Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle

Eugenia O'Reilly-Regueiro

Received: 31 October 2005 / Accepted: 9 March 2007 /
Published online: 21 April 2007
© Springer Science+Business Media, LLC 2007

Abstract

In this paper we prove that if a biplane D admits a flag-transitive automorphism group G of almost simple type with classical socle, then D is either the unique $(11,5,2)$ or the unique $(7,4,2)$ biplane, and $G \leq P S L_{2}(11)$ or $P S L_{2}(7)$, respectively. Here if X is the socle of G (that is, the product of all its minimal normal subgroups), then $X \unlhd G \leq$ Aut G and X is a simple classical group.

Keywords Automorphism group • Biplanes • Flag-transitive

1 Introduction

A biplane is a $(v, k, 2)$-symmetric design, that is, an incidence structure of v points and v blocks such that every point is incident with exactly k blocks, and every pair of blocks is incident with exactly two points. Points and blocks are interchangeable in the previous definition, due to their dual role. A nontrivial biplane is one in which $2<k<v-1$. A flag of a biplane D is an ordered pair (p, B) where p is a point of D, B is a block of D, and they are incident. Hence if G is an automorphism group of D, then G is flag-transitive if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are $k=3,4,5,6$, 9,11 , and 13 [7, pp. 76]. Due to arithmetical restrictions on the parameters, there are no examples with $k=7,8,10$, or 12 .

For $k=3,4$, and 5 the biplanes are unique up to isomorphism [6], for $k=6$ there are exactly three non-isomorphic biplanes [13], for $k=9$ there are exactly four nonisomorphic biplanes [26], for $k=11$ there are five known biplanes [3, 10, 11], and for $k=13$ there are two known biplanes [1], in this case, it is a biplane and its dual.

[^0]In [24] it is shown that if a biplane admits an imprimitive, flag-transitive automorphism group, then it has parameters $(16,6,2)$. There are three non-isomorphic biplanes with these parameters [4], two of which admit flag-transitive automorphism groups which are imprimitive on points, (namely $2^{4} S_{4}$ and $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{8}\right) S_{4}$ [24]). Therefore, if any other biplane admits a flag-transitive automorphism group G, then G must be primitive. The O'Nan-Scott Theorem classifies primitive groups into five types [22]. It is shown in [24] that if a biplane admits a flag-transitive, primitive, automorphism group, it can only be of affine or almost simple type. The affine case was treated in [24]. The almost simple case when the socle of G is an alternating or a sporadic group was treated in [25], in which it is shown that no such biplane exists. Here we treat the almost simple case when the socle X of G is a classical group. We now state the main result of this paper:

Theorem 1 (Main Theorem) If D is a nontrivial biplane with a primitive, flagtransitive automorphism group G of almost simple type with classical socle X, then D has parameters either $(7,4,2)$, or $(11,5,2)$, and is unique up to isomorphism.

This, together with [24, Theorem 3] and [25, Theorem 1] yield the following:
Corollary 1 If D is a nontrivial biplane with a flag-transitive automorphism group G, then one of the following holds:
(1) D has parameters $(7,4,2)$,
(2) D has parameters $(11,5,2)$,
(3) D has parameters $(16,6,2)$,
(4) $G \leq A \Gamma L_{1}(q)$, for some odd prime power q, or
(5) G is of almost simple type, and the socle X of G is an exceptional group of Lie type.

For the purpose of proving our Main Theorem, we will consider D to be a nontrivial biplane, with a primitive, flag-transitive, almost simple automorphism group G, with simple socle X, such that $X=X_{d}(q)$ is a simple classical group, with a natural projective action on a vector space V of dimension d over the field \mathbb{F}_{q}, where $q=p^{e}$, (p prime).

For this we will proceed as in [27], in which the case for finite linear spaces with almost simple flag-transitive automorphism groups of Lie type is treated.

2 Preliminary results

In this section we state some preliminary results we will use throughout this paper.

Lemma 2 If D is a $(v, k, 2)$-biplane, then $8 v-7$ is a square.
Proof The result follows from [24, Lemma 3].
Corollary 3 If D is a flag-transitive ($v, k, 2$)-biplane, then $2 v<k^{2}$, and hence $2|G|<\left|G_{x}\right|^{3}$.

Proof The equality $k(k-1)=2(v-1)$, implies $k^{2}=2 v-2+k$, so clearly $2 v<k^{2}$. The result follows from $v=\left|G: G_{x}\right|$ and $k \leq\left|G_{x}\right|$.

From [9] we get the following two lemmas:
Lemma 4 If D is a biplane with a flag-transitive automorphism group G, then k divides $2 d_{i}$ for every subdegree d_{i} of G.

Lemma 5 If G is a flag-transitive automorphism group of a biplane D, then k divides $2 \cdot \operatorname{gcd}\left(v-1,\left|G_{x}\right|\right)$.

Lemma 6 (Tits Lemma $[28,1.6]$) If X is a simple group of Lie type in characteristic p, then any proper subgroup of index prime to p is contained in a parabolic subgroup of X.

Lemma 7 If X is a simple group of Lie type in characteristic $2,\left(X \nsubseteq A_{5}\right.$ or $\left.A_{6}\right)$, then any proper subgroup H such that $[X: H]_{2} \leq 2$ is contained in a parabolic subgroup of X.

Proof First assume $X=C l_{n}(q)$ is classical (q a power of 2), and take H maximal in X. By Aschbacher's Theorem [2], H is contained in a member of the collection \mathcal{C} of subgroups of $\Gamma L_{n}(q)$, or in \mathcal{S}, that is, $H^{(\infty)}$ is quasisimple, absolutely irreducible, and not realisable over any proper subfield of $\mathbb{F}(q)$.

We check for every family \mathcal{C}_{i} that if H is contained in C_{i}, then $2|H|_{2}<|X|_{2}$, except when H is parabolic.

Now we take $H \in \mathcal{S}$. Then by [18, Theorem 4.2], $|H|<q^{2 n+4}$, or H and X are as in [18, Table 4]. If $|X|_{2} \leq 2|H|_{2} \leq q^{2 n+4}$, then either $X=L_{n}^{\epsilon}(q)$ and $n \leq 6$, or $X=S p_{n}(q)$ or $P \Omega_{n}^{\epsilon}(q)$ and $n \leq 10$. We check the list of maximal subgroups of X for $n \leq 10$ in [15, Chapter 5], and we see that no group H satisfies $2|H|_{2} \leq|X|_{2}$. We then check the list of groups in [18, Table 4], and again, none of them satisfy this bound.

Finally, assume X to be an exceptional group of Lie type in characteristic 2. By [20], if $2|H| \geq|X|_{2}$, then H is either contained in a parabolic subgroup, or H and X are as in [20, Table 1]. Again, we check all the groups in [20, Table 1], and in all cases $2|H|_{2}<|X|_{2}$.

As a consequence, we have a strengthening of Corollary 3:
Corollary 8 Suppose D is a biplane with a primitive, flag-transitive almost simple automorphism group G with simple socle X of Lie type in characteristic p, and the stabiliser G_{x} is not a parabolic subgroup of G. If p is odd then p does not divide k; and if $p=2$ then 4 does not divide k. Hence $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$.

Proof We know from Corollary 3 that $|G|<\left|G_{x}\right|^{3}$. Now, by Lemma 6, p divides $v=\left[G: G_{x}\right]$. Since k divides $2(v-1)$, if p is odd then $(k, p)=1$, and if $p=2$ then $(k, p) \leq 2$. Hence k divides $2\left|G_{x}\right|_{p^{\prime}}$, and since $2 v<k^{2}$, we have $|G|<2\left|G_{x} \| G_{x}\right|_{p^{\prime}}^{2}$.

From the previous results we have the following lemma, which will be quite useful throughout this chapter:

Lemma 9 Suppose p divides v, and G_{x} contains a normal subgroup H of Lie type in characteristic p which is quasisimple and $p \nmid|Z(H)|$; then k is divisible by $[H: P]$, for some parabolic subgroup P of H.

Proof The assumption that p divides v and the fact that k divides 2(v-1) imply $(k, p) \leq(2, p)$. Also, we know $k=\left[G_{x}: G_{x, B}\right]$ (where B is a block incident with x), so $\left[H: H_{B}\right]$ divides k, and therefore $\left(\left[H: H_{B}\right], p\right) \leq(2, p)$. By Lemmas 6 and 7 we conclude that H_{B} is contained in a parabolic subgroup P of H, and P maximal in H implies that H_{B} is contained in P, so k is divisible by [$H: P$].

Lemma 10 ([21, 3.9]) If X is a group of Lie type in characteristic p, acting on the set of cosets of a maximal parabolic subgroup, and X is not $P S L_{d}(q), P \Omega_{2 m}^{+}(q)$ (with m odd), nor $E_{6}(q)$, then there is a unique subdegree which is a power of p.

$3 X$ is a linear group

In this case we consider the socle of G to be $P S L_{n}(q)$, and $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ a basis for the natural n-dimensional vector space V for X.

Lemma 11 If the group X is $P S L_{2}(q)$, then it is one of the following:
(1) $P S L_{2}(7)$ acting on the $(7,4,2)$ biplane with point stabiliser S_{4}, or
(2) $P S L_{2}(11)$ acting on a $(11,5,2)$ biplane with point stabiliser A_{5}.

Proof Suppose $X \cong P S L_{2}(q),\left(q=p^{m}\right)$ is the socle of a flag-transitive automorphism group of a biplane D, so $G \leq P \Gamma L_{2}(q)$. As G is primitive, G_{x} is a maximal subgroup of G, and hence X_{x} is isomorphic to one of the following [12]: (Note that $\left|G_{x}\right|$ divides $\left.(2, q-1) m\left|X_{x}\right|\right)$:
(1) A solvable group of index $q+1$.
(2) $D_{(2, q)(q-1)}$.
(3) $D_{(2, q)(q+1)}$.
(4) $L_{2}\left(q_{0}\right)$ if $(r>2)$, or $P G L_{2}\left(q_{0}\right)$ if $(r=2)$, where $q=q_{0}^{r}, r$ prime.
(5) S_{4} if $q=p \equiv \pm 1(\bmod 8)$.
(6) A_{4} if $q=p \equiv 3,5,13,27,37(\bmod 40)$.
(7) A_{5} if $q \equiv \pm 1(\bmod 10)$.
(1) Here $v=q+1$, so $k(k-1)=2(v-1)=2 q$, hence $q=3$, but $P S L_{2}(3)$ is not simple.
(2) and (3) The degrees in these cases are a triangular number, but the number of points on a biplane is always one more than a triangular number.
(4) First assume $r>2$. Clearly, q_{0} divides $v=q_{0}^{r-1}\left(\frac{q_{0}^{2 r}-1}{q_{0}^{2}-1}\right)$, so k divides $2\left(v-1, m q_{0}\left(q_{0}^{2}-1\right)\right)$, hence $k=\frac{2 m\left(q_{0}^{2}-1\right)}{n}$ for some n. Say $q_{0}=p^{b}$, so $m=b r$ and (except for $p=2$ and $2 \leq b \leq 4$), we have $b<\sqrt{q_{0}}$, (since $b^{2}<p^{b}=q_{0}$).

Now, $k^{2}>2 v$ implies

$$
\frac{4 m^{2}\left(q_{0}^{2}-1\right)^{2}}{n^{2}}>2 q_{0}^{r-1}\left(\frac{q_{0}^{2 r}-1}{q_{0}^{2}-1}\right)
$$

so

$$
n^{2}<\frac{2 m^{2}\left(q_{0}^{2}-1\right)^{3}}{\left(q_{0}^{2 r}-1\right) q_{0}^{r-1}}
$$

First consider $r>3$, so $(r \geq 5)$. Here $q_{0}^{r}>b^{2} r^{2}=m^{2}$. On the other hand, $2 m^{2}>$ $\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{\left(q_{0}^{2}-1\right)^{3}}$, therefore

$$
2 q_{0}^{r}<\frac{q_{0}^{r-1}\left(q_{0}^{2 r}-1\right)}{\left(q_{0}^{2}-1\right)^{3}}
$$

which is a contradiction.
Next consider $r=3$. From $k^{2}>2 v$, we obtain $18 b^{2}\left(q_{0}^{2}-1\right)^{3}>n^{2} q_{0}^{2}\left(q_{0}^{6}-1\right)$, this together with $b^{2}<q_{0}$, imply $n^{2}\left(q_{0}^{6}-1\right)<18 q_{0}^{5}$, therefore $q_{0} \leq 17$. We check for all possible values of q_{0} that $8 v-7$ is not a square, contradicting Lemma 2.

Now assume $r=2$. Then $v=\frac{q_{0}\left(q_{0}^{2}+1\right)}{(2, q-1)}$. As $q=q_{0}^{2} \neq 2$, we have $m^{2}<q$, so $4 b^{2}<$ q_{0}^{2}, which implies $q_{0} \neq 2$.

First consider q even. From $2(v-1)=k(k-1)$, we have $2\left(q_{0}^{3}+q_{0}-1\right)=$ $\frac{2 m\left(q_{0}^{2}-1\right)}{n}\left(\frac{2 m\left(q_{0}^{2}-1\right)}{n}-1\right)$, however $\operatorname{gcd}\left(q_{0}^{3}+q_{0}-1, q_{0}^{2}-1\right)$ divides 3, which implies $k=\frac{6 m}{t}$, with $t=1,3$.

If $t=3$ then $q_{0}^{3}+q_{0}-1=2 m^{2}-m=m(2 m-1)<2 m^{2}$, but $m<q_{0}$, so this is a contradiction.

If $t=1$ then $q_{0}^{3}+q_{0}-1=18 m^{2}-6 m$, which implies $q_{0}<18$, that is $q_{0}=4,8$, or 16 . However $m=2 b$ implies $k=12 b$, so $v-1$ is divisible by 6 , but this is not the case for any of these values of q_{0}.

Now consider q odd. The equality $2(v-1)=k(k-1)$ yields $q_{0}^{3}+q_{0}-2=$ $\frac{4 m^{2}}{n^{2}}\left(q_{0}^{2}-1\right)^{2}-\frac{2 m}{n}\left(q_{0}^{2}-1\right)$, and the inequality $k^{2}>2 v$ implies $\frac{4 m^{2}}{n^{2}}\left(q_{0}^{2}-1\right)^{2}>$ $q_{0}\left(q_{0}^{2}+1\right)$. In this case $m=2 b$, so $k=\frac{4 b\left(p^{2 b}-1\right)}{n}$, and $v=\frac{p^{3 b}+p^{b}}{2}>\frac{b^{6}+b^{2}}{2}$, hence we have the following inequalities:

$$
b^{6}+b^{2}<p^{3 b}+p^{b}<\frac{4 b\left(p^{2 b}-1\right)}{n}<\frac{4 b \cdot p^{2 b}}{n} .
$$

This implies $\frac{n\left(p^{3 b}+p^{b}\right)}{p^{2 b}}<4 b$, so $n\left(p^{b}+p^{\frac{b}{2}}\right)<4 b<4 p^{\frac{b}{2}}$, therefore $n\left(p^{\frac{b}{2}}+1\right)<4$ which implies $n=1=b$, and $p=3,5$, or 7 , but in all these cases $k>v$, which is a contradiction.
(5) In this case $q=p \equiv \pm 1(\bmod 8)$, and $m=1$, so $G_{0} \cong S_{4}$. We have q odd, $v=\frac{q\left(q^{2}-1\right)}{48}$, and k divides $2\left(\frac{q\left(q^{2}-1\right)-48}{48}, 24\right)$, so $k \mid 48$. Now $k^{2}>2 v$ implies $q \leq 37$, hence $q=7,17,23$, or 31 . The only one of these values for which $8 v-7$ is a square (Lemma 2) is $q=7$, so $v=7$ and $k=4$, that is, we have the $(7,4,2)$ biplane and $G=X \cong P S L_{2}(7)$.
(6) Here $q=p \equiv 3,5,13,27$, or $37(\bmod 40)$, so $m=1$ and $G_{x} \cong A_{4}$. Here $v=\frac{q\left(q^{2}-1\right)}{24}$, and so k divides $2\left(\frac{q\left(q^{2}-1\right)-24}{24}, 12\right)$, so $k \mid 24$. As $2 v<k^{2}$, we have $q=3$, 5 , or 13 . For $q=3$ we have $v=1$, which is a contradiction. For $q=5$ we have $v=5$, but there is no such biplane. Finally, $q=13$ implies $v=91$, but then $8 v-7$ is not a square, contradicting Lemma 2.
(7) Here $q=p$ or $p^{2} \equiv \pm 1(\bmod 10)$, and $v=\frac{q\left(q^{2}-1\right)}{120}$, so k divides $120 m$, with $m=1$ or 2 . The inequality $2 v<k^{2}$ implies $q^{3}-q<60 k^{2}<60(120)^{2} m^{2}$, so $q=9$, $11,19,29,31,41,49,59,61,71,79,81,89$, or 121 . Of these, the only value for which $8 v-7$ is a square is $q=11$. In this case, $v=11$ and $k=5$, that is, we have a $(11,5,2)$ biplane, with $G=X \cong P S L_{2}(11)$, and $G_{x} \cong A_{5}$.

This completes the proof of Lemma 11.
Lemma 12 The group X is not $P S L_{n}(q)$, with $n>2$, and $(n, q) \neq(3,2)$.
Proof Suppose $X \cong P S L_{n}(q)$, with $n>2$ and $(n, q) \neq(3,2)$ (since $P S L_{3}(2) \cong$ $\left.P S L_{2}(7)\right)$. We have $q=p^{m}$, and take $\left\{v_{1}, \ldots, v_{n}\right\}$ to be a basis for the natural n-dimensional vector space V for X. Since G_{x} is maximal in G, then by Aschbacher's Theorem [2], the stabiliser G_{x} lies in one of the families \mathcal{C}_{i} of subgroups of $\Gamma L_{n}(q)$, or in the set \mathcal{S} of almost simple subgroups not contained in any of these families. We will analyse each of these cases separately. In describing the Aschbacher subgroups, we denote by ${ }^{\wedge} H$ the pre-image of the group H in the corresponding linear group.
\mathcal{C}_{1}) Here G_{x} is reducible. That is, $G_{x} \cong P_{i}$ stabilises a subspace of V of dimen$\operatorname{sion} i$.

Suppose $G_{x} \cong P_{1}$. Then G is 2-transitive, and this case has already been done by Kantor [14].

Now suppose $G_{x} \cong P_{i}(1<i<n)$ fixes W, an i-subspace of V. We will assume $i \leq \frac{n}{2}$ since our arguments are arithmetic, and for i and $n-i$ we have the same calculations. Considering the G_{x}-orbits of the i-spaces intersecting W in i-1-dimensional spaces, we see k divides

$$
\frac{2 q\left(q^{i}-1\right)\left(q^{n-i}-1\right)}{(q-1)^{2}}
$$

Also,

$$
v=\frac{\left(q^{n}-1\right) \ldots\left(q^{n-i+1}-1\right)}{\left(q^{i}-1\right) \ldots(q-1)}>q^{i(n-i)}
$$

but $k^{2}>2 v$, so either $i=3$ and $n<10$, or $i=2$.
First assume $i=3$ and $q=2$.
If $n=9$ then $k=2^{2} \cdot 3^{2} \cdot 7^{2}$, but the equation $k(k-1)=2(v-1)$ does not hold.
If $n=8$ then $k=4 \cdot 7 \cdot 31$ but again the equation $k(k-1)=2(v-1)$ does not hold.

For $n=7 k=420$ or 210, but again, k does not divide $2(v-1)$.
Finally, if $n=6$ then $k=196$ or 98 , but neither is a divisor of $2(v-1)$.
Now assume $i=3$ and $q>2$. Then $n=6$ or 7 .

If $n=7$ then k divides

$$
2\left(\frac{q\left(q^{3}-1\right)\left(q^{4}-1\right)}{(q-1)^{2}}, \frac{\left(q^{7}-1\right)\left(q^{6}-1\right)\left(q^{5}-1\right)}{\left(q^{3}-1\right)\left(q^{2}-1\right)(q-1)}-1\right)
$$

but then $k^{2}<v$, which is a contradiction.
If $n=6$ then k divides

$$
2\left(\frac{q\left(q^{3}-1\right)^{2}}{(q-1)^{2}}, \frac{\left(q^{6}-1\right)\left(q^{5}-1\right)\left(q^{4}-1\right)}{\left(q^{3}-1\right)\left(q^{2}-1\right)(q-1)}-1\right)
$$

But again $k^{2}<2 v$.
Hence $i=2$. Here $v=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right)}{\left(q^{2}-1\right)(q-1)}$, and G has suborbits with sizes:
$\mid\{2$-subspaces $H: \operatorname{dim}(H \cap W)=1\} \left\lvert\,=\frac{q(q+1)\left(q^{n-2}-1\right)}{q-1}\right.$ and
$\mid\{2$-subspaces $H: H \cap W=\overline{0}\} \left\lvert\,=\frac{q^{4}\left(q^{n-2}-1\right)\left(q^{n-3}-1\right)}{\left(q^{2}-1\right)(q-1)}\right.$.
If n is even then k divides $\frac{q\left(q^{n-2}-1\right)}{\left(q^{2}-1\right)}$, since $q+1$ is prime to $\frac{\left(q^{n-3}-1\right)}{q-1}$, this implies $k^{2}<v$, which is a contradiction.

Hence n is odd, and k divides $\frac{2 q\left(q^{n-2}-1\right)}{q-1}\left(q+1, \frac{n-3}{2}\right)$.
First assume $n=5$. Then $v=\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)$, and k divides $2 q\left(q^{2}+q+1\right)$. The fact that $k^{2}>2 v$ forces $k=2 q\left(q^{2}+q+1\right)$.

The condition $k(k-1)=2(v-1)$ implies

$$
4 q^{2}\left(q^{2}+q+1\right)^{2}-2 q\left(q^{2}+q+1\right)=2\left(q^{6}+q^{5}+2 q^{4}+2 q^{3}+2 q^{2}+q\right)
$$

so

$$
\left(q^{2}+q+1\right)\left(2 q\left(q^{2}+q+1\right)-1\right)=\left(q^{5}+q^{4}+2 q^{3}+2 q^{2}+2 q+1\right)
$$

If we expand we get the following equality:

$$
q^{5}+3 q^{4}+4 q^{3}+q^{2}-q-2=0
$$

which is a contradiction. Therefore $n \geq 7$. Here

$$
v=\left(q^{n-1}+q^{n-2}+\cdots+q+1\right)\left(q^{n-3}+q^{n-5}+\cdots+q^{2}+1\right),
$$

and k divides $2 d c$, where $d=q\left(q^{n-3}+q^{n-4}+\cdots+q+1\right)$ and $c=\left(q+1, \frac{n-3}{2}\right)$. Say $k=\frac{2 d c}{e}$, then $v<k^{2}$ forces $e \leq 2 q$. We have the following equality:

$$
\frac{v-1}{d}=q^{n-2}+q^{n-4}+\cdots+q^{3}+q+1,
$$

and also, since $k(k-1)=2(v-1)$, we have

$$
k=\frac{2(v-1)}{k}+1=\frac{2 e(v-1)}{2 d c}=\frac{e q^{n-2}+e q^{n-4}+\cdots+e q^{3}+e q+e+c}{c}
$$

Now, $(k c, d)$ divides d, and also
$\left(k c, q\left(e q^{n-3}+e q^{n-5}+\cdots+e q^{2}+e\right)\right)$
$=\left(e q^{n-2}+e q^{n-4}+\cdots+e q+e+c, q\left(e q^{n-3}+e q^{n-5}+\cdots+e q^{2}+e\right)\right)$
$=\left(e q^{n-2}+\cdots+e q+e+c, e+c\right)$, and
($k c, \frac{e d}{q}$)
$=\left(e q^{n-2}+\cdots+e q+e+c, e q^{n-3}+e q^{n-4}+\cdots+e q+e\right)$
$=\left(e q^{n-2}+\cdots+e q+e+c,(2 e+c) q+e+c\right)$.
Therefore k divides $c(e+c)((2 e+c) q+e+c)$, and since $e \leq 2 q$ and $c=$ $\left(q+1, \frac{n-3}{2}\right)$, the only possibilities for n and q are $n=7$ and $q \leq 3$, or $n=9$ and $q=2$. However in none of these possibilities is $8 v-7$ a square, again contradicting Lemma 2.
\mathcal{C}_{1}^{\prime}) Here G contains a graph automorphism and G_{x} stabilises a pair $\{U, W\}$ of subspaces of dimension i and $n-i$, with $i<\frac{n}{2}$. Write G^{0} for $G \cap P \Gamma L_{n}(q)$ of index 2 in G.

First assume $U \subset W$. By Lemma 10, there is a subdegree which is a power of p. On the other hand, if p is odd then the highest power of p dividing $v-1$ is q, it is $2 q$ if $q>2$ is even, and is at most 2^{n-1} if $q=2$. Hence $k^{2}<v$, which is a contradiction.

Now suppose $V=U \oplus W$. Here p divides v, so $(k, p) \leq 2$. First assume $i=1$. If $x=\left\{\left\langle v_{1}\right\rangle,\left\langle v_{2} \ldots v_{n}\right\rangle\right\}$, then consider $y=\left\{\left\langle v_{1}, \ldots, v_{n-1}\right\rangle,\left\langle v_{n}\right\rangle\right\}$, so $\left[G_{x}: G_{x y}\right]=$ $\frac{q^{n-2}\left(q^{n-1}-1\right)}{q-1}$ and k divides $\frac{2\left(q^{n-1}-1\right)}{q-1}$. However $v=\frac{q^{n-1}\left(q^{n}-1\right)}{q-1}>q^{2(n-1)}$, which implies $k^{2}<v$, a contradiction.

Now assume $i>1$. Consider $x=\left\{\left\langle v_{1}, \ldots, v_{i}\right\rangle,\left\langle v_{i+1}, \ldots, v_{n}\right\rangle\right\}$ and $y=\left\{\left\langle v_{1}, \ldots\right.\right.$, $\left.\left.v_{i-1}, v_{i}+v_{n}\right\rangle,\left\langle v_{i+1}, \ldots, v_{n}\right\rangle\right\}$. Then $\left[G_{x}^{0}: G_{x y}^{0}\right]_{p^{\prime}}$ divides $2\left(q^{i}-1\right)\left(q^{n-i}-1\right)$, which implies $k<2 q^{n}$, but $v>q^{2 i(n-i)}$, so again $k^{2}<v$, a contradiction.
\mathcal{C}_{2}) Here G_{x} preserves a partition $V=V_{1} \oplus \cdots \oplus V_{a}$, with each V_{i} of the same dimension, say, b, and $n=a b$.

First consider the case $b=1$ and $n=a$, and let $x=\left\{\left\langle v_{1}\right\rangle, \ldots,\left\langle v_{n}\right\rangle\right\}$ and $y=$ $\left\{\left\langle v_{1}+v_{2}\right\rangle,\left\langle v_{2}\right\rangle, \ldots,\left\langle v_{n}\right\rangle\right\}$. Since $n>2$, we see k divides $4 n(n-1)(q-1)=$ $2\left[G_{x}: G_{x y}\right]$. Now $v>\frac{q^{n(n-1)}}{n!}$ and $k^{2}>v$, so $n=3$ and $q \leq 4$, that is $v=$ $\frac{q^{3}\left(q^{3}-1\right)(q+1)}{(3, q-1) 6!}$. As $k \mid 2(v-1)$, only for $q=2$ can $k>2$, so consider $q=2$. Then $k \mid 6$ and $v=28$, but there is no such value of k satisfying $k(k-1)=2(v-1)$.

Now let $b>1$, and consider $x=\left\{\left\langle v_{1}, \ldots, v_{b}\right\rangle,\left\langle v_{b+1}, \ldots, v_{2 b}\right\rangle, \ldots\right\}$ and $y=$ $\left\{\left\langle v_{1}, \ldots, v_{b-1}, v_{b+1}\right\rangle,\left\langle v_{b}, v_{b+2}, \ldots, v_{2 b}\right\rangle, \ldots,\left\langle v_{n-b+1}, \ldots, v_{n}\right\rangle\right\}$. Then k divides $\frac{2 a(a-1)\left(q^{b}-1\right)^{2}}{q-1}$, so $v>\frac{q^{n(n-b)}}{a!}$, forcing $n=4, q \geq 5$, and $a=2=b$. In none of these cases can we obtain $k>2$.
\mathcal{C}_{3}) In this case G_{x} is an extension field subgroup. Since $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}>|G|$ by Corollary 8 , either:
(1) $n=3$ and $X \cap G_{x}=^{\wedge}\left(q^{2}+q+1\right) \cdot 3<P S L_{3}(q)=X$, or
(2) n is even and $G_{x}=N_{G}\left({ }^{\wedge} P S L_{\frac{n}{2}}\left(q^{2}\right)\right)$.

First consider case (1). Here $v=\frac{q^{3}\left(q^{2}-1\right)(q-1)}{3}$, so k divides $6\left(q^{2}+q+1\right)\left(\log _{p} q\right)$, and $k^{2}>v$ implies $q=3,4,5,8,9,11,13$, or 16 . In none of these cases is $8 v-7 \mathrm{a}$ square.

Now consider case (2) and write $n=2 m$. As p divides v, we have $(k, p) \leq 2$. First suppose $n \geq 8$, and let W be a 2 -subspace of V considered as a vector space over the field of q^{2} elements, so that W is a 4-subspace over a field of q elements. If we consider the stabiliser of W in G_{x} and in G then in $G_{W} \backslash G_{x W}$ there is an element g such that $G_{x} \cap G_{x}^{g}$ contains the pointwise stabiliser of W in G_{x} as a subgroup. Therefore k divides $2\left(q^{n}-1\right)\left(q^{n-2}-1\right)$, contrary to $2 v<k^{2}$, which is a contradiction.

Now let $n=6$. Then since $(k, p) \leq 2$, Lemma 9 implies k is divisible by the index of a parabolic subgroup of G_{x}, so it is divisible by the primitive prime divisor q_{3} of $q^{3}-1$, but this divides the index of G_{x} in G, which is v, a contradiction.

Hence $n=4$. Then $v=\frac{q^{4}\left(q^{3}-1\right)(q-1)}{2}$, and so k is odd and prime to $q-1$. The fact that $(v-1, q+1)=1$ implies k is also prime to $q+1$, and hence $k \mid\left(q^{2}+1\right) \log _{p} q$, contrary to $k^{2}>2 v$, another contradiction.
\mathcal{C}_{4}) Here G_{x} stabilises a tensor product of spaces of different dimensions, and $n \geq 6$. In all these cases $v>k^{2}$.
\mathcal{C}_{5}) In this case G_{x} is the stabiliser in G of a subfield space. So $G_{x}=$ $N_{G}\left(P S L_{n}\left(q_{0}\right)\right)$, with $q=q_{0}^{m}$ and m prime.

If $m>2$ then $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}>|G|$ forces $n=2$, a contradiction.
Hence $m=2$. If $n=3$ then $v=\frac{\left(q_{0}^{3}+1\right)\left(q_{0}^{2}+1\right) q_{0}^{3}}{\left(q_{0}+1,3\right)}$.
Since p divides v, we have $(k, p) \leq 2$, so Lemma 9 implies $G_{x B}$ (where B is a block incident with x) is contained in a parabolic subgroup of G_{x}. Therefore $q_{0}^{2}+$ $q_{0}+1$ divides k, and $\left(v-1, q_{0}^{2}+q_{0}+1\right)$ divides $2 q_{0}+\left(q_{0}+1,3\right)$, forcing $q_{0}=2$ and $v=120$, but then $8 v-7$ is not a square.

If $n=4$, then by Lemma 9 we see $q_{0}^{2}+1$ divides k, but $q_{0}^{2}+1$ also divides v, which is a contradiction.

Hence $n \geq 5$. Considering the stabilisers of a 2-dimensional subspace of V, we see k divides $2\left(q_{0}^{n}-1\right)\left(q_{0}^{n-1}-1\right)$, but then $k^{2}<v$, which is also a contradiction.
\mathcal{C}_{6}) Here G_{x} is an extraspecial normaliser. Since $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}>|G|$, we have $n \leq$ 4. Now, $n>2$ implies that $G_{x} \cap X$ is either $2^{4} A_{6}$ or $3^{2} Q_{8}$, with X either $P S L_{4}(5)$ or $P S L_{3}(7)$ respectively. Since k divides $2\left(v-1,\left|G_{x}\right|\right)$, we check that $k \leq 6$, contrary to $k^{2}>2 v$.

If $n=2$ then $G_{x} \cap X=A_{4} \cdot a<L_{2}(p)=X$, with $a=2$ precisely when $p \equiv \pm 1$ $(\bmod 8)$, and $a=1$ otherwise, (and there are a conjugacy classes in $X)$. From $|G|<$ $\left|G_{x}\right|^{3}$ we obtain $p \leq 13$. If $p=7$ then the action is 2-transitive. The remaining cases are ruled out by the fact that k divides $2\left(v-1,\left|G_{x}\right|\right)$, and $k(k-1)=2(v-1)$.
\mathcal{C}_{7}) Here G_{x} stabilises the tensor product of a spaces of the same dimension, say b, and $n=b^{a}$. Since $\left|G_{x}\right|^{3}>|G|$, we have $n=4$ and $G_{x} \cap X=\left(P S L_{2}(q) \times\right.$ $\left.P S L_{2}(q)\right) 2^{d}<X=P S L_{4}(q)$, with $d=(2, q-1)$. Then $v=\frac{q^{4}\left(q^{2}+1\right)\left(q^{3}-1\right)}{x}>\frac{q^{9}}{x}$, with $x=2$ unless $q \equiv 1(\bmod 4)$, in which case $x=4$. Hence $4 \nmid k$, and so k divides $2\left(q^{2}-1\right) \log _{p} q$, and if q is odd then k divides $\frac{\left(q^{2}-1\right) \log _{p} q}{32}$.

If q is odd, then $k^{2}<\frac{q^{9}}{32}<\frac{q^{9}}{x}=v$, a contradiction. Hence q is even, and so

$$
k=\frac{2\left(q^{2}-1\right)^{2} \log _{p} q}{r},
$$

and since $k^{2}>2 v$ we have $r^{2}<\frac{4(q+1)^{4} \log _{p} q}{q^{5}}$, therefore $q \leq 32$.
However, the five cases are dismissed by the fact that k divides $2(v-1)$.
\mathcal{C}_{8}) Now consider G_{x} to be a classical group.
(1) First assume G_{x} is a symplectic group, so n is even. By Lemma $6 k$ is divisible by a parabolic index in G_{x}. If $n=4$ then $v=\frac{q^{2}\left(q^{3}-1\right)}{(2, q-1)}$, and $\frac{q^{4}-1}{q-1}$ divides k, however $\left(v-1, q^{2}+1\right)$ divides 2 , which is a contradiction.

If $n=6$ then $v=\frac{q^{6}\left(q^{5}-1\right)\left(q^{3}-1\right)}{(3, q-1)}$ and $q^{3}+1$ divides k, but $q^{3}+1$ divides $2(v-1)$ only if $q=2$, so $k=9$, too small.

Now suppose $n \geq 8$. If we consider the stabilisers of a 4-dimensional subspace of G_{x} and G, we see that k divides twice the odd part of $\left(q^{n}-1\right)\left(q^{n-2}-1\right)$. Also, $(k, q-1) \leq 2$, so k divides $2 \frac{\left(q^{n}-1\right)\left(q^{n-2}-1\right)}{(q-1)^{2}}$, and therefore $k \leq 8 q^{2 n-4}$. The inequality $k^{2}>2 v$ forces $n=8$. In this case $v=\frac{q^{12}\left(q^{7}-1\right)\left(q^{5}-1\right)\left(q^{3}-1\right)}{(q-1,4)}$ which implies $q \leq 3$, and in neither of these two cases is $8 v-7$ a square.
(2) Now let G_{x} be orthogonal. Then q is odd, since that is the case with odd dimension, and with even dimension it is a consequence of the maximality of G_{x} in G. The case in which $n=4$ and G_{x} is of type O_{4}^{+}will be investigated later, in all other cases Lemma 6 implies that k is divisible by a parabolic index in G_{x} and is therefore even, but it is not divisible by 4 since v is also even and $(k, v) \leq 2$. This and the fact that q does not divide k implies $k<v$, a contradiction.
(3) Finally let G_{x} be a unitary group over the field of q_{0} elements, where $q=q_{0}^{2}$. If $n \geq 4$ then considering the stabilisers of a nonsingular 2-subspace of V in G and G_{x}, we see k divides $2\left(q_{0}^{n}-(-1)^{n}\right)\left(q_{0}^{n-1}-(-1)^{n-1}\right)$. The inequality $k^{2}>2 v$ forces $n=4$, and in this case $v=\frac{q_{0}^{6}\left(q_{0}^{4}+1\right)\left(q_{0}^{3}+1\right)\left(q_{0}^{2}+1\right)}{\left(q_{0}-1,4\right)}$. Since k divides $2\left(q_{0}^{4}-1\right)\left(q_{0}^{3}+1\right)$ and $\left(k,\left(q_{0}^{2}+1\right)\left(q_{0}-1\right) \leq 2\right.$, we see k divides $2\left(q_{0}^{3}+1\right)\left(q_{0}+1\right)$, so $k^{2} \leq 2 v$, a contradiction. Therefore $n=3$, and by Lemma $6 q_{0}^{2}-q_{0}+1$ divides k, and k divides $2(v-1)$ with $v=\frac{q_{0}^{3}\left(q_{0}^{3}-1\right)\left(q_{0}^{2}+1\right)}{x}$ with x either 1 or 3 . This implies $q_{0}=2$, but then $v=280$, and $8 v-7$ is not a square.
\mathcal{S}) We finally consider the case where G_{x} is an almost simple group, (modulo the scalars), not contained in the Aschbacher subgroups of G. From [18, Theorem 4.2] we have the possibilities $\left|G_{x}\right|<q^{2 n+4}, G_{x}^{\prime}=A_{n-1}$ or A_{n-2}, or $G_{x} \cap X$ and X are as in [18, Table 4].

Also, $|G|<\left|G_{x}\right|^{3}$ by Corollary 3 and $|G| \leq q^{n^{2}-n-1}$, so $n \leq 7$, and by the bound $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}>|G|$ we need only to consider the following possibilities [15, Chapter 5]:
$n=2$, and $G_{x} \cap X=A_{5}$, with $q=11,19,29,31,41,59,61$, or 121.
$n=3$, and $G_{x} \cap X=A_{6}<P S L_{3}(4)=X$.
$n=4$, and $G_{x} \cap X=U_{4}(2)<P S L_{4}(7)=X$.
In the first case, with $A_{5}<L_{2}$ (11) the action is 2-transitive. In the remaining cases, the fact that k divides $2\left|G_{x}\right|$ and $2(v-1)$ forces $k^{2}<v$, which is a contradiction.

This completes the proof of Lemma 12.

$4 X$ is a symplectic group

Here the socle of G is $X=P \operatorname{Sp}_{2 m}(q)$, with $m \geq 2$ and $(m, q) \neq(2,2)$. As a standard symplectic basis for V, we have $\beta=\left\{e_{1}, f_{1}, \ldots, e_{m}, f_{m}\right\}$.

Lemma 13 The group X is not $\operatorname{PSp}_{2 m}(q)$ with $m \geq 2$, and $(m, q) \neq(2,2)$.
Proof We will consider G_{x} to be in each of the Aschbacher families of subgroups, and finally, an almost simple group not contained in any of the Aschbacher families of G. In each case we will arrive at a contradiction.

When $(p, 2 m)=(2,4)$ the group $S p_{4}\left(2^{f}\right)$ admits a graph automorphism, this case will be treated separately after the eight Aschbacher families of subgroups.
\mathcal{C}_{1}) If $G_{x} \in \mathcal{C}_{1}$, then G_{x} is reducible, so either it is parabolic or it stabilises a nonsingular subspace of V.

First assume that $G_{x}=P_{i}$, the stabiliser of a totally singular i-subspace of V, with $i \leq m$. Then

$$
v=\frac{\left(q^{2 m}-1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2 m-2 i+2}-1\right)}{\left(q^{i}-1\right)\left(q^{i-1}-1\right) \ldots(q-1)}
$$

From this we see $v \equiv q+1(\bmod p q)$, so q is the highest power of p dividing $v-1$. By Lemma 10 there is a subdegree which is a power of p, and since k divides twice every subdegree, k divides $2 q$, contrary to $v<k^{2}$.

Now suppose that $G_{x}=N_{2 i}$, the stabiliser of a nonsingular $2 i$-subspace U of V, with $m>2 i$. Then p divides v, so $(k, p) \leq 2$.

Take $U=\left\langle e_{1}, f_{1}, \ldots e_{i}, f_{i}\right\rangle$, and $W=\left\langle e_{1}, f_{1}, \ldots e_{i-1}, f_{i-1}, e_{i+1}, f_{i+1}\right\rangle$. The $p^{\prime}-$ part of the size of the G_{x}-orbit containing W is

$$
\frac{\left(q^{2 i}-1\right)\left(q^{2 m-2 i}-1\right)}{\left(q^{2}-1\right)^{2}}
$$

Since $v<q^{4 i(m-i)}$, we can only have $v<k^{2}$ if $q=2$ and $m=i+1$, which is a contradiction.
\mathcal{C}_{2}) If $G_{x} \in \mathcal{C}_{2}$ then it preserves a partition $V=V_{1} \oplus \cdots \oplus V_{a}$ of isomorphic subspaces of V.

First assume all the V_{j} 's to be totally singular subspaces of V of maximal dimension m. Then $G_{x} \cap X=\wedge G L_{m}(q) .2$, and G_{x} maximal implies q is odd [17]. Then

$$
v=\frac{q^{\frac{m(m+1)}{2}}\left(q^{m}+1\right)\left(q^{m-1}+1\right) \ldots(q+1)}{2}>\frac{q^{m(m+1)}}{2}
$$

and $(k, p)=1$.
Let

$$
x=\left\{\left\langle e_{1}, \ldots, e_{m}\right\rangle,\left\langle f_{1}, \ldots, f_{m}\right\rangle\right\},
$$

and

$$
y=\left\{\left\langle e_{1}, \ldots, e_{m-1}, f_{m}\right\rangle,\left\langle f_{1}, \ldots, f_{m-1}, e_{m}\right\rangle\right\}
$$

Then the p^{\prime}-part of the G_{x}-orbit of y divides $2\left(q^{m}-1\right)$, and so k divides $4\left(q^{m}-1\right)$, contrary to $v<k^{2}$.

Now assume that each of the V_{j} 's is nonsingular of dimension $2 i$, so $G_{x} \cap X=$ ${ }^{\wedge} S p_{2 i}(q)$ wr S_{t}, with $i t=m$. Let

$$
x=\left\{\left\langle e_{1}, f_{1}, \ldots, e_{i}, f_{i}\right\rangle,\left\langle e_{i+1}, f_{i+1}, \ldots, e_{2 i}, f_{2 i}\right\rangle, \ldots\right\}
$$

and take

$$
y=\left\{\left\langle e_{1}, f_{1}, \ldots, e_{i}, f_{i}+e_{i+1}\right\rangle,\left\langle e_{i+1}, f_{i+1}-e_{i}, e_{i+2}, \ldots, e_{2 i}, f_{2 i}\right\rangle, \ldots\right\}
$$

Considering the size of the G_{x}-orbit containing y, we see k divides

$$
\frac{t(t-1)\left(q^{2 i}-1\right)^{2}}{q-1}
$$

Now,

$$
\frac{q^{2 i^{2} t(t-1)}}{t!}<v
$$

so $v<k^{2}$ implies $t!t^{4}>q^{2 i^{2} t(t-1)+2-8 i}$, hence $q^{2 t(t-1)-6}<t^{t+4}$ and therefore $t<4$.
First assume $t=3$. Then by the above inequalities $i=1$ and $q=2$, but then G_{x} is not maximal [8, p. 46], a contradiction.

Now let $t=2$. Then $k<2 q^{4 i-1}$, so $q^{4 i^{2}-8 i+2}<8$ and therefore $i \leq 2$.
If $i=2$ then $q=2$ and $v=45696=2^{7} \cdot 3 \cdot 7 \cdot 17$, but then $8 v-7$ is not a square, which is a contradiction.

If $i=1$ then $X=P \operatorname{Sp}_{4}(q)$,

$$
v=\frac{q^{2}\left(q^{2}+1\right)}{2}
$$

and k divides $2(q+1)^{2}(q-1)$. Since k divides $2(v-1)$, we have k divides $\left(q^{2}\left(q^{2}+\right.\right.$ 1) $\left.-2,2(q+1)^{2}(q-1)\right)$, that is, k divides

$$
\left(\left(q^{2}+2\right)\left(q^{2}-1\right), 2(q+1)^{2}(q-1)\right)=\left(q^{2}-1\right)\left(q^{2}+2,2(q+1)\right) \leq 6\left(q^{2}-1\right)
$$

Therefore

$$
k=\frac{6\left(q^{2}-1\right)}{r},
$$

with $1 \leq r \leq 6$. Now $2(v-1)=\left(q^{2}+2\right)\left(q^{2}-1\right)$, and also $2(v-1)=k(k-1)$, but we check that for all possible values of r this equality is not satisfied.
\mathcal{C}_{3}) If $G_{x} \in \mathcal{C}_{3}$, then it is an extension field subgroup, and there are two possibilities.

Assume first that $G_{x} \cap X=P S p_{2 i}\left(q^{t}\right) . t$, with $m=i t$ and t a prime number. From $|G|<\left|G_{x}\right|^{3}$, we obtain $t=2$ or 3 .

If $t=3$, then $v<k^{2}$ implies $i=1$, and so

$$
G_{x} \cap X=P \operatorname{Sp}_{2}\left(q^{3}\right)<P \operatorname{Sp}_{6}(q)=X
$$

and

$$
v=\frac{q^{6}\left(q^{4}-1\right)\left(q^{2}-1\right)}{3}
$$

This implies that k is coprime to $q+1$, but applying Lemma 9 to $P \operatorname{Sp}_{2}\left(q^{3}\right)$ yields $q^{3}+1$ divides k, which is a contradiction.

If $t=2$, then

$$
v=\frac{q^{2 i^{2}}\left(q^{4 i-2}-1\right)\left(q^{4 i-6}-1\right) \ldots\left(q^{6}-1\right)\left(q^{2}-1\right)}{2}
$$

Consider the subgroup $S p_{2}\left(q^{2}\right) \circ S p_{2 i-2}\left(q^{2}\right)$ of $G_{x} \cap X$. This is contained in $S p_{4}(q) \circ$ $S p_{4 i-4}(q)$ in X. Taking $g \in S p_{4}(q) \backslash S p_{2}\left(q^{2}\right)$, we see $S p_{2 i-2}\left(q^{2}\right)$ is contained in $G_{x} \cap G_{x}^{g}$, so k divides $2\left(q^{4 i}-1\right) \log _{p} q$. The inequality $v<k^{2}$ forces $i \leq 2$.

First assume $i=2$. Then

$$
v=\frac{q^{8}\left(q^{6}-1\right)\left(q^{2}-1\right)}{2}
$$

and k divides $2\left(q^{8}-1\right) \log _{p} q$, but since $(k, v) \leq 2$ and $q^{2}-1$ divides v, we see k divides $2\left(q^{4}+1\right)\left(q^{2}+1\right) \log _{p} q$, forcing $q=2$. In this case $v=2^{7} \cdot 3^{3} \cdot 7=24192$, and $k=2 \cdot 5 \cdot 17=170$ (otherwise $k^{2}<v$), but then k does not divide 2($v-1$), which is a contradiction.

Hence $i=1$, so

$$
v=\frac{q^{2}\left(q^{2}-1\right)}{2}
$$

and $G_{x} \cap X=P \operatorname{Sp}_{2}\left(q^{2}\right) .2<P \operatorname{Sp}_{4}(q)=X$, Therefore k divides $4 q^{2}\left(q^{4}-1\right)$, but since $(k, v) \leq 2$, then k divides $4\left(q^{2}+1\right)$, so $k=\frac{4\left(q^{2}+1\right)}{r}$ for some $r \leq 8$ (since $v<k^{2}$). Now $2(v-1)=k(k-1)$, and also $2(v-1)=\left(q^{2}-2\right)\left(q^{2}+1\right)$, so we have

$$
r^{2}\left(q^{2}-2\right)=16\left(q^{2}+1\right)-4 r
$$

that is,

$$
(r+4)(r-4) q^{2}=2(8+r(r-2))
$$

This implies $4<r \leq 8$, but solving the above equation for each of these possible values of r gives non-integer values of q, a contradiction.

Now assume $G_{x} \cap X=\wedge G U_{m}(q) .2$, with q odd. Since v is even, 4 does not divide k. Also, k is prime to p, so by the Lemma 9, the stabiliser in $G_{x} \cap X$ of a block is contained in a parabolic subgroup. But then $q+1$ divides the indices of the parabolic subgroups in the unitary group, so $q+1$ divides k, but $q+1$ also divides v, which is a contradiction.
$\left.\mathcal{C}_{4}\right)$ If $G_{x} \in \mathcal{C}_{4}$, then G_{x} stabilises a decomposition of V as a tensor product of two spaces of different dimensions, and G_{x} is too small to satisfy

$$
|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}
$$

\mathcal{C}_{5}) If $G_{x} \in \mathcal{C}_{5}$, then $G_{x} \cap X=P \operatorname{Sp}_{2 m}\left(q_{0}\right) \cdot a$, with $q=q_{0}^{b}$ for some prime b and $a \leq 2$, (with $a=2$ if and only if $b=2$ and q is odd). The inequality $|G|<$ $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ forces $b=2$. Then

$$
v=\frac{q^{\frac{m^{2}}{2}}\left(q^{m}+1\right) \ldots(q+1)}{(2, q-1)}>\frac{q^{\frac{m(2 m+1)}{2}}}{2}
$$

Now G_{x} stabilises a $G F\left(q_{0}\right)$-subspace W of V. Considering a nonsingular 2-dimensional subspace of W we see

$$
S p_{2}\left(q_{0}\right) \circ S p_{2 m-2}\left(q_{0}\right)<S p_{2}(q) \circ S p_{2 m-2}(q)<X
$$

If we take $g \in S p_{2}(q) \backslash S p_{2}\left(q_{0}\right)$ then $S p_{2 m-2}\left(q_{0}\right)<G_{x} \cap G_{x}^{g}$. This implies that there is a subdegree of X with the p^{\prime}-part dividing $q_{0}^{2 m}-1$, so k divides $2\left(q^{m}-\right.$ 1) $\log _{p} q$, contrary to $v<k^{2}$.
\mathcal{C}_{6}) If $G_{x} \in \mathcal{C}_{6}$ then $G_{x} \cap X=2^{2^{s}} \Omega_{2^{s}}^{-}(2) . a, q$ is an odd prime, $2 m=2^{s}$, and $a \leq 2$. The inequality $|G|<\left|G_{x}\right|^{3}$ implies $s \leq 3$, and if $s=3$ then $q=3$, but then k is too small. If $s=2$ then $q \leq 11$, but again k is too small in each of these cases.
\mathcal{C}_{7}) If $G_{x} \in \mathcal{C}_{7}$ then $G_{x}=N_{G}\left(P S p_{2 a}(q)^{2 r} 2^{r-1} A_{r}\right)$ and $2 m=(2 a)^{r} \geq 8$, but this is a contradiction since $|G|<\left|G_{x}\right|^{3}$.
\mathcal{C}_{8}) If $G_{x} \in \mathcal{C}_{8}$ then $G_{x} \cap X=O_{2 m}^{\epsilon}(q)$, with q even and $2 m \geq 4$. We can assume $q>2$ as when $q=2$ the action is 2-transitive and that has been done in [14]. Here

$$
v=\frac{q^{m}\left(q^{m}+\epsilon\right)}{2}
$$

and from the proof of [23, Prop. 1] the subdegrees of X are $\left(q^{m}-\epsilon\right)\left(q^{m+1}+\epsilon\right)$ and $\frac{(q-2)}{2} q^{m-1}\left(q^{m}-\epsilon\right)$. This implies by Lemma 4 that k divides $2\left(q^{m}-\epsilon\right)(q-$ $2, q^{m-1}+\epsilon$). However, Lemma 9 implies k is divisible by the index of a parabolic subgroup in $O_{2 m}^{\epsilon}(q)$, which is not the case.
$p=m=2$. Here $2 m=4$ and q is even, we have the following possibilities:
G_{x} normalises a Borel subgroup of X in G. Then $v=(q+1)\left(q^{3}+q^{2}+q+1\right)$ so $2 q$ is the highest power of 2 dividing $v-1$. But k is also a power of 2 , contrary to $v<k^{2}$.
$G_{x} \cap X=D_{2(q \pm 1)}$ wr S_{2}. So k divides $2(q \pm 1)^{2} \log _{2} q$, too small to satisfy $v<k^{2}$.
$G_{x} \cap X=\left(q^{2}+1\right) .4$, which is too small.
\mathcal{S}) Finally consider the case in which $G_{x} \in \mathcal{S}$ is an almost simple group (modulo scalars) not contained in any of the Aschbacher subgroups of G. These subgroups are listed in [15] for $2 m \leq 10$.

First assume $2 m=4$, so we have one of the following possibilities:
(1) $G_{x} \cap X=S z(q)$ with q even,
(2) $G_{x} \cap X=P S L_{2}(q)$ with $q \geq 5$, or
(3) $G_{x} \cap X=A_{6} \cdot a$ with $a \leq 2$ and $q=p \geq 5$.

In case (1) $v=q^{2}\left(q^{2}-1\right)(q+1)$. Applying Lemma 9 to $S z(q)$, we see $q^{2}+1$ divides k. Now $\left(v-1, q^{2}+1\right)=(q-2,5)$, so $q=2$, contrary to our initial assumptions.

In case (2), since $(k, v) \leq 2$, we have $k \leq 2 \log _{p} q$, contrary to $v<k^{2}$.
In case (3), 4 does not divide k, so k must divide 90, contrary to $v<k^{2}$.
Now let $2 m=6$. As $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$, from [15] either $G_{x} \cap X=J_{2}<$ $P S p_{6}(5)=X$, or $G_{x} \cap X=G_{2}(q)$ with q even. In the first case k divides $2 \cdot 3^{3} \cdot 7$, which is too small. In the second case $v=q^{3}\left(q^{4}-1\right) 4$, so $(k, q+1)=1$. Applying Lemma 9 to $G_{2}(q)$ we see that $\frac{q^{6}-1}{q-1}$ divides k, a contradiction.

If $2 m=8$ or 10 , then by [15] either $G_{x}=S_{10}<S p_{8}(2)=G$ or $G_{x}=S_{14}<$ $S p_{12}(2)=G$. In the first case k divides $2\left(v-1,\left|G_{x}\right|\right)=70$, which is too small. In the second case $(k, v) \leq 2$ implies that k divides $2 \cdot 7^{2} \cdot 11 \cdot 13$, also too small.

If $2 m \geq 12$, then by [18] we have $\left|G_{x}\right| \leq q^{4(m+1)}, G_{x}^{\prime}=A_{n+1}$ or A_{n+2}, or X or $G_{x} \cap X$ are $E_{7}(q) \leq P \operatorname{Sp}_{56}(q)$. The latter is not possible as here $k^{2}<v$, and the bound $\left|G_{x}\right|<q^{4(m+1)}$ forces $m<6$.

The only possibilities for the alternating groups are $q=2$, and $m=7,8$, or 9 , however in all these cases k is too small.

This completes the proof of Lemma 13.

$5 X$ is an orthogonal group of odd dimension

Here we consider $X=P \Omega_{2 m+1}(q)$, with q odd and $n=2 m+1 \geq 7$, (since $\Omega_{3}(q) \cong$ $L_{2}(q)$, and $\left.\Omega_{5}(q) \cong P S p_{4}(q)\right)$.

Lemma 14 The group X is not $P \Omega_{2 m+1}(q)$, with $n \geq 7$.
Proof Here, as in the symplectic case, we will consider G_{x} to be in each of the Aschbacher families of subgroups, and then to be a subgroup of G not contained in any of these families, and arrive at a contradiction in each case.
\mathcal{C}_{1}) If $G_{x} \in \mathcal{C}_{1}$, then G_{x} is either parabolic or it stabilises a nonsingular subspace of V.

First assume $G_{x}=P_{i}$, the stabiliser of a totally singular i-subspace of V. Then, as in the symplectic case, $v \equiv q+1(\bmod p q)$, so q is the highest power of p dividing $v-1$. By Lemma 10 there is a subdegree which is a power of p, therefore k divides $2 q$, contradicting $v<k^{2}$.

Now assume that $G_{x}=N_{i}^{\epsilon}$, the stabiliser of a nonsingular i-dimensional subspace W of V of $\operatorname{sign} \epsilon$ (if i is odd ϵ is the sign of W^{\perp}).

First let $i=1$. Then

$$
v=\frac{q^{m}\left(q^{m}+\epsilon\right)}{2}
$$

and the X-subdegrees are $\left(q^{m}-\epsilon\right)\left(q^{m}+\epsilon\right), \frac{q^{m-1}\left(q^{m}-\epsilon\right)}{2}$, and $\frac{q^{m-1}\left(q^{m}-\epsilon\right)(q-3)}{2}$. This implies that k divides $q^{m}-\epsilon$, contrary to $v<k^{2}$.

Hence $i \geq 2$. Let W be the i-space stabilised by G_{x} and choose $w \in W$ with $\mathcal{Q}(w)=1$, and $u \in W^{\perp}$ with $\mathcal{Q}(u)=-c$ for some non-square $c \in G F(q)$. Then $\langle v, w\rangle$ is of type N_{2}^{-}, and if $g \in G$ stabilises W^{\perp} pointwise but does not fix neither u
nor w, then $G_{x} \cap G_{x}^{g}$ contains $S O_{i-1}(q) \times S O_{n-i-1}(q)$. This implies $k \leq 4 q^{m} \log _{p} q$, but $v>q^{\frac{i(n-i)}{4}}$ implies q is odd and $m \geq 3$, this is contrary to $v<k^{2}$.
\mathcal{C}_{2}) If $G_{x} \in \mathcal{C}_{2}$ then G_{x} is the stabiliser of a subspace decomposition into isometric nonsingular spaces. From the inequality $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ it follows that the only possibilities are either:
$G_{x} \cap X=2^{6} A_{7}<\Omega_{7}(q)$ with q either 3 or 5 , or
$G_{x} \cap X=2^{n-1} A_{n}<\Omega_{n}$ (3) with $n=7,9$, or 11 .
In each case the fact that k divides $2(v-1)$ forces $v>k^{2}$, a contradiction.
\mathcal{C}_{3}) If $G_{x} \in \mathcal{C}_{3}$ then $G_{x} \cap X=\Omega_{a}\left(q^{t}\right) . t$ with $n=a t$. Since a and t are odd, $a=2 r+1<\frac{n}{2}$, so

$$
\left|G_{x}\right|_{p^{\prime}}=t \prod_{i=1}^{r}\left(q^{2 i t}-1\right)
$$

and since k divides $2\left(\left|G_{x}\right|_{p^{\prime}}, v-1\right)$, it is too small to satisfy $k^{2}>v$.
\mathcal{C}_{4}) If $G_{x} \in \mathcal{C}_{4}$ then it stabilises a tensor product of nonsingular subspaces, but these have to be of odd dimension and so G_{x} is too small.
\mathcal{C}_{5}) If $G_{x} \in \mathcal{C}_{5}$ then $G_{x} \cap X=\Omega_{n}\left(q_{0}\right) . a$, with $q=q_{0}^{b}$ for some prime b, and $a \leq 2$ with $a=2$ if and only $b=2$. The inequality $|G|<\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$, forces $b=2$. If $n=2 m+1$ then k divides $2\left|G_{x} \cap X\right|=q_{0}^{m^{2}}\left(q_{0}^{2 m}-1\right) \ldots\left(q_{0}^{2}-1\right)$, but $v=q^{m^{2}}\left(q_{0}^{2 m}+\right.$ 1) $\ldots\left(q_{0}^{2}+1\right)$, so k is prime to q and therefore $\left(v-1,\left(q^{2 m}-1\right) \ldots\left(q_{0}^{2}-1\right)\right)$ is too small.
$\left.\mathcal{C}_{6}\right), \mathcal{C}_{7}$), and \mathcal{C}_{8}) In the cases \mathcal{C}_{6} and \mathcal{C}_{8}, the classes are empty, and for \mathcal{C}_{7} we see $G_{x} \cap X$ stabilises the tensor product power of a non-singular space, but it is too small to satisfy $|G|<\left|G_{x}\right|^{3}$.
$\mathcal{S})$ Now consider the case in which G_{x} is a simple group not contained in any of the Aschbacher collection of subgroups of G. As in the symplectic section, we only need to consider the following possibilities:
(1) $G_{x} \cap X=G_{2}(q)<\Omega_{7}(q)=X$ with q odd,
(2) $G_{x} \cap X=S p_{6}(2)<\Omega_{7}(p)$ with p either 3 or 5 , or
(3) $G_{x} \cap X=S_{9}<\Omega_{7}$ (3).

In all three cases as k divides $2\left(v-1,\left|G_{x}\right|\right)$ it is too small.
This completes the proof of Lemma 14.

$6 X$ is an orthogonal group of even dimension

In this section $X=P \Omega_{2 m}^{\epsilon}(q)$, with $m \geq 4$. We write $\beta_{+}=\left\{e_{1}, f_{1}, \ldots, e_{m}, f_{m}\right\}$ for a standard basis for V in the $O_{2 m}^{+}$-case, and $\beta_{-}=\left\{e_{1}, f_{1}, \ldots, e_{m-1}, f_{m-1}, d, d^{\prime}\right\}$ in the $O_{2 m}^{-}$-case.

Lemma 15 The group X is not $P \Omega_{2 m}^{\epsilon}(q)$, with $m \geq 4$.

Proof As before, we take G_{x} to be in one of the Aschbacher families of subgroups of G, or a simple group not contained in any of these families, and analyse each case separately. We postpone until the end of the proof the case where $(m, \epsilon)=(4,+)$ and G contains a triality automorphism.
\mathcal{C}_{1}) If $G_{x} \in \mathcal{C}_{1}$ then we have two possibilities.
First assume G_{x} stabilises a totally singular i-space, and suppose that $i<m$. If $i=m-1$ and $\epsilon=+$, then $G_{x}=P_{m, m-1}$, otherwise $G_{x}=P_{i}$. In any case there is a unique subdegree of X that is a power of p (except in the case where $\epsilon=+, m$ is odd, and $G_{x}=P_{m}$ or P_{m-1}). On the other hand, the highest power of p dividing $v-1$ divides q^{2} or 8 , so k is too small.

Now consider $G_{x}=P_{m}$ in the case $X=P \Omega_{2 m}^{+}(q)$, and note that in this case P_{m-1} and P_{m} are the stabilisers of totally singular m-spaces from the two different X-orbits. If m is even then

$$
x=\left\langle e_{1}, \ldots, e_{m}\right\rangle, y=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

are in the same X-orbit, and the size of the G_{x}-orbit of y is a power of p. However the highest power of p dividing $v-1$ is q, so k is too small.

If m is odd, $m \geq 5$, then $v=\left(q^{m-1}+1\right)\left(q^{m-2}+1\right) \ldots(q+1)>q^{\frac{m(m-1)}{2}}$. Let

$$
x=\left\langle e_{1}, \ldots, e_{m}\right\rangle, y=\left\langle e_{1}, f_{2}, \ldots, f_{m}\right\rangle .
$$

Then x and y are in the same X-orbit, and the index of $G_{x y}$ in G_{x} has p^{\prime}-part dividing $q^{m}-1$. The highest power of p dividing $v-1$ is q so k divides $2 q\left(q^{m}-1\right)$, and the inequality $v<k^{2}$ implies $m=5$. In this case the action is of rank three, with nontrivial subdegrees

$$
\frac{q\left(q^{2}+1\right)\left(q^{5}-1\right)}{q-1} \quad \text { and } \quad \frac{q^{6}\left(q^{5}-1\right)}{q-1}
$$

Therefore k divides

$$
\frac{2 q\left(q^{5}-1\right)}{q-1}
$$

and $v<k^{2}$ implies k is either $2 q\left(q^{4}+q^{3}+q^{2}+q+1\right)$ or $q\left(q^{4}+q^{3}+q^{2}+q+1\right)$, but neither of these satisfies the equality $k(k-1)=2(v-1)$.

Now suppose $G_{x}=N_{i}$. First let $i=1$. The subdegrees of X are (see [5]):
$q^{2 m-2}-1, \frac{q^{m-1}\left(q^{m-1}+\epsilon\right)}{2}, \frac{q^{m-1}\left(q^{m-1}-\epsilon\right)(q-1)}{4}$, and $\frac{q^{m-1}\left(q^{m-1}+\epsilon\right)(q-3)}{4}$ if $q \equiv 1 \bmod 4$, $q^{2 m-2}-1, \frac{q^{m-1}\left(q^{m-1}-\epsilon\right)}{2}, \frac{q^{m-1}\left(q^{m-1}-\epsilon\right)(q-3)}{4}$, and $\frac{q^{m-1}\left(q^{m-1}+\epsilon\right)(q-3)}{4}$ if $q \equiv 3 \bmod 4$, and $q^{2 m-2}-1, \frac{q^{m}\left(q^{m-1}-\epsilon\right)}{2}$, and $\frac{q^{m-1}\left(q^{m-1}+\epsilon\right)(q-2)}{2}$ if q is even.

Here k divides twice the highest common factor of the subdegrees, and in every case this is too small for k to satisfy $v<k^{2}$.

Now let $G_{x}=N_{i}^{\epsilon_{1}}$, with $1<i \leq m$, and $\epsilon_{1}= \pm$ present only if i is even. If q is odd, as in the odd-dimensional case $S O_{i-1}(q) \times S O_{n-i-1}(q) \leq G_{x} \cap G_{x}^{g}$ for some
$g \in G \backslash G_{x}$. Since k and p are coprime $k<8 q^{m} \log _{p} q$, contrary to $v<k^{2}$. Now assume q is even. Then i is also even.

If $i=2$ then we can find $g_{1}, g_{2} \in G \backslash G_{x} \cap X$ such that $\left(G_{x} \cap X\right) \cap\left(G_{x} \cap\right.$ $X)^{g_{1}} \geq S O_{n-4}^{+}(q)$ and $\left(G_{x} \cap X\right) \cap\left(G_{x} \cap X\right)^{g_{2}} \geq S O_{n-4}^{-}(q)$. Therefore k divides $2\left(q-\epsilon_{1}\right)\left(q^{m-1}-\epsilon \epsilon_{1}\right)\left(\log _{2} q\right)_{2^{\prime}}$, so $k^{2}<v$.

If $2<i \leq m$ then we can find $g \in G \backslash G_{x} \cap X$ such that $\left(G_{x} \cap X\right) \cap\left(G_{x} \cap X\right)^{g} \geq$ $S O_{i-2}^{\epsilon_{1}}(q) \times S O_{n-i-2}^{\epsilon_{2}}(q)$, with $\epsilon_{2}=\epsilon \epsilon_{1}$. It follows that k divides

$$
\left(q^{\frac{i}{2}}-\epsilon_{1}\right)\left(q^{\frac{i-2}{2}}+\epsilon_{1}\right)\left(q^{\frac{n-i}{2}}+\epsilon_{2}\right)\left(q^{\frac{n-i-2}{2}}+\epsilon_{2}\right)\left(\log _{2} q\right)_{2^{\prime}}
$$

forcing $k^{2}<v$, a contradiction.
\mathcal{C}_{2}) If $G_{x} \in \mathcal{C}_{2}$ then G_{x} stabilises a decomposition $V=V_{1} \oplus \cdots \oplus V_{a}$ of subspaces of equal dimension, say b, so $n=a b$. Here we have three possibilities.

First assume all the V_{i} are nonsingular and isometric. (Also, if b is odd then so is q). If $b=1$ then the inequality $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ implies $G_{x} \cap X=2^{n-2} A_{n}$, with n being either 8 or 10 and X either $P \Omega_{8}^{+}(3)$ or $P \Omega_{10}^{-}(3)$ respectively. (Note that if $X=P \Omega_{8}^{+}(5)$ then the maximality of G_{x} in G forces $G \leq X .2$ ([16]), so G_{x} is too small). In the first case, k divides 112, and in the second it is a power of 2 . Both contradict the inequality $v<k^{2}$.

Now let $b=2$. If $q>2$ then we can find $g \in G \backslash G_{x}$ so that $G_{x} \cap G_{x}^{g}$ contains the stabiliser of $V_{3} \oplus \cdots \oplus V_{a}$. From this it follows that $k \leq 2 a(a-1)$. $(2(q+1))^{2} \mid$ Out $X \mid$, and from $v<k^{2}$ we obtain $n=8$ and $q=3$. If $q=2$ then we can find $g \in G \backslash G_{x}$ so that $G_{x} \cap G_{x}^{g}$ contains the stabiliser of $V_{4} \oplus \cdots \oplus V_{a}$, and in this case k is at most $2 a(a-1)(a-2)(2(q+1))^{3} \mid$ Out $X \mid$, and so $n=8$ or 10 . Using the condition that k divides $2(v-1)$ we rule out these three cases.

Finally let $b>2$. The inequality $|G|<2\left|G_{x} \| G_{x}\right|_{p^{\prime}}^{2}$ forces $b=m$, (and so $\epsilon=+$). Let δ be the type of the V_{i} if m is even. Assume first that $m=4$. Then

$$
v=\frac{q^{8}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)}{4}
$$

if $\delta=+$, and

$$
v=\frac{q^{8}\left(q^{6}-1\right)\left(q^{2}-1\right)}{4}
$$

if $\delta=-$. In the first case, $\left(q^{2}-1, v-1\right) \leq 2$ and 4 does not divide $v-1$, so k divides $6\left(\log _{p} q\right)_{2^{\prime}}$, contrary to $v<k^{2}$. In the latter case, v is even and divisible by $\left(q^{2}-1\right)$, and k divides the odd part of $3\left(q^{2}+1\right)^{2} \log _{p} q$, again contrary to $v<k^{2}$. Hence $m \geq 5$, and we argue as in \mathcal{C}_{1}.

In the case where m and q are odd, $a=2$, and V_{1}, V_{2} are similar but not isometric, we also argue as in \mathcal{C}_{1}.

Now consider the case $\epsilon=+, a=2$, and V_{1} and V_{2} totally singular. If $m=4$, then we can apply a triality automorphism of X to get to the case $G_{x}=N_{2}^{+}$, which we have ruled out in \mathcal{C}_{1}. Assume then that $m \geq 5$. Then

$$
v=\frac{q^{\frac{m(m-1)}{2}}\left(q^{m-1}+1\right)\left(q^{m-2}+1\right) \ldots(q+1)}{2^{e}}
$$

where e is either 0 or 1 ([17, 4.2.7]), so

$$
v>\frac{q^{m(m-1)}}{2}
$$

However, there exists $g \in G \backslash G_{x}$ such that $G L_{m-2}(q) \leq G_{x} \cap G_{x}^{g}$, and so k divides $2\left(q^{m}-1\right)\left(q^{m-1}-1\right) \log _{p} q$, and in fact $(k, v) \leq 2$ implies k divides twice the odd part of $\frac{\left(q^{m}-1\right)\left(q^{m-1}-1\right) \log _{p} q}{q+1}$, which is contrary to $k^{2}<v$.
\mathcal{C}_{3}) If $G_{x} \in \mathcal{C}_{3}$, then G_{x} is an extension field subgroup, and there are two possibilities ([17]).

First assume $G_{x}=N_{G}\left(\Omega_{\frac{n}{s}}^{\delta}\left(q^{s}\right)\right)$, with s a prime and $\delta= \pm$ if $\frac{n}{s}$ is even (and empty otherwise). The inequality $|G|<\left|G_{x}\right|^{3}$ forces $s=2$. If q is odd, then by Lemma 9 we see that a parabolic degree of G_{x} divides k, and so it follows that k is even, but since v is even then 4 does not divide k, which is a contradiction.

If q is even then m is also even, and

$$
v=\frac{q^{\frac{m^{2}}{2}}\left(q^{2 m-2}-1\right)\left(q^{2 m-2}-1\right) \ldots\left(q^{2}-1\right)}{2^{e}}
$$

with $e \leq 2$ ([17, 4.3.14,4.3.16]). As k divides $2(v-1)$ it is prime to $q^{2}-1$, and it follows that $k^{2}<v$, another contradiction.

Now let $G_{x}=N_{G}\left({ }^{\wedge} G U_{m}(q)\right)$, with $\epsilon=(-1)^{m}$. If q is odd, then as in the symplectic case $q+1$ divides v and k, which is a contradiction.

So let q be even. If $m=4$ then applying a triality automorphism of X the action of G becomes that of N_{2}^{-}, which has been ruled out in the case \mathcal{C}_{1}. So let $m \geq 5$. Now, G_{x} is the stabiliser of a hermitian form [,] on V over $G F\left(q^{2}\right)$ such that the quadratic form Q preserved by X satisfies $Q(v)=[v, v]$ for $v \in V$. Let W be a nonsingular 2-dimensional hermitian subspace over $G F\left(q^{2}\right)$. Then W over $G F(q)$ is of type O_{4}^{+}. The pointwise stabiliser of W^{\perp} in $G_{x} \cap X$ is $G U_{2}(q)$, which is properly contained in the pointwise stabiliser of W^{\perp} in X. Thus we can find $g \in G \backslash G_{x}$ so that $G U_{m-2}(q) \leq G_{x} \cap G_{x}^{g}$. Then k divides $2\left(q^{m}-(-1)^{m}\right)\left(q^{m-1}-(-1)^{m-1}\right) \log _{p} q$, contrary to $v<k^{2}$.
\mathcal{C}_{4}) If $G_{x} \in \mathcal{C}_{4}$ then G_{x} stabilises an asymmetric tensor product, so either $G_{x}=N_{G}\left(P S p_{a}(q) \times P S p_{b}(q)\right)$ with a and b distinct even numbers, or $G_{x}=$ $N_{G}\left(P \Omega_{a}^{\epsilon_{1}}(q) \times P \Omega_{b}^{\epsilon_{2}}(q)\right)$ with $a, b \geq 3$ and $n=a b$. The inequality $|G|<$ $2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ implies $n=8$ and $G_{x}=N_{G}\left(P S p_{2}(q) \times P S p_{4}(q)\right)$. Applying a triality automorphism of X, the action becomes that of N_{3}, a case that has been ruled out in \mathcal{C}_{1}.
\mathcal{C}_{5}) If $G_{x} \in \mathcal{C}_{5}$ then it is a subfield subgroup. The inequality $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ implies $G_{x} \cap X=P \Omega_{2 m}^{\delta}\left(q_{0}\right) .2^{e}<P \Omega_{2 m}^{+}(q)=X$, with $q=q_{0}^{2}$ and $e \leq 2([17,4.5 .10])$, so

$$
v>\frac{q_{0}^{2 m^{2}-m}}{4}
$$

Now, G_{x} stabilises a $G F\left(q_{0}\right)$-subspace V_{0} of V. Let U_{0} be a 2-subspace of V_{0} of type $O_{2}^{+}\left(q_{0}\right)$, and U a subspace of V of type $O_{2}^{+}(q)$ containing U_{0}. There exists
an element $g \in G \backslash G_{x}$ that stabilises U^{\perp} pointwise, from this it follows that $G_{x} \cap$ G_{x}^{g} involves $P \Omega_{2 m-2}^{\delta}\left(q_{0}\right)$. This implies that k divides $2\left(q_{0}^{m}-\delta\right)\left(q_{0}^{m-1}+\delta\right) \mid$ Out $X \mid$, which contradicts the inequality $v<k^{2}$.
\mathcal{C}_{6}) If $G_{x} \in \mathcal{C}_{6}$, it is an extraspecial normaliser. From $|G|<\left|G_{x}\right|^{3}$ we have $G_{x} \cap$ $X=2^{6} A_{8}<P \Omega_{8}^{+}(3)=X$. Applying a triality automorphism of X, we have one of the cases already ruled out in \mathcal{C}_{2}.
\mathcal{C}_{7}) If $G_{x} \in \mathcal{C}_{7}$, then it stabilises a symmetric tensor product of a spaces of dimen$\operatorname{sion} b$, with $n=b^{a}$. Here G_{x} is too small.
\mathcal{C}_{8}) In this case this class is empty.
\mathcal{S}) Now consider the case in which G_{x} is an almost simple group (modulo scalars) not contained in any of the Aschbacher subgroups of G. For $n \leq 10$, the subgroups G_{x} are listed in [15] and [16]. Since $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$, we have one of the following:
(1) $\Omega_{7}(q)<P \Omega_{8}^{+}(q)$,
(2) $\Omega_{8}^{+}(q)<P \Omega_{8}^{+}(q)$ with $q=3,5$, or 7 , or
(3) $A_{9}<\Omega_{8}^{+}(q), A_{12}<\Omega_{10}^{-}(2), A_{12}<P \Omega_{10}^{+}(3)$.

In the first case applying a triality automorphism gives an action on N_{1}, which was excluded in \mathcal{C}_{1}. In the second case the fact that k divides $2\left(\left|G_{x}\right|, v-1\right)$ implies k divides 20,6 , and $2 \cdot 3^{5} \cdot 5^{2}$, and so is too small. In the third case since 6 divides v, again k is too small.

So $n \geq 12$. If $n>14$, then by [18, Theorem 4.2] we need only to consider the cases in which G_{x}^{\prime} is alternating on the deleted permutation module, and in fact $A_{17}<$ $\Omega_{16}^{+}(2)$ is the only group which is big enough. Again, since v is divisible by $2 \cdot 3 \cdot 17$ we conclude k is too small. Now let $n=12$, respectively 14 . If X is alternating, we only have to consider $A_{13}<\Omega_{12}^{-}(2)$, respectively $A_{16}<\Omega_{14}^{+}(2)$, however k divides $2\left(v-1,\left|G_{x}\right|\right)$, so $k^{2}<v$, a contradiction. If X is not alternating, then again since $\left|G_{x}\right|<q^{2 n+4}$ by [18, Theorem 4.2] it follows that $\left|G_{x}\right|<q^{28}$, respectively $\left|G_{x}\right|<$ q^{32}. On the other hand, from $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ we obtain $\left|G_{x}\right|_{p^{\prime}}>\frac{q^{19}}{\sqrt{2}}$, respectively $\left|G_{x}\right|_{p^{\prime}}>q^{29}$. We can now see (cf. [19, Sections 2, 3, and 5]) that no sporadic or Lie type group will do for G_{x}.

Finally assume that $X=P \Omega_{8}^{+}(q)$, and G contains a triality automorphism. The maximal groups are determined in [16]. If $G_{x} \cap X$ is a parabolic subgroup of X, then it is either P_{2} or P_{134}. The first was ruled out in \mathcal{C}_{1}, so consider the latter. In this case

$$
v=\frac{\left(q^{6}-1\right)\left(q^{4}-1\right)}{(q-1)^{3}}>q^{11}
$$

and $(3, q) q$ is the highest power of p dividing $v-1$. Since X has a unique suborbit of size a power of p (by Lemma 10), we have $k<2 q(3, q)$, which contradicts $v<k^{2}$.

Now, by [16] and $|G|<\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$, the only cases we have to consider are $G_{2}(q)$ for any q and $\left(2^{9}\right) L_{3}(2)$ for $q=3$. In the first case,

$$
v=\frac{q^{6}\left(q^{4}-1\right)^{2}}{(q-1,2)^{2}}
$$

and Lemma 9 applied to $G_{2}(q)$ implies $G_{x B}$ is contained a parabolic subgroup, so $\frac{q^{6}-1}{q-1}$ divides k. However k is prime to $q+1$, which is a contradiction. In the second case, k divides 28 , which is too small.

This completes the proof of Lemma 15.

$7 X$ is a unitary group

Here $X=U_{n}(q)$ with $n \geq 3$, and $(n, q) \neq(3,2),(4,2)$, since these are isomorphic to $3^{2} \cdot Q_{8}$ and $P S p_{4}(3)$ respectively. We write $\beta=\left\{u_{1}, \ldots, u_{n}\right\}$ for an orthonormal basis of V.

Lemma 16 The group X is not $U_{n}(q)$, with $n \geq 3$ and $(n, q) \neq(3,2),(4,2)$.
Proof As we have done throughout, we will consider G_{x} to be in one of the Aschbacher families of subgroups of G, or a nonabelian simple group not contained in any of these families, and analyse each of these cases separately.
\mathcal{C}_{1}) If G_{x} is reducible, then it is either a parabolic subgroup P_{i}, or the stabiliser N_{i} of a nonsingular subspace.

First assume $G_{x}=P_{i}$ for some $i \leq \frac{n}{2}$. Then

$$
v=\frac{\left(q^{n}-(-1)^{n}\right)\left(q^{n-1}-(-1)^{n-1}\right) \ldots\left(q^{n-2 i+1}-(-1)^{n-2 i+1}\right)}{\left(q^{2 i}-1\right)\left(q^{2 i-2}-1\right) \ldots\left(q^{2}-1\right)}
$$

There is a unique subdegree which is a power of p. The highest power of p dividing $v-1$ is q^{2}, unless n is even and $i=\frac{n}{2}$, in which case it is q, or n is odd and $i=\frac{n-1}{2}$, in which case it is q^{3}. If $n=3$ then the action is 2-transitive, so consider $n>3$. Then $v>q^{i(2 n-3 i)}$, and so $v<k^{2}$, which is a contradiction.

Now suppose that $G_{x}=N_{i}$, with $i<\frac{n}{2}$, and take $x=\left\langle u_{1}, \ldots, u_{i}\right\rangle$. If we consider $y=\left\langle u_{1}, \ldots, u_{i-1}, u_{i+1}\right\rangle$, then k divides $2\left(q^{i}-(-1)^{i}\right)\left(q^{n-i}-(-1)^{n-i}\right)$. However in this case

$$
v=\frac{q^{i(n-1)}\left(q^{n}-(-1)^{n}\right) \ldots\left(q^{n-i+1}-(-1)^{n-i+1}\right)}{\left(q^{i}-(-1)^{i}\right) \ldots(q+1)}
$$

and $v<k^{2}$ implies $i=1$. Therefore k divides $2(q+1)\left(q^{n-1}-(-1)^{n-1}\right)$. Applying Lemma 9 to $U_{n-1}(q)$, we see k is divisible by the degree of a parabolic action of $U_{n-1}(q)$. We check the subdegrees, and by the fact that k divides $\left|G_{x}\right|^{2}$ as well as $k^{2}>v$ we conclude $n \leq 5$.

If $n=5$ then k divides $2(q+1)\left(q^{4}-1\right)$ and is divisible by $q^{3}+1$, which can only happen if $q=2$, but in this case none of the possibilities for k satisfy the equality $2(v-1)=k(k-1)$.

If $n=4$ then $q^{3}+1$ divides k, but $\left(2(v-1), q^{3}+1\right) \leq 2\left(q^{2}-q+1\right)$, which is a contradiction.

Finally, if $n=3$ then $q+1$ divides k, but $q+1$ is prime to $v-1$, which is another contradiction.
\mathcal{C}_{2}) If $G_{x} \in \mathcal{C}_{2}$, then it preserves a partition $V=V_{1} \oplus \cdots \oplus V_{a}$ of subspaces of the same dimension, say b, so $n=a b$ and either the v_{i} are nonsingular and the partition is orthogonal, or $a=2$ and the V_{i} are totally singular.

First assume that the V_{i} are nonsingular. If $b>1$, then taking

$$
x=\left\{\left\langle u_{1}, \ldots, u_{b}\right\rangle,\left\langle u_{b+1}, \ldots, u_{2 b}\right\rangle, \ldots\right\}
$$

and

$$
y=\left\{\left\langle u_{1}, \ldots, u_{b-1}, u_{b+1}\right\rangle,\left\langle u_{b}, u_{b+2}, \ldots, u_{2 b}\right\rangle, \ldots\right\},
$$

we see k divides $2 a(a-1)\left(q^{b}-(-1)^{b}\right)^{2}$. From the inequality $v<k^{2}$ we have $n=4$ and $b=2$. Therefore

$$
v=\frac{q^{4}\left(q^{4}-1\right)\left(q^{3}+1\right)}{2\left(q^{2}-1\right)(q+1)}
$$

and k divides $4\left(q^{2}-1\right)^{2}$. However, $(v-1, q+1)=(2, q+1)$, so k divides $16(q-1)^{2}$, which is contrary to $v<k^{2}$.

If $b=1$ then $G_{x} \cap X=(q+1)^{n-1} S_{n}$. First let $n=3$, with $q>2$. Then

$$
v=\frac{q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)}{6(q+1)^{2}}
$$

and k divides $12(q+1)^{2} \log _{p} q$. The inequality $v<k^{2}$ forces $q \leq 17$, but by the fact that k divides $2(v-1)$ we rule out all these values. Now let $n>3$, and let $x=\left\{\left\langle u_{1}\right\rangle,\left\langle u_{2}\right\rangle, \ldots,\left\langle u_{n}\right\rangle\right\}$. If $q>3$ let $W=\left\langle u_{1}, u_{2}\right\rangle$. If we take $g \in G \backslash G_{x}$ acting trivially on W^{\perp} we see k divides $n(n-1)(q+1)^{2}$, contrary to $v<k^{2}$. If $q \leq 3$ then let $W=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$. Taking $g \in G \backslash G_{x}$ acting trivially on W^{\perp} we see that now k divides $\frac{n(n-1)(n-2)(q+1)^{3}}{3}$, so $n \leq 6$ if $q=2$, or $n \leq 4$ if $q=2$. By the fact that k divides $2(v-1)$ we rule these cases out.

Now assume that $a=2$ and both the V_{i} 's are totally singular. Let $\left\{e_{1}, f_{1}, \ldots\right.$, $\left.e_{b}, f_{b}\right\}$ be a standard unitary basis. Take

$$
x=\left\{\left\langle e_{1}, \ldots, e_{b}\right\rangle,\left\langle f_{1}, \ldots, f_{b}\right\rangle\right\}, \text { and } y=\left\{\left\langle e_{1}, \ldots, e_{b-1}, f_{b}\right\rangle,\left\langle f_{1}, \ldots, f_{b-1}, e_{b}\right\rangle\right\}
$$

Then k divides $4\left(q^{n}-1\right)$. The inequality $v<k^{2}$ forces $n=4$, but then

$$
v=\frac{q^{4}\left(q^{3}+1\right)(q+1)}{2}
$$

so in fact k divides $2\left(q^{2}+1\right)(q-1)$, contrary to $v<k^{2}$.
\mathcal{C}_{3}) If $G_{x} \in \mathcal{C}_{3}$ then it is a field extension group for some field extension of $G F(q)$ of odd degree b. From the inequality $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ we have $b=3$ and $n=3$. Then

$$
v=\frac{q^{3}\left(q^{2}-1\right)(q+1)}{3}
$$

Therefore 4 does not divide k, and so $k<6 q^{2}\left(\log _{p} q\right)_{2^{\prime}}$. Since $v<k^{2}$, we have $q \leq 9$. With the condition that k divides $2(v-1)$ we rule out these cases.
\mathcal{C}_{4}) If $G_{x} \in \mathcal{C}_{4}$ then it is the stabiliser of a tensor product of two nonsingular subspaces of dimensions $a>b>1$, but then the inequality $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ is not satisfied.
\mathcal{C}_{5}) If $G_{x} \in \mathcal{C}_{5}$ then it is a subfield subgroup. We have three possibilities:
If G_{x} is a unitary group of dimension n over $G F\left(q_{0}\right)$, where $q=q_{0}^{b}$ with b an odd prime, then $|G|<\left|G_{x}\right|^{3}$ implies $b=3$. However $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ forces $q=8$ and $n \leq 4$, but in these cases since k divides $2(v-1)$ it is too small.

If $G_{x} \cap X=P S O_{n}^{\epsilon}(q) .2$, with n even and q odd, then by Lemma $6 k$ is divisible by the degree of a parabolic action of G_{x}. Here $q+1$ divides k, and $\frac{q+1}{(4, q+1)}$ divides v. The fact that k divides $2(v-1)$ forces $q=3$, so $v=2835$, but then $8 v-7$ is not a square, which is a contradiction.

Finally, if $G_{x}=N\left(P S p_{n}(q)\right)$, with n even, then by Lemma $9 G_{x B}$ is contained on some parabolic subgroup, so k is divisible by the degree of some parabolic action of G_{x}, and so is divisible by $q+1$. However v is divisible by $\frac{q+1}{(q+1,2)}$, contradicting the fact that k divides $2(v-1)$
\mathcal{C}_{6}) If $G_{x} \in \mathcal{C}_{6}$, then it is an extraspecial normaliser, and since $|G|<\left|G_{x}\right|^{3}$, we only have to consider the cases $G_{x} \cap X=3^{2} Q_{8}, 2^{4} A_{6}$, or $2^{4} S_{6}$, and $X=U_{3}(5)$, $U_{4}(3)$, and $U_{4}(7)$ respectively. In all cases the fact that k divides $2\left(\left|G_{x}\right|, v-1\right)$ forces $k^{2}<v$, a contradiction.
\mathcal{C}_{7}) If $G_{x} \in \mathcal{C}_{7}$, then it stabilises a tensor product decomposition of $V_{n}(q)$ into t subspaces V_{i} of dimension m each, so $n=m^{t}$. Since $m \geq 3$ and $t \geq 3$, we see $\left|G_{x}\right|$ is too small to satisfy $|G|<\left|G_{x}\right|^{3}$.
\mathcal{C}_{8}) This class is empty.
\mathcal{S}) Finally consider the case in which G_{x} is an almost simple group (modulo the scalars) not contained in any of the Aschbacher families of subgroups. For $n \leq 10$ the subgroups G_{x} are listed in [15, Chapter 5]. Since $|G|<\left|G_{x}\right|^{3}$, we only need to consider the following possibilities:
$L_{2}(7)$ in $U_{3}(3)$,
$A_{6} .2, L_{2}(7)$, and A_{7} in $U_{3}(5)$,
A_{6} in $U_{3}(11)$,
$L_{2}(7), A_{7}$, and $L_{2}(4)$ in $U_{4}(3)$,
$U_{4}(2)$ in $U_{4}(5)$,
$L_{2}(11)$ in $U_{5}(2)$, and
$U_{4}(3)$ and M_{22} in $U_{6}(2)$.
Since k divides $2\left(\left|G_{x}\right|, v-1\right)$, we have $k^{2}<v$ in all cases except in the case $L_{2}(7)<U_{3}(3)$. In this last case $v=36$, but then there is no k such that $k(k-1)=$ $2(v-1)$, which is a contradiction.

If $n \geq 14$, then by [18] we have $|G|>\left|G_{x}\right|^{3}$, a contradiction. Hence $n=11,12$, or 13. By [18], $\left|G_{x}\right|$ is bounded above by $q^{4 n+8}$, and $|G|<2\left|G_{x}\right|\left|G_{x}\right|_{p^{\prime}}^{2}$ implies $\left|G_{x}\right|_{p^{\prime}}$ is bounded below by q^{33}, q^{43}, or q^{53} respectively. Using the methods in $[18,19]$ we rule out all the almost simple groups G_{x}.

This completes the proof of Lemma 16, and hence if X is a simple classical group, then it is either $P S L_{2}(7)$ or $P S L_{2}(11)$.

Acknowledgements The results in the present paper were obtained with a grant from the Dirección General de Asuntos del Personal Académico, UNAM, during the course of my Ph.D. under the supervision of Martin W. Liebeck. I am very grateful to Martin for his most helpful ideas and guidance. I would also like to thank Jan Saxl for allowing me to view his notes before [27] was published, and Sasha Ivanov for providing me with these notes. Finally I thank the referees for their observations and suggestions, which have greatly improved this article.

References

1. Aschbacher, M. (1971). On collineation groups of symmetric block designs. J. Comb. Theory, 11, 272-281.
2. Aschbacher, M. (1984). On the maximal subgroups of the finite classical groups. Invent. Math., 76, 469-514.
3. Assmus, E. F. J., Mezzaroba, J. A., \& Salwach, C. J. (1977). Planes and biplanes. In Proceedings of the 1976 Berlin Combinatorics Conference. Vancerredle.
4. Assmus, E. F. Jr., \& Salwach, C. J. (1979). The (16,6,2) designs. Int. J. Math. Math. Sci., 2(2), 261281.
5. Bannai, E., Hao, S., \& Song, S.-Y. (1990). Character tables of the association schemes of finite orthogonal groups on the non-isotropic points. J. Comb. Theory Ser. A, 54, 164-200.
6. Cameron, P. J. (1973). Biplanes. Math. Z., 131, 85-101.
7. Colbourn, C. J., \& Dinitz, J. H. (1996). The CRC handbook of combinatorial designs. Boca Raton: CRC.
8. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., \& Wilson, R. A. (1985). Atlas of finite groups. London: Oxford University Press.
9. Davies, H. (1987). Flag-transitivity and primitivity. Discret. Math., 63, 91-93.
10. Denniston, R. H. F. (1980). On biplanes with 56 points. Ars. Comb., 9, 167-179.
11. Hall, M. Jr., Lane, R., \& Wales, D. (1970). Designs derived from permutation groups. J. Comb. Theory, 8, 12-22.
12. Huppert, B. (1967). Endliche Gruppen. Berlin: Springer.
13. Hussain, Q. M. (1945). On the totality of the solutions for the symmetrical incomplete block designs $\lambda=2, k=5$ or 6. Sankhya, 7, 204-208.
14. Kantor, W. (1985). Classification of 2-transitive symmetric designs. Graphs Comb., 1, 165-166.
15. Kleidman, P. B. (1987). The subgroup structure of some finite simple groups. PhD thesis, University of Cambridge.
16. Kleidman, P. B. (1987). The maximal subgroups of the finite 8 -dimensional orthogonal groups $P \Omega_{8}^{+}(q)$ and of their automorphism groups. J. Algebra, 110, 172-242.
17. Kleidman, P. B., \& Liebeck, M. W. (1990). The subgroup structure of the finite classical groups. London math. soc. lecture note series, Vol. 129. Cambridge: Cambridge Univ. Press.
18. Liebeck, M. W. (1985). On the orders of maximal subgroups of the finite classical groups. Proc. Lond. Math. Soc., 50, 426-446.
19. Liebeck, M. W. (1987). The affine permutation groups of rank 3. Proc. Lond. Math. Soc., 54, 477516.
20. Liebeck, M. W., \& Saxl, J. (1987). On the orders of maximal subgroups of the finite exceptional groups of Lie type. Proc. Lond. Math. Soc., 55, 299-330.
21. Liebeck, M. W., Saxl, J., \& Seitz, G. M. (1987). On the overgroups of irreducible subgroups of the finite classical groups. Proc. Lond. Math. Soc., 55, 507-537.
22. Liebeck, M. W., Praeger, C. E., \& Saxl, J. (1988). On the O'Nan-Scott theorem for finite primitive permutation groups. J. Aust. Math. Soc. (Ser. A), 44, 389-396.
23. Liebeck, M. W., Praeger, C. E., \& Saxl, J. (1988). On the 2-closures of finite permutation groups. J. Lond. Math. Soc., 37, 241-264.
24. O'Reilly Regueiro, E. (2005). On primitivity and reduction for flag-transitive symmetric designs. J. Comb. Theory Ser. A, 109, 135-148.
25. O'Reilly Regueiro, E. (2005). Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle. Eur. J. Comb., 26, 577-584.
26. Salwach, C. J., \& Mezzaroba, J. A. (1978). The four biplanes with $k=9$. J. Comb. Theory Ser. A, 24, 141-145.
27. Saxl, J. (2002). On finite linear spaces with almost simple flag-transitive automorphism groups. J. Comb. Theory Ser. A, 100(2), 322-348.
28. Seitz, G. M. (1973). Flag-transitive subgroups of Chevalley groups. Ann. Math., 97(1), 27-56.

Springer

[^0]: E. O'Reilly-Regueiro (\boxtimes)

 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico, DF 04510, Mexico
 e-mail: eugenia@matem.unam.mx

