, forcing $n = 4, q \ge 5$, and a = 2 = b. In none of these cases can we obtain k > 2.

 C_3) In this case G_x is an extension field subgroup. Since $2|G_x||G_x|_{p'}^2 > |G|$ by Corollary 8, either:

(1) n = 3 and $X \cap G_x = \hat{(q^2 + q + 1)} \cdot 3 < PSL_3(q) = X$, or (2) *n* is even and $G_x = N_G(\hat{P}SL_{\frac{n}{2}}(q^2))$.

First consider case (1). Here $v = \frac{q^3(q^2-1)(q-1)}{3}$, so k divides $6(q^2+q+1)(\log_p q)$, and $k^2 > v$ implies q = 3, 4, 5, 8, 9, 11, 13, or 16. In none of these cases is 8v - 7 a square.

🖉 Springer

Now consider case (2) and write n = 2m. As p divides v, we have (k, p) < 2. First suppose $n \ge 8$, and let W be a 2-subspace of V considered as a vector space over the field of q^2 elements, so that W is a 4-subspace over a field of q elements. If we consider the stabiliser of W in G_x and in G then in $G_W \setminus G_{xW}$ there is an element g such that $G_x \cap G_x^g$ contains the pointwise stabiliser of W in G_x as a subgroup. Therefore k divides $2(q^n - 1)(q^{n-2} - 1)$, contrary to $2v < k^2$, which is a contradiction.

Now let n = 6. Then since $(k, p) \le 2$, Lemma 9 implies k is divisible by the index of a parabolic subgroup of G_x , so it is divisible by the primitive prime divisor q_3 of $q^3 - 1$, but this divides the index of G_x in G, which is v, a contradiction.

Hence n = 4. Then $v = \frac{q^4(q^3-1)(q-1)}{2}$, and so k is odd and prime to q - 1. The fact that (v-1, q+1) = 1 implies k is also prime to q+1, and hence $k \mid (q^2+1)\log_p q$, contrary to $k^2 > 2v$, another contradiction.

 C_4) Here G_x stabilises a tensor product of spaces of different dimensions, and n > 6. In all these cases $v > k^2$.

 C_5) In this case G_x is the stabiliser in G of a subfield space. So $G_x =$ $N_G(PSL_n(q_0))$, with $q = q_0^m$ and m prime.

If
$$m > 2$$
 then $2|G_x||G_x|^2_{n'} > |G|$ forces $n = 2$, a contradiction.

Hence m = 2. If n = 3 then $v = \frac{(q_0^3 + 1)(q_0^2 + 1)q_0^3}{(q_0 + 1, 3)}$. Since p divides v, we have $(k, p) \le 2$, so Lemma 9 implies G_{xB} (where B is a block incident with x) is contained in a parabolic subgroup of G_x . Therefore $q_0^2 +$ $q_0 + 1$ divides k, and $(v - 1, q_0^2 + q_0 + 1)$ divides $2q_0 + (q_0 + 1, 3)$, forcing $q_0 = 2$ and v = 120, but then 8v - 7 is not a square.

If n = 4, then by Lemma 9 we see $q_0^2 + 1$ divides k, but $q_0^2 + 1$ also divides v, which is a contradiction.

Hence $n \ge 5$. Considering the stabilisers of a 2-dimensional subspace of V, we see k divides $2(q_0^n - 1)(q_0^{n-1} - 1)$, but then $k^2 < v$, which is also a contradiction.

 \mathcal{C}_6) Here G_x is an extraspecial normaliser. Since $2|G_x||G_x|_{n'}^2 > |G|$, we have $n \leq 1$ 4. Now, n > 2 implies that $G_x \cap X$ is either $2^4 A_6$ or $3^2 Q_8$, with X either $PSL_4(5)$ or $PSL_3(7)$ respectively. Since k divides $2(v-1, |G_x|)$, we check that $k \le 6$, contrary to $k^2 > 2v$.

If n = 2 then $G_x \cap X = A_{4,a} < L_2(p) = X$, with a = 2 precisely when $p \equiv \pm 1$ (mod 8), and a = 1 otherwise, (and there are a conjugacy classes in X). From |G| < 1 $|G_x|^3$ we obtain $p \le 13$. If p = 7 then the action is 2-transitive. The remaining cases are ruled out by the fact that k divides $2(v-1, |G_x|)$, and k(k-1) = 2(v-1).

 C_7) Here G_x stabilises the tensor product of a spaces of the same dimension, say b, and $n = b^a$. Since $|G_x|^3 > |G|$, we have n = 4 and $G_x \cap X = (PSL_2(q) \times d)$ $PSL_2(q))2^d < X = PSL_4(q)$, with d = (2, q - 1). Then $v = \frac{q^4(q^2+1)(q^3-1)}{q^9} > \frac{q^9}{r}$, with x = 2 unless $q \equiv 1 \pmod{4}$, in which case x = 4. Hence $4 \nmid k$, and so k divides $2(q^2-1)\log_p q$, and if q is odd then k divides $\frac{(q^2-1)\log_p q}{32}$.

If q is odd, then $k^2 < \frac{q^9}{32} < \frac{q^9}{x} = v$, a contradiction. Hence q is even, and so

$$k = \frac{2(q^2 - 1)^2 \log_p q}{r}$$

D Springer

and since $k^2 > 2v$ we have $r^2 < \frac{4(q+1)^4 \log_p q}{q^5}$, therefore $q \le 32$.

However, the five cases are dismissed by the fact that k divides 2(v-1). C_8) Now consider G_x to be a classical group.

(1) First assume G_x is a symplectic group, so *n* is even. By Lemma 6 *k* is divisible by a parabolic index in G_x . If n = 4 then $v = \frac{q^2(q^3-1)}{(2,q-1)}$, and $\frac{q^4-1}{q-1}$ divides *k*, however $(v-1, q^2+1)$ divides 2, which is a contradiction.

 $(v-1, q^2+1)$ divides 2, which is a contradiction. If n = 6 then $v = \frac{q^6(q^5-1)(q^3-1)}{(3,q-1)}$ and $q^3 + 1$ divides k, but $q^3 + 1$ divides 2(v-1) only if q = 2, so k = 9, too small.

Now suppose $n \ge 8$. If we consider the stabilisers of a 4-dimensional subspace of G_x and G, we see that k divides twice the odd part of $(q^n - 1)(q^{n-2} - 1)$. Also, $(k, q - 1) \le 2$, so k divides $2\frac{(q^n - 1)(q^{n-2} - 1)}{(q-1)^2}$, and therefore $k \le 8q^{2n-4}$. The inequality $k^2 > 2v$ forces n = 8. In this case $v = \frac{q^{12}(q^7 - 1)(q^5 - 1)(q^3 - 1)}{(q-1,4)}$ which implies $q \le 3$, and in neither of these two cases is 8v - 7 a square.

- (2) Now let G_x be orthogonal. Then q is odd, since that is the case with odd dimension, and with even dimension it is a consequence of the maximality of G_x in G. The case in which n = 4 and G_x is of type O_4^+ will be investigated later, in all other cases Lemma 6 implies that k is divisible by a parabolic index in G_x and is therefore even, but it is not divisible by 4 since v is also even and $(k, v) \le 2$. This and the fact that q does not divide k implies k < v, a contradiction.
- (3) Finally let G_x be a unitary group over the field of q_0 elements, where $q = q_0^2$. If $n \ge 4$ then considering the stabilisers of a nonsingular 2-subspace of V in G and G_x , we see k divides $2(q_0^n - (-1)^n)(q_0^{n-1} - (-1)^{n-1})$. The inequality $k^2 > 2v$ forces n = 4, and in this case $v = \frac{q_0^6(q_0^4 + 1)(q_0^3 + 1)(q_0^2 + 1)}{(q_0 - 1, 4)}$. Since k divides $2(q_0^4 - 1)(q_0^3 + 1)$ and $(k, (q_0^2 + 1)(q_0 - 1) \le 2$, we see k divides $2(q_0^3 + 1)(q_0 + 1)$, so $k^2 \le 2v$, a contradiction. Therefore n = 3, and by Lemma 6 $q_0^2 - q_0 + 1$ divides k, and k divides 2(v - 1) with $v = \frac{q_0^3(q_0^3 - 1)(q_0^2 + 1)}{x}$ with x either 1 or 3. This implies $q_0 = 2$, but then v = 280, and 8v - 7 is not a square.

S) We finally consider the case where G_x is an almost simple group, (modulo the scalars), not contained in the Aschbacher subgroups of G. From [18, Theorem 4.2] we have the possibilities $|G_x| < q^{2n+4}$, $G'_x = A_{n-1}$ or A_{n-2} , or $G_x \cap X$ and X are as in [18, Table 4].

Also, $|G| < |G_x|^3$ by Corollary 3 and $|G| \le q^{n^2 - n - 1}$, so $n \le 7$, and by the bound $2|G_x||G_x|_{p'}^2 > |G|$ we need only to consider the following possibilities [15, Chapter 5]:

n = 2, and $G_x \cap X = A_5$, with q = 11, 19, 29, 31, 41, 59, 61, or 121.

n = 3, and $G_x \cap X = A_6 < PSL_3(4) = X$.

n = 4, and $G_x \cap X = U_4(2) < PSL_4(7) = X$.

In the first case, with $A_5 < L_2(11)$ the action is 2-transitive. In the remaining cases, the fact that k divides $2|G_x|$ and 2(v-1) forces $k^2 < v$, which is a contradiction.

This completes the proof of Lemma 12.

Deringer

4 X is a symplectic group

Here the socle of *G* is $X = PSp_{2m}(q)$, with $m \ge 2$ and $(m, q) \ne (2, 2)$. As a standard symplectic basis for *V*, we have $\beta = \{e_1, f_1, \dots, e_m, f_m\}$.

Lemma 13 The group X is not $PSp_{2m}(q)$ with $m \ge 2$, and $(m, q) \ne (2, 2)$.

Proof We will consider G_x to be in each of the Aschbacher families of subgroups, and finally, an almost simple group not contained in any of the Aschbacher families of *G*. In each case we will arrive at a contradiction.

When (p, 2m) = (2, 4) the group $Sp_4(2^f)$ admits a graph automorphism, this case will be treated separately after the eight Aschbacher families of subgroups.

 C_1) If $G_x \in C_1$, then G_x is reducible, so either it is parabolic or it stabilises a nonsingular subspace of V.

First assume that $G_x = P_i$, the stabiliser of a totally singular *i*-subspace of *V*, with $i \le m$. Then

$$v = \frac{(q^{2m} - 1)(q^{2m-2} - 1)\dots(q^{2m-2i+2} - 1)}{(q^i - 1)(q^{i-1} - 1)\dots(q - 1)}.$$

From this we see $v \equiv q + 1 \pmod{pq}$, so q is the highest power of p dividing v - 1. By Lemma 10 there is a subdegree which is a power of p, and since k divides twice every subdegree, k divides 2q, contrary to $v < k^2$.

Now suppose that $G_x = N_{2i}$, the stabiliser of a nonsingular 2*i*-subspace U of V, with m > 2i. Then p divides v, so $(k, p) \le 2$.

Take $U = \langle e_1, f_1, \dots, e_i, f_i \rangle$, and $W = \langle e_1, f_1, \dots, e_{i-1}, f_{i-1}, e_{i+1}, f_{i+1} \rangle$. The p'-part of the size of the G_x -orbit containing W is

$$\frac{(q^{2i}-1)(q^{2m-2i}-1)}{(q^2-1)^2}.$$

Since $v < q^{4i(m-i)}$, we can only have $v < k^2$ if q = 2 and m = i + 1, which is a contradiction.

 C_2) If $G_x \in C_2$ then it preserves a partition $V = V_1 \oplus \cdots \oplus V_a$ of isomorphic subspaces of V.

First assume all the V_j 's to be totally singular subspaces of V of maximal dimension m. Then $G_x \cap X = GL_m(q).2$, and G_x maximal implies q is odd [17]. Then

$$v = \frac{q^{\frac{m(m+1)}{2}}(q^m+1)(q^{m-1}+1)\dots(q+1)}{2} > \frac{q^{m(m+1)}}{2},$$

and (k, p) = 1.

Let

$$x = \{ \langle e_1, \ldots, e_m \rangle, \langle f_1, \ldots, f_m \rangle \},\$$

and

$$y = \{ \langle e_1, \ldots, e_{m-1}, f_m \rangle, \langle f_1, \ldots, f_{m-1}, e_m \rangle \}$$

Deringer

Then the p'-part of the G_x -orbit of y divides $2(q^m - 1)$, and so k divides $4(q^m - 1)$, contrary to $v < k^2$.

Now assume that each of the V_j 's is nonsingular of dimension 2i, so $G_x \cap X = ^{2} P_{2i}(q) \text{ wr } S_t$, with it = m. Let

$$x = \{ \langle e_1, f_1, \dots, e_i, f_i \rangle, \langle e_{i+1}, f_{i+1}, \dots, e_{2i}, f_{2i} \rangle, \dots \}$$

and take

$$y = \{ \langle e_1, f_1, \dots, e_i, f_i + e_{i+1} \rangle, \langle e_{i+1}, f_{i+1} - e_i, e_{i+2}, \dots, e_{2i}, f_{2i} \rangle, \dots \}.$$

Considering the size of the G_x -orbit containing y, we see k divides

$$\frac{t(t-1)(q^{2i}-1)^2}{q-1}$$

Now,

$$\frac{q^{2i^2t(t-1)}}{t!} < v,$$

so $v < k^2$ implies $t!t^4 > q^{2i^2t(t-1)+2-8i}$, hence $q^{2t(t-1)-6} < t^{t+4}$ and therefore t < 4. First assume t = 3. Then by the above inequalities i = 1 and a = 2, but then G.

First assume t = 3. Then by the above inequalities i = 1 and q = 2, but then G_x is not maximal [8, p. 46], a contradiction.

Now let t = 2. Then $k < 2q^{4i-1}$, so $q^{4i^2-8i+2} < 8$ and therefore $i \le 2$.

If i = 2 then q = 2 and $v = 45696 = 2^7 \cdot 3 \cdot 7 \cdot 17$, but then 8v - 7 is not a square, which is a contradiction.

If i = 1 then $X = PSp_4(q)$,

$$v = \frac{q^2(q^2+1)}{2},$$

and k divides $2(q+1)^2(q-1)$. Since k divides 2(v-1), we have k divides $(q^2(q^2+1)-2, 2(q+1)^2(q-1))$, that is, k divides

$$((q^2+2)(q^2-1), 2(q+1)^2(q-1)) = (q^2-1)(q^2+2, 2(q+1)) \le 6(q^2-1).$$

Therefore

$$k = \frac{6(q^2 - 1)}{r},$$

with $1 \le r \le 6$. Now $2(v - 1) = (q^2 + 2)(q^2 - 1)$, and also 2(v - 1) = k(k - 1), but we check that for all possible values of *r* this equality is not satisfied.

 C_3) If $G_x \in C_3$, then it is an extension field subgroup, and there are two possibilities.

Assume first that $G_x \cap X = PSp_{2i}(q^t).t$, with m = it and t a prime number. From $|G| < |G_x|^3$, we obtain t = 2 or 3.

If t = 3, then $v < k^2$ implies i = 1, and so

$$G_x \cap X = PSp_2(q^3) < PSp_6(q) = X,$$

🖉 Springer

and

$$v = \frac{q^6(q^4 - 1)(q^2 - 1)}{3}.$$

This implies that k is coprime to q + 1, but applying Lemma 9 to $PSp_2(q^3)$ yields $q^3 + 1$ divides k, which is a contradiction.

If t = 2, then

$$v = \frac{q^{2i^2}(q^{4i-2}-1)(q^{4i-6}-1)\dots(q^6-1)(q^2-1)}{2}.$$

Consider the subgroup $Sp_2(q^2) \circ Sp_{2i-2}(q^2)$ of $G_x \cap X$. This is contained in $Sp_4(q) \circ Sp_{4i-4}(q)$ in X. Taking $g \in Sp_4(q) \setminus Sp_2(q^2)$, we see $Sp_{2i-2}(q^2)$ is contained in $G_x \cap G_x^g$, so k divides $2(q^{4i} - 1) \log_p q$. The inequality $v < k^2$ forces $i \le 2$.

First assume i = 2. Then

$$v = \frac{q^8(q^6 - 1)(q^2 - 1)}{2}$$

and k divides $2(q^8 - 1)\log_p q$, but since $(k, v) \le 2$ and $q^2 - 1$ divides v, we see k divides $2(q^4 + 1)(q^2 + 1)\log_p q$, forcing q = 2. In this case $v = 2^7 \cdot 3^3 \cdot 7 = 24192$, and $k = 2 \cdot 5 \cdot 17 = 170$ (otherwise $k^2 < v$), but then k does not divide 2(v - 1), which is a contradiction.

Hence i = 1, so

$$v = \frac{q^2(q^2 - 1)}{2},$$

and $G_x \cap X = PSp_2(q^2).2 < PSp_4(q) = X$, Therefore *k* divides $4q^2(q^4 - 1)$, but since $(k, v) \le 2$, then *k* divides $4(q^2 + 1)$, so $k = \frac{4(q^2+1)}{r}$ for some $r \le 8$ (since $v < k^2$). Now 2(v-1) = k(k-1), and also $2(v-1) = (q^2 - 2)(q^2 + 1)$, so we have

$$r^2(q^2 - 2) = 16(q^2 + 1) - 4r,$$

that is,

$$(r+4)(r-4)q^2 = 2(8+r(r-2)).$$

This implies $4 < r \le 8$, but solving the above equation for each of these possible values of *r* gives non-integer values of *q*, a contradiction.

Now assume $G_x \cap X = GU_m(q).2$, with q odd. Since v is even, 4 does not divide k. Also, k is prime to p, so by the Lemma 9, the stabiliser in $G_x \cap X$ of a block is contained in a parabolic subgroup. But then q + 1 divides the indices of the parabolic subgroups in the unitary group, so q + 1 divides k, but q + 1 also divides v, which is a contradiction.

 C_4) If $G_x \in C_4$, then G_x stabilises a decomposition of V as a tensor product of two spaces of different dimensions, and G_x is too small to satisfy

$$|G| < 2|G_x||G_x|_{p'}^2.$$

🖄 Springer

 C_5) If $G_x \in C_5$, then $G_x \cap X = PSp_{2m}(q_0).a$, with $q = q_0^b$ for some prime b and $a \le 2$, (with a = 2 if and only if b = 2 and q is odd). The inequality $|G| < 2|G_x||_{p'}^2$ forces b = 2. Then

$$v = \frac{q^{\frac{m^2}{2}}(q^m + 1)\dots(q+1)}{(2, q-1)} > \frac{q^{\frac{m(2m+1)}{2}}}{2}.$$

Now G_x stabilises a $GF(q_0)$ -subspace W of V. Considering a nonsingular 2-dimensional subspace of W we see

$$Sp_2(q_0) \circ Sp_{2m-2}(q_0) < Sp_2(q) \circ Sp_{2m-2}(q) < X.$$

If we take $g \in Sp_2(q) \setminus Sp_2(q_0)$ then $Sp_{2m-2}(q_0) < G_x \cap G_x^g$. This implies that there is a subdegree of X with the p'-part dividing $q_0^{2m} - 1$, so k divides $2(q^m - 1) \log_p q$, contrary to $v < k^2$.

 C_6) If $G_x \in C_6$ then $G_x \cap X = 2^{2^s} \Omega_{2^s}^{-1}(2) . a, q$ is an odd prime, $2m = 2^s$, and $a \le 2$. The inequality $|G| < |G_x|^3$ implies $s \le 3$, and if s = 3 then q = 3, but then k is too small. If s = 2 then $q \le 11$, but again k is too small in each of these cases.

 C_7) If $G_x \in C_7$ then $G_x = N_G(PSp_{2a}(q)^{2r}2^{r-1}A_r)$ and $2m = (2a)^r \ge 8$, but this is a contradiction since $|G| < |G_x|^3$.

 C_8) If $G_x \in C_8$ then $G_x \cap X = O_{2m}^{\epsilon}(q)$, with q even and $2m \ge 4$. We can assume q > 2 as when q = 2 the action is 2-transitive and that has been done in [14]. Here

$$v = \frac{q^m(q^m + \epsilon)}{2},$$

and from the proof of [23, Prop. 1] the subdegrees of X are $(q^m - \epsilon)(q^{m+1} + \epsilon)$ and $\frac{(q-2)}{2}q^{m-1}(q^m - \epsilon)$. This implies by Lemma 4 that k divides $2(q^m - \epsilon)(q - 2, q^{m-1} + \epsilon)$. However, Lemma 9 implies k is divisible by the index of a parabolic subgroup in $O_{2m}^{\epsilon}(q)$, which is not the case.

p = m = 2. Here 2m = 4 and q is even, we have the following possibilities:

 G_x normalises a Borel subgroup of X in G. Then $v = (q + 1)(q^3 + q^2 + q + 1)$ so 2q is the highest power of 2 dividing v - 1. But k is also a power of 2, contrary to $v < k^2$.

 $G_x \cap X = D_{2(q\pm 1)}$ wr S_2 . So k divides $2(q\pm 1)^2 \log_2 q$, too small to satisfy $v < k^2$. $G_x \cap X = (q^2 + 1).4$, which is too small.

S) Finally consider the case in which $G_x \in S$ is an almost simple group (modulo scalars) not contained in any of the Aschbacher subgroups of G. These subgroups are listed in [15] for $2m \le 10$.

First assume 2m = 4, so we have one of the following possibilities:

- (1) $G_x \cap X = Sz(q)$ with q even,
- (2) $G_x \cap X = PSL_2(q)$ with $q \ge 5$, or
- (3) $G_x \cap X = A_6.a$ with $a \le 2$ and $q = p \ge 5$.

In case (1) $v = q^2(q^2 - 1)(q + 1)$. Applying Lemma 9 to $S_z(q)$, we see $q^2 + 1$ divides k. Now $(v - 1, q^2 + 1) = (q - 2, 5)$, so q = 2, contrary to our initial assumptions.

🖉 Springer

In case (2), since $(k, v) \le 2$, we have $k \le 2 \log_p q$, contrary to $v < k^2$.

In case (3), 4 does not divide k, so k must divide 90, contrary to $v < k^2$.

Now let 2m = 6. As $|G| < 2|G_x||G_x|_{p'}^2$, from [15] either $G_x \cap X = J_2 < PSp_6(5) = X$, or $G_x \cap X = G_2(q)$ with q even. In the first case k divides $2 \cdot 3^3 \cdot 7$, which is too small. In the second case $v = q^3(q^4 - 1)4$, so (k, q + 1) = 1. Applying Lemma 9 to $G_2(q)$ we see that $\frac{q^6-1}{q-1}$ divides k, a contradiction.

If 2m = 8 or 10, then by [15] either $G_x = S_{10} < Sp_8(2) = G$ or $G_x = S_{14} < Sp_{12}(2) = G$. In the first case k divides $2(v - 1, |G_x|) = 70$, which is too small. In the second case $(k, v) \le 2$ implies that k divides $2 \cdot 7^2 \cdot 11 \cdot 13$, also too small.

If $2m \ge 12$, then by [18] we have $|G_x| \le q^{4(m+1)}$, $G'_x = A_{n+1}$ or A_{n+2} , or X or $G_x \cap X$ are $E_7(q) \le PSp_{56}(q)$. The latter is not possible as here $k^2 < v$, and the bound $|G_x| < q^{4(m+1)}$ forces m < 6.

The only possibilities for the alternating groups are q = 2, and m = 7, 8, or 9, however in all these cases k is too small.

This completes the proof of Lemma 13.

5 X is an orthogonal group of odd dimension

Here we consider $X = P\Omega_{2m+1}(q)$, with q odd and $n = 2m + 1 \ge 7$, (since $\Omega_3(q) \cong L_2(q)$, and $\Omega_5(q) \cong PSp_4(q)$).

Lemma 14 The group X is not $P\Omega_{2m+1}(q)$, with $n \ge 7$.

Proof Here, as in the symplectic case, we will consider G_x to be in each of the Aschbacher families of subgroups, and then to be a subgroup of G not contained in any of these families, and arrive at a contradiction in each case.

 C_1) If $G_x \in C_1$, then G_x is either parabolic or it stabilises a nonsingular subspace of V.

First assume $G_x = P_i$, the stabiliser of a totally singular *i*-subspace of *V*. Then, as in the symplectic case, $v \equiv q + 1 \pmod{pq}$, so *q* is the highest power of *p* dividing v - 1. By Lemma 10 there is a subdegree which is a power of *p*, therefore *k* divides 2q, contradicting $v < k^2$.

Now assume that $G_x = N_i^{\epsilon}$, the stabiliser of a nonsingular *i*-dimensional subspace W of V of sign ϵ (if *i* is odd ϵ is the sign of W^{\perp}).

First let i = 1. Then

$$v = \frac{q^m(q^m + \epsilon)}{2}$$

and the *X*-subdegrees are $(q^m - \epsilon)(q^m + \epsilon)$, $\frac{q^{m-1}(q^m - \epsilon)}{2}$, and $\frac{q^{m-1}(q^m - \epsilon)(q - 3)}{2}$. This implies that *k* divides $q^m - \epsilon$, contrary to $v < k^2$.

Hence $i \ge 2$. Let W be the *i*-space stabilised by G_x and choose $w \in W$ with $\mathcal{Q}(w) = 1$, and $u \in W^{\perp}$ with $\mathcal{Q}(u) = -c$ for some non-square $c \in GF(q)$. Then $\langle v, w \rangle$ is of type N_2^- , and if $g \in G$ stabilises W^{\perp} pointwise but does not fix neither u

nor w, then $G_x \cap G_x^g$ contains $SO_{i-1}(q) \times SO_{n-i-1}(q)$. This implies $k \le 4q^m \log_p q$, but $v > q^{\frac{i(n-i)}{4}}$ implies q is odd and $m \ge 3$, this is contrary to $v < k^2$.

 C_2) If $G_x \in C_2$ then G_x is the stabiliser of a subspace decomposition into isometric nonsingular spaces. From the inequality $|G| < 2|G_x||G_x|_{p'}^2$ it follows that the only possibilities are either:

 $G_x \cap X = 2^6 A_7 < \Omega_7(q) \text{ with } q \text{ either 3 or 5, or } G_x \cap X = 2^{n-1} A_n < \Omega_n(3) \text{ with } n = 7, 9, \text{ or } 11.$

In each case the fact that k divides 2(v - 1) forces $v > k^2$, a contradiction.

 C_3) If $G_x \in C_3$ then $G_x \cap X = \Omega_a(q^t) t$ with n = at. Since a and t are odd, $a = 2r + 1 < \frac{n}{2}$, so

$$|G_x|_{p'} = t \prod_{i=1}^r (q^{2it} - 1).$$

and since k divides $2(|G_x|_{p'}, v-1)$, it is too small to satisfy $k^2 > v$.

 C_4) If $G_x \in C_4$ then it stabilises a tensor product of nonsingular subspaces, but these have to be of odd dimension and so G_x is too small.

C₅) If $G_x \in C_5$ then $G_x \cap X = \Omega_n(q_0).a$, with $q = q_0^b$ for some prime *b*, and $a \le 2$ with a = 2 if and only b = 2. The inequality $|G| < |G_x||G_x|_{p'}^2$ forces b = 2. If n = 2m + 1 then *k* divides $2|G_x \cap X| = q_0^{m^2}(q_0^{2m} - 1) \dots (q_0^2 - 1)$, but $v = q^{m^2}(q_0^{2m} + 1) \dots (q_0^2 + 1)$, so *k* is prime to *q* and therefore $(v - 1, (q^{2m} - 1) \dots (q_0^2 - 1))$ is too small.

 C_6), C_7), and C_8) In the cases C_6 and C_8 , the classes are empty, and for C_7 we see $G_x \cap X$ stabilises the tensor product power of a non-singular space, but it is too small to satisfy $|G| < |G_x|^3$.

S) Now consider the case in which G_x is a simple group not contained in any of the Aschbacher collection of subgroups of G. As in the symplectic section, we only need to consider the following possibilities:

(1) $G_x \cap X = G_2(q) < \Omega_7(q) = X$ with *q* odd, (2) $G_x \cap X = Sp_6(2) < \Omega_7(p)$ with *p* either 3 or 5, or (3) $G_x \cap X = S_9 < \Omega_7(3)$.

In all three cases as k divides $2(v - 1, |G_x|)$ it is too small.

This completes the proof of Lemma 14.

6 X is an orthogonal group of even dimension

In this section $X = P\Omega_{2m}^{\epsilon}(q)$, with $m \ge 4$. We write $\beta_+ = \{e_1, f_1, \dots, e_m, f_m\}$ for a standard basis for V in the O_{2m}^+ -case, and $\beta_- = \{e_1, f_1, \dots, e_{m-1}, f_{m-1}, d, d'\}$ in the O_{2m}^- -case.

Lemma 15 The group X is not $P\Omega_{2m}^{\epsilon}(q)$, with $m \ge 4$.

Deringer

Proof As before, we take G_x to be in one of the Aschbacher families of subgroups of *G*, or a simple group not contained in any of these families, and analyse each case separately. We postpone until the end of the proof the case where $(m, \epsilon) = (4, +)$ and *G* contains a triality automorphism.

 C_1) If $G_x \in C_1$ then we have two possibilities.

First assume G_x stabilises a totally singular *i*-space, and suppose that i < m. If i = m - 1 and $\epsilon = +$, then $G_x = P_{m,m-1}$, otherwise $G_x = P_i$. In any case there is a unique subdegree of X that is a power of p (except in the case where $\epsilon = +$, m is odd, and $G_x = P_m$ or P_{m-1}). On the other hand, the highest power of p dividing v - 1 divides q^2 or 8, so k is too small.

Now consider $G_x = P_m$ in the case $X = P\Omega_{2m}^+(q)$, and note that in this case P_{m-1} and P_m are the stabilisers of totally singular *m*-spaces from the two different *X*-orbits. If *m* is even then

$$x = \langle e_1, \ldots, e_m \rangle, \ y = \langle f_1, \ldots, f_m \rangle$$

are in the same X-orbit, and the size of the G_x -orbit of y is a power of p. However the highest power of p dividing v - 1 is q, so k is too small.

If *m* is odd, $m \ge 5$, then $v = (q^{m-1} + 1)(q^{m-2} + 1)\dots(q + 1) > q^{\frac{m(m-1)}{2}}$. Let

$$x = \langle e_1, \ldots, e_m \rangle, \ y = \langle e_1, f_2, \ldots, f_m \rangle$$

Then x and y are in the same X-orbit, and the index of G_{xy} in G_x has p'-part dividing $q^m - 1$. The highest power of p dividing v - 1 is q so k divides $2q(q^m - 1)$, and the inequality $v < k^2$ implies m = 5. In this case the action is of rank three, with nontrivial subdegrees

$$\frac{q(q^2+1)(q^5-1)}{q-1}$$
 and $\frac{q^6(q^5-1)}{q-1}$.

Therefore k divides

$$\frac{2q(q^5-1)}{q-1},$$

and $v < k^2$ implies k is either $2q(q^4 + q^3 + q^2 + q + 1)$ or $q(q^4 + q^3 + q^2 + q + 1)$, but neither of these satisfies the equality k(k - 1) = 2(v - 1).

Now suppose $G_x = N_i$. First let i = 1. The subdegrees of X are (see [5]):

$$\begin{aligned} q^{2m-2} &-1, \frac{q^{m-1}(q^{m-1}+\epsilon)}{2}, \frac{q^{m-1}(q^{m-1}-\epsilon)(q-1)}{4}, \text{ and } \frac{q^{m-1}(q^{m-1}+\epsilon)(q-3)}{4} \text{ if } q \equiv 1 \mod 4, \\ q^{2m-2} &-1, \frac{q^{m-1}(q^{m-1}-\epsilon)}{2}, \frac{q^{m-1}(q^{m-1}-\epsilon)(q-3)}{4}, \text{ and } \frac{q^{m-1}(q^{m-1}+\epsilon)(q-3)}{4} \text{ if } q \equiv 3 \mod 4, \\ and \\ q^{2m-2} &-1, \frac{q^m(q^{m-1}-\epsilon)}{2}, \text{ and } \frac{q^{m-1}(q^{m-1}+\epsilon)(q-2)}{2} \text{ if } q \text{ is even.} \end{aligned}$$

Here k divides twice the highest common factor of the subdegrees, and in every case this is too small for k to satisfy $v < k^2$.

Now let $G_x = N_i^{\epsilon_1}$, with $1 < i \le m$, and $\epsilon_1 = \pm$ present only if *i* is even. If *q* is odd, as in the odd-dimensional case $SO_{i-1}(q) \times SO_{n-i-1}(q) \le G_x \cap G_x^g$ for some

D Springer

 $g \in G \setminus G_x$. Since k and p are coprime $k < 8q^m \log_p q$, contrary to $v < k^2$. Now assume q is even. Then i is also even.

If i = 2 then we can find $g_1, g_2 \in G \setminus G_x \cap X$ such that $(G_x \cap X) \cap (G_x \cap X)^{g_1} \geq SO_{n-4}^+(q)$ and $(G_x \cap X) \cap (G_x \cap X)^{g_2} \geq SO_{n-4}^-(q)$. Therefore k divides $2(q - \epsilon_1)(q^{m-1} - \epsilon_1)(\log_2 q)_{2'}$, so $k^2 < v$.

If $2 < i \le m$ then we can find $g \in G \setminus G_x \cap X$ such that $(G_x \cap X) \cap (G_x \cap X)^g \ge SO_{i-2}^{\epsilon_1}(q) \times SO_{n-i-2}^{\epsilon_2}(q)$, with $\epsilon_2 = \epsilon \epsilon_1$. It follows that k divides

$$(q^{\frac{i}{2}} - \epsilon_1)(q^{\frac{i-2}{2}} + \epsilon_1)(q^{\frac{n-i}{2}} + \epsilon_2)(q^{\frac{n-i-2}{2}} + \epsilon_2)(\log_2 q)_{2'},$$

forcing $k^2 < v$, a contradiction.

 C_2) If $G_x \in C_2$ then G_x stabilises a decomposition $V = V_1 \oplus \cdots \oplus V_a$ of subspaces of equal dimension, say *b*, so n = ab. Here we have three possibilities.

First assume all the V_i are nonsingular and isometric. (Also, if *b* is odd then so is *q*). If b = 1 then the inequality $|G| < 2|G_x||G_x|_{p'}^2$ implies $G_x \cap X = 2^{n-2}A_n$, with *n* being either 8 or 10 and *X* either $P\Omega_8^+(3)$ or $P\Omega_{10}^-(3)$ respectively. (Note that if $X = P\Omega_8^+(5)$ then the maximality of G_x in *G* forces $G \le X.2$ ([16]), so G_x is too small). In the first case, *k* divides 112, and in the second it is a power of 2. Both contradict the inequality $v < k^2$.

Now let b = 2. If q > 2 then we can find $g \in G \setminus G_x$ so that $G_x \cap G_x^g$ contains the stabiliser of $V_3 \oplus \cdots \oplus V_a$. From this it follows that $k \leq 2a(a-1)$. $(2(q+1))^2 |\operatorname{Out} X|$, and from $v < k^2$ we obtain n = 8 and q = 3. If q = 2 then we can find $g \in G \setminus G_x$ so that $G_x \cap G_x^g$ contains the stabiliser of $V_4 \oplus \cdots \oplus V_a$, and in this case k is at most $2a(a-1)(a-2)(2(q+1))^3 |\operatorname{Out} X|$, and so n = 8 or 10. Using the condition that k divides 2(v-1) we rule out these three cases.

Finally let b > 2. The inequality $|G| < 2|G_x||G_x|_{p'}^2$ forces b = m, (and so $\epsilon = +$). Let δ be the type of the V_i if m is even. Assume first that m = 4. Then

$$v = \frac{q^8(q^2+1)^2(q^4+q^2+1)}{4}$$

if $\delta = +$, and

$$v = \frac{q^8(q^6 - 1)(q^2 - 1)}{4}$$

if $\delta = -$. In the first case, $(q^2 - 1, v - 1) \le 2$ and 4 does not divide v - 1, so k divides $6(\log_p q)_{2'}$, contrary to $v < k^2$. In the latter case, v is even and divisible by $(q^2 - 1)$, and k divides the odd part of $3(q^2 + 1)^2 \log_p q$, again contrary to $v < k^2$. Hence $m \ge 5$, and we argue as in C_1 .

In the case where *m* and *q* are odd, a = 2, and V_1 , V_2 are similar but not isometric, we also argue as in C_1 .

Now consider the case $\epsilon = +$, a = 2, and V_1 and V_2 totally singular. If m = 4, then we can apply a triality automorphism of X to get to the case $G_x = N_2^+$, which we have ruled out in C_1 . Assume then that $m \ge 5$. Then

$$v = \frac{q^{\frac{m(m-1)}{2}}(q^{m-1}+1)(q^{m-2}+1)\dots(q+1)}{2^{e}},$$

where e is either 0 or 1 ([17, 4.2.7]), so

$$v > \frac{q^{m(m-1)}}{2}.$$

However, there exists $g \in G \setminus G_x$ such that $GL_{m-2}(q) \leq G_x \cap G_x^g$, and so k divides $2(q^m - 1)(q^{m-1} - 1)\log_p q$, and in fact $(k, v) \leq 2$ implies k divides twice the odd part of $\frac{(q^m-1)(q^{m-1}-1)\log_p q}{q+1}$, which is contrary to $k^2 < v$.

 C_3) If $G_x \in C_3$, then G_x is an extension field subgroup, and there are two possibilities ([17]).

First assume $G_x = N_G(\Omega_{\frac{n}{s}}^{\delta}(q^s))$, with *s* a prime and $\delta = \pm$ if $\frac{n}{s}$ is even (and empty otherwise). The inequality $|G| < |G_x|^3$ forces s = 2. If *q* is odd, then by Lemma 9 we see that a parabolic degree of G_x divides *k*, and so it follows that *k* is even, but since *v* is even then 4 does not divide *k*, which is a contradiction.

If q is even then m is also even, and

$$v = \frac{q^{\frac{m^2}{2}}(q^{2m-2}-1)(q^{2m-2}-1)\dots(q^2-1)}{2^e},$$

with $e \le 2$ ([17, 4.3.14,4.3.16]). As k divides 2(v - 1) it is prime to $q^2 - 1$, and it follows that $k^2 < v$, another contradiction.

Now let $G_x = N_G(GU_m(q))$, with $\epsilon = (-1)^m$. If q is odd, then as in the symplectic case q + 1 divides v and k, which is a contradiction.

So let q be even. If m = 4 then applying a triality automorphism of X the action of G becomes that of N_2^- , which has been ruled out in the case C_1 . So let $m \ge 5$. Now, G_x is the stabiliser of a hermitian form [,] on V over $GF(q^2)$ such that the quadratic form Q preserved by X satisfies Q(v) = [v, v] for $v \in V$. Let W be a nonsingular 2-dimensional hermitian subspace over $GF(q^2)$. Then W over GF(q) is of type O_4^+ . The pointwise stabiliser of W^{\perp} in $G_x \cap X$ is $GU_2(q)$, which is properly contained in the pointwise stabiliser of W^{\perp} in X. Thus we can find $g \in G \setminus G_x$ so that $GU_{m-2}(q) \le G_x \cap G_x^g$. Then k divides $2(q^m - (-1)^m)(q^{m-1} - (-1)^{m-1})\log_p q$, contrary to $v < k^2$.

 C_4) If $G_x \in C_4$ then G_x stabilises an asymmetric tensor product, so either $G_x = N_G(PSp_a(q) \times PSp_b(q))$ with *a* and *b* distinct even numbers, or $G_x = N_G(P\Omega_a^{\epsilon_1}(q) \times P\Omega_b^{\epsilon_2}(q))$ with $a, b \ge 3$ and n = ab. The inequality $|G| < 2|G_x||G_x|_{p'}^2$ implies n = 8 and $G_x = N_G(PSp_2(q) \times PSp_4(q))$. Applying a triality automorphism of *X*, the action becomes that of N_3 , a case that has been ruled out in C_1 .

 C_5) If $G_x \in C_5$ then it is a subfield subgroup. The inequality $|G| < 2|G_x||G_x|_{p'}^2$ implies $G_x \cap X = P\Omega_{2m}^{\delta}(q_0).2^e < P\Omega_{2m}^+(q) = X$, with $q = q_0^2$ and $e \le 2$ ([17, 4.5.10]), so

$$v > \frac{q_0^{2m^2 - m}}{4}.$$

Now, G_x stabilises a $GF(q_0)$ -subspace V_0 of V. Let U_0 be a 2-subspace of V_0 of type $O_2^+(q_0)$, and U a subspace of V of type $O_2^+(q)$ containing U_0 . There exists

an element $g \in G \setminus G_x$ that stabilises U^{\perp} pointwise, from this it follows that $G_x \cap G_x^g$ involves $P\Omega_{2m-2}^{\delta}(q_0)$. This implies that k divides $2(q_0^m - \delta)(q_0^{m-1} + \delta)|\operatorname{Out} X|$, which contradicts the inequality $v < k^2$.

 C_6) If $G_x \in C_6$, it is an extraspecial normaliser. From $|G| < |G_x|^3$ we have $G_x \cap X = 2^6 A_8 < P\Omega_8^+(3) = X$. Applying a triality automorphism of X, we have one of the cases already ruled out in C_2 .

 C_7) If $G_x \in C_7$, then it stabilises a symmetric tensor product of *a* spaces of dimension *b*, with $n = b^a$. Here G_x is too small.

 C_8) In this case this class is empty.

S) Now consider the case in which G_x is an almost simple group (modulo scalars) not contained in any of the Aschbacher subgroups of G. For $n \le 10$, the subgroups G_x are listed in [15] and [16]. Since $|G| < 2|G_x||G_x|_{p'}^2$, we have one of the following:

(1) $\Omega_7(q) < P\Omega_8^+(q)$,

(2) $\Omega_8^+(q) < P\Omega_8^+(q)$ with q = 3, 5, or 7, or

(3) $A_9 < \Omega_8^+(q), A_{12} < \Omega_{10}^-(2), A_{12} < P\Omega_{10}^+(3).$

In the first case applying a triality automorphism gives an action on N_1 , which was excluded in C_1 . In the second case the fact that k divides $2(|G_x|, v - 1)$ implies k divides 20, 6, and $2 \cdot 3^5 \cdot 5^2$, and so is too small. In the third case since 6 divides v, again k is too small.

So $n \ge 12$. If n > 14, then by [18, Theorem 4.2] we need only to consider the cases in which G'_x is alternating on the deleted permutation module, and in fact $A_{17} < \Omega_{16}^+(2)$ is the only group which is big enough. Again, since v is divisible by $2 \cdot 3 \cdot 17$ we conclude k is too small. Now let n = 12, respectively 14. If X is alternating, we only have to consider $A_{13} < \Omega_{12}^-(2)$, respectively $A_{16} < \Omega_{14}^+(2)$, however k divides $2(v - 1, |G_x|)$, so $k^2 < v$, a contradiction. If X is not alternating, then again since $|G_x| < q^{2n+4}$ by [18, Theorem 4.2] it follows that $|G_x| < q^{28}$, respectively $|G_x| < q^{32}$. On the other hand, from $|G| < 2|G_x||G_x|_{p'}^2$ we obtain $|G_x|_{p'} > \frac{q^{19}}{\sqrt{2}}$, respectively $|G_x|_{p'} > q^{29}$. We can now see (cf. [19, Sections 2, 3, and 5]) that no sporadic or Lie type group will do for G_x .

Finally assume that $X = P\Omega_8^+(q)$, and G contains a triality automorphism. The maximal groups are determined in [16]. If $G_x \cap X$ is a parabolic subgroup of X, then it is either P_2 or P_{134} . The first was ruled out in C_1 , so consider the latter. In this case

$$v = \frac{(q^6 - 1)(q^4 - 1)}{(q - 1)^3} > q^{11},$$

and (3, q)q is the highest power of p dividing v - 1. Since X has a unique suborbit of size a power of p (by Lemma 10), we have k < 2q(3, q), which contradicts $v < k^2$.

Now, by [16] and $|G| < |G_x||G_x|_{p'}^2$, the only cases we have to consider are $G_2(q)$ for any q and $(2^9)L_3(2)$ for q = 3. In the first case,

$$v = \frac{q^6(q^4 - 1)^2}{(q - 1, 2)^2},$$

and Lemma 9 applied to $G_2(q)$ implies G_{xB} is contained a parabolic subgroup, so $\frac{q^6-1}{q-1}$ divides k. However k is prime to q + 1, which is a contradiction. In the second case, k divides 28, which is too small.

This completes the proof of Lemma 15.

7 X is a unitary group

Here $X = U_n(q)$ with $n \ge 3$, and $(n, q) \ne (3, 2)$, (4, 2), since these are isomorphic to $3^2 \cdot Q_8$ and $PSp_4(3)$ respectively. We write $\beta = \{u_1, \ldots, u_n\}$ for an orthonormal basis of V.

Lemma 16 *The group X is not* $U_n(q)$ *, with* $n \ge 3$ *and* $(n, q) \ne (3, 2)$ *,* (4, 2)*.*

Proof As we have done throughout, we will consider G_x to be in one of the Aschbacher families of subgroups of G, or a nonabelian simple group not contained in any of these families, and analyse each of these cases separately.

 C_1) If G_x is reducible, then it is either a parabolic subgroup P_i , or the stabiliser N_i of a nonsingular subspace.

First assume $G_x = P_i$ for some $i \leq \frac{n}{2}$. Then

$$v = \frac{(q^n - (-1)^n)(q^{n-1} - (-1)^{n-1})\dots(q^{n-2i+1} - (-1)^{n-2i+1})}{(q^{2i} - 1)(q^{2i-2} - 1)\dots(q^2 - 1)}$$

There is a unique subdegree which is a power of p. The highest power of p dividing v - 1 is q^2 , unless n is even and $i = \frac{n}{2}$, in which case it is q, or n is odd and $i = \frac{n-1}{2}$, in which case it is q^3 . If n = 3 then the action is 2-transitive, so consider n > 3. Then $v > q^{i(2n-3i)}$, and so $v < k^2$, which is a contradiction.

Now suppose that $G_x = N_i$, with $i < \frac{n}{2}$, and take $x = \langle u_1, \dots, u_i \rangle$. If we consider $y = \langle u_1, \dots, u_{i-1}, u_{i+1} \rangle$, then *k* divides

 $2(q^{i} - (-1)^{i})(q^{n-i} - (-1)^{n-i})$. However in this case

$$v = \frac{q^{i(n-1)}(q^n - (-1)^n) \dots (q^{n-i+1} - (-1)^{n-i+1})}{(q^i - (-1)^i) \dots (q+1)},$$

and $v < k^2$ implies i = 1. Therefore k divides $2(q + 1)(q^{n-1} - (-1)^{n-1})$. Applying Lemma 9 to $U_{n-1}(q)$, we see k is divisible by the degree of a parabolic action of $U_{n-1}(q)$. We check the subdegrees, and by the fact that k divides $|G_x|^2$ as well as $k^2 > v$ we conclude $n \le 5$.

If n = 5 then k divides $2(q + 1)(q^4 - 1)$ and is divisible by $q^3 + 1$, which can only happen if q = 2, but in this case none of the possibilities for k satisfy the equality 2(v - 1) = k(k - 1).

If n = 4 then $q^3 + 1$ divides k, but $(2(v - 1), q^3 + 1) \le 2(q^2 - q + 1)$, which is a contradiction.

Finally, if n = 3 then q + 1 divides k, but q + 1 is prime to v - 1, which is another contradiction.

 C_2) If $G_x \in C_2$, then it preserves a partition $V = V_1 \oplus \cdots \oplus V_a$ of subspaces of the same dimension, say *b*, so n = ab and either the v_i are nonsingular and the partition is orthogonal, or a = 2 and the V_i are totally singular.

First assume that the V_i are nonsingular. If b > 1, then taking

$$x = \{ \langle u_1, \dots, u_b \rangle, \langle u_{b+1}, \dots, u_{2b} \rangle, \dots \}$$

and

$$y = \{ \langle u_1, \dots, u_{b-1}, u_{b+1} \rangle, \langle u_b, u_{b+2}, \dots, u_{2b} \rangle, \dots \}$$

we see k divides $2a(a-1)(q^b - (-1)^b)^2$. From the inequality $v < k^2$ we have n = 4 and b = 2. Therefore

$$v = \frac{q^4(q^4 - 1)(q^3 + 1)}{2(q^2 - 1)(q + 1)},$$

and k divides $4(q^2 - 1)^2$. However, (v - 1, q + 1) = (2, q + 1), so k divides $16(q - 1)^2$, which is contrary to $v < k^2$.

If b = 1 then $G_x \cap X = (q+1)^{n-1}S_n$. First let n = 3, with q > 2. Then

$$v = \frac{q^3(q^3+1)(q^2-1)}{6(q+1)^2},$$

and k divides $12(q + 1)^2 \log_p q$. The inequality $v < k^2$ forces $q \le 17$, but by the fact that k divides 2(v - 1) we rule out all these values. Now let n > 3, and let $x = \{\langle u_1 \rangle, \langle u_2 \rangle, \ldots, \langle u_n \rangle\}$. If q > 3 let $W = \langle u_1, u_2 \rangle$. If we take $g \in G \setminus G_x$ acting trivially on W^{\perp} we see k divides $n(n - 1)(q + 1)^2$, contrary to $v < k^2$. If $q \le 3$ then let $W = \langle u_1, u_2, u_3 \rangle$. Taking $g \in G \setminus G_x$ acting trivially on W^{\perp} we see that now k divides $\frac{n(n-1)(n-2)(q+1)^3}{3}$, so $n \le 6$ if q = 2, or $n \le 4$ if q = 2. By the fact that k divides 2(v - 1) we rule these cases out.

Now assume that a = 2 and both the V_i 's are totally singular. Let $\{e_1, f_1, \ldots, e_b, f_b\}$ be a standard unitary basis. Take

$$x = \{ \langle e_1, \dots, e_b \rangle, \langle f_1, \dots, f_b \rangle \}, \text{ and } y = \{ \langle e_1, \dots, e_{b-1}, f_b \rangle, \langle f_1, \dots, f_{b-1}, e_b \rangle \}.$$

Then k divides $4(q^n - 1)$. The inequality $v < k^2$ forces n = 4, but then

$$v = \frac{q^4(q^3+1)(q+1)}{2},$$

so in fact k divides $2(q^2 + 1)(q - 1)$, contrary to $v < k^2$.

 C_3) If $G_x \in C_3$ then it is a field extension group for some field extension of GF(q) of odd degree *b*. From the inequality $|G| < 2|G_x||G_x|_{p'}^2$ we have b = 3 and n = 3. Then

$$v = \frac{q^3(q^2 - 1)(q + 1)}{3}.$$

🖉 Springer

Therefore 4 does not divide k, and so $k < 6q^2(\log_p q)_{2'}$. Since $v < k^2$, we have $q \le 9$. With the condition that k divides 2(v-1) we rule out these cases.

 C_4) If $G_x \in C_4$ then it is the stabiliser of a tensor product of two nonsingular subspaces of dimensions a > b > 1, but then the inequality $|G| < 2|G_x||G_x|_{p'}^2$ is not satisfied.

 C_5) If $G_x \in C_5$ then it is a subfield subgroup. We have three possibilities:

If G_x is a unitary group of dimension *n* over $GF(q_0)$, where $q = q_0^b$ with *b* an odd prime, then $|G| < |G_x|^3$ implies b = 3. However $|G| < 2|G_x||G_x|_{p'}^2$ forces q = 8 and $n \le 4$, but in these cases since *k* divides 2(v - 1) it is too small.

If $G_x \cap X = PSO_n^{\epsilon}(q).2$, with *n* even and *q* odd, then by Lemma 6 *k* is divisible by the degree of a parabolic action of G_x . Here q + 1 divides *k*, and $\frac{q+1}{(4,q+1)}$ divides *v*. The fact that *k* divides 2(v - 1) forces q = 3, so v = 2835, but then 8v - 7 is not a square, which is a contradiction.

Finally, if $G_x = N(PSp_n(q))$, with *n* even, then by Lemma 9 G_{xB} is contained on some parabolic subgroup, so *k* is divisible by the degree of some parabolic action of G_x , and so is divisible by q + 1. However *v* is divisible by $\frac{q+1}{(q+1,2)}$, contradicting the fact that *k* divides 2(v - 1)

 C_6) If $G_x \in C_6$, then it is an extraspecial normaliser, and since $|G| < |G_x|^3$, we only have to consider the cases $G_x \cap X = 3^2 Q_8$, $2^4 A_6$, or $2^4 S_6$, and $X = U_3(5)$, $U_4(3)$, and $U_4(7)$ respectively. In all cases the fact that k divides $2(|G_x|, v-1)$ forces $k^2 < v$, a contradiction.

 C_7) If $G_x \in C_7$, then it stabilises a tensor product decomposition of $V_n(q)$ into t subspaces V_i of dimension m each, so $n = m^t$. Since $m \ge 3$ and $t \ge 3$, we see $|G_x|$ is too small to satisfy $|G| < |G_x|^3$.

 \mathcal{C}_8) This class is empty.

S) Finally consider the case in which G_x is an almost simple group (modulo the scalars) not contained in any of the Aschbacher families of subgroups. For $n \le 10$ the subgroups G_x are listed in [15, Chapter 5]. Since $|G| < |G_x|^3$, we only need to consider the following possibilities:

 $L_2(7)$ in $U_3(3)$, $A_6.2, L_2(7)$, and A_7 in $U_3(5)$, A_6 in $U_3(11)$, $L_2(7), A_7$, and $L_2(4)$ in $U_4(3)$, $U_4(2)$ in $U_4(5)$, $L_2(11)$ in $U_5(2)$, and $U_4(3)$ and M_{22} in $U_6(2)$.

Since k divides $2(|G_x|, v - 1)$, we have $k^2 < v$ in all cases except in the case $L_2(7) < U_3(3)$. In this last case v = 36, but then there is no k such that k(k - 1) = 2(v - 1), which is a contradiction.

If $n \ge 14$, then by [18] we have $|G| > |G_x|^3$, a contradiction. Hence n = 11, 12, or 13. By [18], $|G_x|$ is bounded above by q^{4n+8} , and $|G| < 2|G_x||G_x|_{p'}^2$ implies $|G_x|_{p'}$ is bounded below by q^{33} , q^{43} , or q^{53} respectively. Using the methods in [18, 19] we rule out all the almost simple groups G_x .

This completes the proof of Lemma 16, and hence if *X* is a simple classical group, then it is either $PSL_2(7)$ or $PSL_2(11)$.

Acknowledgements The results in the present paper were obtained with a grant from the Dirección General de Asuntos del Personal Académico, UNAM, during the course of my Ph.D. under the supervision of Martin W. Liebeck. I am very grateful to Martin for his most helpful ideas and guidance. I would also like to thank Jan Saxl for allowing me to view his notes before [27] was published, and Sasha Ivanov for providing me with these notes. Finally I thank the referees for their observations and suggestions, which have greatly improved this article.

References

- Aschbacher, M. (1971). On collineation groups of symmetric block designs. J. Comb. Theory, 11, 272–281.
- Aschbacher, M. (1984). On the maximal subgroups of the finite classical groups. *Invent. Math.*, 76, 469–514.
- Assmus, E. F. Jr., Mezzaroba, J. A., & Salwach, C. J. (1977). Planes and biplanes. In Proceedings of the 1976 Berlin Combinatorics Conference. Vancerredle.
- Assmus, E. F. Jr., & Salwach, C. J. (1979). The (16,6,2) designs. Int. J. Math. Math. Sci., 2(2), 261– 281.
- Bannai, E., Hao, S., & Song, S.-Y. (1990). Character tables of the association schemes of finite orthogonal groups on the non-isotropic points. J. Comb. Theory Ser. A, 54, 164–200.
- 6. Cameron, P. J. (1973). Biplanes. Math. Z., 131, 85-101.
- 7. Colbourn, C. J., & Dinitz, J. H. (1996). *The CRC handbook of combinatorial designs*. Boca Raton: CRC.
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., & Wilson, R. A. (1985). Atlas of finite groups. London: Oxford University Press.
- 9. Davies, H. (1987). Flag-transitivity and primitivity. Discret. Math., 63, 91-93.
- 10. Denniston, R. H. F. (1980). On biplanes with 56 points. Ars. Comb., 9, 167-179.
- Hall, M. Jr., Lane, R., & Wales, D. (1970). Designs derived from permutation groups. J. Comb. Theory, 8, 12–22.
- 12. Huppert, B. (1967). Endliche Gruppen. Berlin: Springer.
- 13. Hussain, Q. M. (1945). On the totality of the solutions for the symmetrical incomplete block designs $\lambda = 2, k = 5$ or 6. Sankhya, 7, 204–208.
- 14. Kantor, W. (1985). Classification of 2-transitive symmetric designs. Graphs Comb., 1, 165–166.
- 15. Kleidman, P. B. (1987). *The subgroup structure of some finite simple groups*. PhD thesis, University of Cambridge.
- 16. Kleidman, P. B. (1987). The maximal subgroups of the finite 8-dimensional orthogonal groups $P\Omega_8^+(q)$ and of their automorphism groups. J. Algebra, 110, 172–242.
- 17. Kleidman, P. B., & Liebeck, M. W. (1990). *The subgroup structure of the finite classical groups.* London math. soc. lecture note series, Vol. 129. Cambridge: Cambridge Univ. Press.
- Liebeck, M. W. (1985). On the orders of maximal subgroups of the finite classical groups. *Proc. Lond. Math. Soc.*, 50, 426–446.
- Liebeck, M. W. (1987). The affine permutation groups of rank 3. Proc. Lond. Math. Soc., 54, 477– 516.
- Liebeck, M. W., & Saxl, J. (1987). On the orders of maximal subgroups of the finite exceptional groups of Lie type. *Proc. Lond. Math. Soc.*, 55, 299–330.
- Liebeck, M. W., Saxl, J., & Seitz, G. M. (1987). On the overgroups of irreducible subgroups of the finite classical groups. *Proc. Lond. Math. Soc.*, 55, 507–537.
- 22. Liebeck, M. W., Praeger, C. E., & Saxl, J. (1988). On the O'Nan-Scott theorem for finite primitive permutation groups. J. Aust. Math. Soc. (Ser. A), 44, 389–396.
- Liebeck, M. W., Praeger, C. E., & Saxl, J. (1988). On the 2-closures of finite permutation groups. J. Lond. Math. Soc., 37, 241–264.
- O'Reilly Regueiro, E. (2005). On primitivity and reduction for flag-transitive symmetric designs. J. Comb. Theory Ser. A, 109, 135–148.
- O'Reilly Regueiro, E. (2005). Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. *Eur. J. Comb.*, 26, 577–584.
- 26. Salwach, C. J., & Mezzaroba, J. A. (1978). The four biplanes with *k* = 9. *J. Comb. Theory Ser. A*, 24, 141–145.
- Saxl, J. (2002). On finite linear spaces with almost simple flag-transitive automorphism groups. J. Comb. Theory Ser. A, 100(2), 322–348.
- 28. Seitz, G. M. (1973). Flag-transitive subgroups of Chevalley groups. Ann. Math., 97(1), 27-56.