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Abstract In this paper we prove that if a biplane D admits a flag-transitive automor-
phism group G of almost simple type with classical socle, then D is either the unique
(11,5,2) or the unique (7,4,2) biplane, and G ≤ PSL2(11) or PSL2(7), respectively.
Here if X is the socle of G (that is, the product of all its minimal normal subgroups),
then X � G ≤ AutG and X is a simple classical group.
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1 Introduction

A biplane is a (v, k,2)-symmetric design, that is, an incidence structure of v points
and v blocks such that every point is incident with exactly k blocks, and every pair
of blocks is incident with exactly two points. Points and blocks are interchangeable
in the previous definition, due to their dual role. A nontrivial biplane is one in which
2 < k < v − 1. A flag of a biplane D is an ordered pair (p,B) where p is a point
of D, B is a block of D, and they are incident. Hence if G is an automorphism group
of D, then G is flag-transitive if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are k = 3, 4, 5, 6,
9, 11, and 13 [7, pp. 76]. Due to arithmetical restrictions on the parameters, there are
no examples with k = 7, 8, 10, or 12.

For k = 3, 4, and 5 the biplanes are unique up to isomorphism [6], for k = 6 there
are exactly three non-isomorphic biplanes [13], for k = 9 there are exactly four non-
isomorphic biplanes [26], for k = 11 there are five known biplanes [3, 10, 11], and
for k = 13 there are two known biplanes [1], in this case, it is a biplane and its dual.
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In [24] it is shown that if a biplane admits an imprimitive, flag-transitive automor-
phism group, then it has parameters (16,6,2). There are three non-isomorphic biplanes
with these parameters [4], two of which admit flag-transitive automorphism groups
which are imprimitive on points, (namely 24S4 and (Z2 × Z8)S4 [24]). Therefore, if
any other biplane admits a flag-transitive automorphism group G, then G must be
primitive. The O’Nan-Scott Theorem classifies primitive groups into five types [22].
It is shown in [24] that if a biplane admits a flag-transitive, primitive, automorphism
group, it can only be of affine or almost simple type. The affine case was treated
in [24]. The almost simple case when the socle of G is an alternating or a sporadic
group was treated in [25], in which it is shown that no such biplane exists. Here we
treat the almost simple case when the socle X of G is a classical group. We now state
the main result of this paper:

Theorem 1 (Main Theorem) If D is a nontrivial biplane with a primitive, flag-
transitive automorphism group G of almost simple type with classical socle X, then
D has parameters either (7,4,2), or (11,5,2), and is unique up to isomorphism.

This, together with [24, Theorem 3] and [25, Theorem 1] yield the following:

Corollary 1 If D is a nontrivial biplane with a flag-transitive automorphism group
G, then one of the following holds:

(1) D has parameters (7,4,2),
(2) D has parameters (11,5,2),
(3) D has parameters (16,6,2),
(4) G ≤ A�L1(q), for some odd prime power q , or
(5) G is of almost simple type, and the socle X of G is an exceptional group of Lie

type.

For the purpose of proving our Main Theorem, we will consider D to be a nontriv-
ial biplane, with a primitive, flag-transitive, almost simple automorphism group G,
with simple socle X, such that X = Xd(q) is a simple classical group, with a natural
projective action on a vector space V of dimension d over the field Fq , where q = pe,
(p prime).

For this we will proceed as in [27], in which the case for finite linear spaces with
almost simple flag-transitive automorphism groups of Lie type is treated.

2 Preliminary results

In this section we state some preliminary results we will use throughout this paper.

Lemma 2 If D is a (v, k,2)-biplane, then 8v − 7 is a square.

Proof The result follows from [24, Lemma 3]. �

Corollary 3 If D is a flag-transitive (v, k,2)-biplane, then 2v < k2, and hence
2|G| < |Gx |3.
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Proof The equality k(k − 1) = 2(v − 1), implies k2 = 2v − 2 + k, so clearly 2v < k2.
The result follows from v = |G : Gx | and k ≤ |Gx |. �

From [9] we get the following two lemmas:

Lemma 4 If D is a biplane with a flag-transitive automorphism group G, then k

divides 2di for every subdegree di of G.

Lemma 5 If G is a flag-transitive automorphism group of a biplane D, then k divides
2 · gcd(v − 1, |Gx |).

Lemma 6 (Tits Lemma [28, 1.6]) If X is a simple group of Lie type in characteristic
p, then any proper subgroup of index prime to p is contained in a parabolic subgroup
of X.

Lemma 7 If X is a simple group of Lie type in characteristic 2, (X � A5 or A6), then
any proper subgroup H such that [X : H ]2 ≤ 2 is contained in a parabolic subgroup
of X.

Proof First assume X = Cln(q) is classical (q a power of 2), and take H maximal in
X. By Aschbacher’s Theorem [2], H is contained in a member of the collection C of
subgroups of �Ln(q), or in S , that is, H(∞) is quasisimple, absolutely irreducible,
and not realisable over any proper subfield of F(q).

We check for every family Ci that if H is contained in Ci , then 2|H |2 < |X|2,
except when H is parabolic.

Now we take H ∈ S . Then by [18, Theorem 4.2], |H | < q2n+4, or H and X are
as in [18, Table 4]. If |X|2 ≤ 2|H |2 ≤ q2n+4, then either X = Lε

n(q) and n ≤ 6, or
X = Spn(q) or P�ε

n(q) and n ≤ 10. We check the list of maximal subgroups of X

for n ≤ 10 in [15, Chapter 5], and we see that no group H satisfies 2|H |2 ≤ |X|2.
We then check the list of groups in [18, Table 4], and again, none of them satisfy this
bound.

Finally, assume X to be an exceptional group of Lie type in characteristic 2.
By [20], if 2|H | ≥ |X|2, then H is either contained in a parabolic subgroup, or H

and X are as in [20, Table 1]. Again, we check all the groups in [20, Table 1], and in
all cases 2|H |2 < |X|2. �

As a consequence, we have a strengthening of Corollary 3:

Corollary 8 Suppose D is a biplane with a primitive, flag-transitive almost simple
automorphism group G with simple socle X of Lie type in characteristic p, and the
stabiliser Gx is not a parabolic subgroup of G. If p is odd then p does not divide k;
and if p = 2 then 4 does not divide k. Hence |G| < 2|Gx ||Gx |2p′ .

Proof We know from Corollary 3 that |G| < |Gx |3. Now, by Lemma 6, p di-
vides v = [G : Gx]. Since k divides 2(v − 1), if p is odd then (k,p) = 1, and
if p = 2 then (k,p) ≤ 2. Hence k divides 2|Gx |p′ , and since 2v < k2, we have
|G| < 2|Gx ||Gx |2p′ . �
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From the previous results we have the following lemma, which will be quite useful
throughout this chapter:

Lemma 9 Suppose p divides v, and Gx contains a normal subgroup H of Lie type in
characteristic p which is quasisimple and p � |Z(H)|; then k is divisible by [H : P ],
for some parabolic subgroup P of H .

Proof The assumption that p divides v and the fact that k divides 2(v − 1) imply
(k,p) ≤ (2,p). Also, we know k = [Gx : Gx,B ] (where B is a block incident with
x), so [H : HB ] divides k, and therefore ([H : HB ],p) ≤ (2,p). By Lemmas 6 and 7
we conclude that HB is contained in a parabolic subgroup P of H , and P maximal
in H implies that HB is contained in P , so k is divisible by [H : P ]. �

Lemma 10 ([21, 3.9]) If X is a group of Lie type in characteristic p, acting on the
set of cosets of a maximal parabolic subgroup, and X is not PSLd(q), P�+

2m(q)

(with m odd), nor E6(q), then there is a unique subdegree which is a power of p.

3 X is a linear group

In this case we consider the socle of G to be PSLn(q), and β = {v1, v2, . . . , vn}
a basis for the natural n-dimensional vector space V for X.

Lemma 11 If the group X is PSL2(q), then it is one of the following:

(1) PSL2(7) acting on the (7,4,2) biplane with point stabiliser S4, or
(2) PSL2(11) acting on a (11,5,2) biplane with point stabiliser A5.

Proof Suppose X ∼= PSL2(q), (q = pm) is the socle of a flag-transitive automor-
phism group of a biplane D, so G ≤ P�L2(q). As G is primitive, Gx is a maximal
subgroup of G, and hence Xx is isomorphic to one of the following [12]: (Note that
|Gx | divides (2, q − 1)m|Xx |):
(1) A solvable group of index q + 1.
(2) D(2,q)(q−1).
(3) D(2,q)(q+1).
(4) L2(q0) if (r > 2), or PGL2(q0) if (r = 2), where q = qr

0 , r prime.
(5) S4 if q = p ≡ ±1 (mod 8).
(6) A4 if q = p ≡ 3,5,13,27,37 (mod 40).
(7) A5 if q ≡ ±1 (mod 10).

(1) Here v = q + 1, so k(k − 1) = 2(v − 1) = 2q , hence q = 3, but PSL2(3) is
not simple.

(2) and (3) The degrees in these cases are a triangular number, but the number of
points on a biplane is always one more than a triangular number.

(4) First assume r > 2. Clearly, q0 divides v = qr−1
0

( q2r
0 −1

q2
0 −1

)
, so k divides

2(v − 1,mq0(q
2
0 − 1)), hence k = 2m(q2

0 −1)

n
for some n. Say q0 = pb, so m = br

and (except for p = 2 and 2 ≤ b ≤ 4), we have b <
√

q0, (since b2 < pb = q0).
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Now, k2 > 2v implies

4m2(q2
0 − 1)2

n2
> 2qr−1

0

(
q2r

0 − 1

q2
0 − 1

)
,

so

n2 <
2m2(q2

0 − 1)3

(q2r
0 − 1)qr−1

0

.

First consider r > 3, so (r ≥ 5). Here qr
0 > b2r2 = m2. On the other hand, 2m2 >

qr−1
0 (q2r

0 −1)

(q2
0 −1)3 , therefore

2qr
0 <

qr−1
0 (q2r

0 − 1)

(q2
0 − 1)3

,

which is a contradiction.
Next consider r = 3. From k2 > 2v, we obtain 18b2(q2

0 −1)3 > n2q2
0 (q6

0 −1), this
together with b2 < q0, imply n2(q6

0 − 1) < 18q5
0 , therefore q0 ≤ 17. We check for all

possible values of q0 that 8v − 7 is not a square, contradicting Lemma 2.

Now assume r = 2. Then v = q0(q
2
0 +1)

(2,q−1)
. As q = q2

0 
= 2, we have m2 < q , so 4b2 <

q2
0 , which implies q0 
= 2.

First consider q even. From 2(v − 1) = k(k − 1), we have 2(q3
0 + q0 − 1) =

2m(q2
0 −1)

n

( 2m(q2
0 −1)

n
− 1

)
, however gcd(q3

0 + q0 − 1, q2
0 − 1) divides 3, which implies

k = 6m
t

, with t = 1,3.
If t = 3 then q3

0 + q0 − 1 = 2m2 − m = m(2m − 1) < 2m2, but m < q0, so this is
a contradiction.

If t = 1 then q3
0 + q0 − 1 = 18m2 − 6m, which implies q0 < 18, that is q0 = 4,8,

or 16. However m = 2b implies k = 12b, so v − 1 is divisible by 6, but this is not the
case for any of these values of q0.

Now consider q odd. The equality 2(v − 1) = k(k − 1) yields q3
0 + q0 − 2 =

4m2

n2 (q2
0 − 1)2 − 2m

n
(q2

0 − 1), and the inequality k2 > 2v implies 4m2

n2 (q2
0 − 1)2 >

q0(q
2
0 + 1). In this case m = 2b, so k = 4b(p2b−1)

n
, and v = p3b+pb

2 > b6+b2

2 , hence
we have the following inequalities:

b6 + b2 < p3b + pb <
4b(p2b − 1)

n
<

4b · p2b

n
.

This implies n(p3b+pb)

p2b < 4b, so n(pb + p
b
2 ) < 4b < 4p

b
2 , therefore n(p

b
2 + 1) < 4

which implies n = 1 = b, and p = 3, 5, or 7, but in all these cases k > v, which is a
contradiction.

(5) In this case q = p ≡ ±1 (mod 8), and m = 1, so G0 ∼= S4. We have q odd,

v = q(q2−1)
48 , and k divides 2

( q(q2−1)−48
48 ,24

)
, so k | 48. Now k2 > 2v implies q ≤ 37,

hence q = 7, 17, 23, or 31. The only one of these values for which 8v − 7 is a square
(Lemma 2) is q = 7, so v = 7 and k = 4, that is, we have the (7,4,2) biplane and
G = X ∼= PSL2(7).
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(6) Here q = p ≡ 3, 5, 13, 27, or 37 (mod 40), so m = 1 and Gx
∼= A4. Here

v = q(q2−1)
24 , and so k divides 2

( q(q2−1)−24
24 ,12

)
, so k | 24. As 2v < k2, we have

q = 3, 5, or 13. For q = 3 we have v = 1, which is a contradiction. For q = 5 we
have v = 5, but there is no such biplane. Finally, q = 13 implies v = 91, but then
8v − 7 is not a square, contradicting Lemma 2.

(7) Here q = p or p2 ≡ ±1 (mod 10), and v = q(q2−1)
120 , so k divides 120m, with

m = 1 or 2. The inequality 2v < k2 implies q3 − q < 60k2 < 60(120)2m2, so q = 9,
11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 81, 89, or 121. Of these, the only value for
which 8v − 7 is a square is q = 11. In this case, v = 11 and k = 5, that is, we have a
(11,5,2) biplane, with G = X ∼= PSL2(11), and Gx

∼= A5. �

This completes the proof of Lemma 11.

Lemma 12 The group X is not PSLn(q), with n > 2, and (n, q) 
= (3,2).

Proof Suppose X ∼= PSLn(q), with n > 2 and (n, q) 
= (3,2) (since PSL3(2) ∼=
PSL2(7)). We have q = pm, and take {v1, . . . , vn} to be a basis for the natural
n-dimensional vector space V for X. Since Gx is maximal in G, then by
Aschbacher’s Theorem [2], the stabiliser Gx lies in one of the families Ci of sub-
groups of �Ln(q), or in the set S of almost simple subgroups not contained in any
of these families. We will analyse each of these cases separately. In describing the
Aschbacher subgroups, we denote by Ĥ the pre-image of the group H in the corre-
sponding linear group.

C1) Here Gx is reducible. That is, Gx
∼= Pi stabilises a subspace of V of dimen-

sion i.
Suppose Gx

∼= P1. Then G is 2-transitive, and this case has already been done by
Kantor [14].

Now suppose Gx
∼= Pi (1 < i < n) fixes W , an i-subspace of V . We will assume

i ≤ n
2 since our arguments are arithmetic, and for i and n− i we have the same calcu-

lations. Considering the Gx -orbits of the i-spaces intersecting W in i−1-dimensional
spaces, we see k divides

2q(qi − 1)(qn−i − 1)

(q − 1)2
.

Also,

v = (qn − 1) . . . (qn−i+1 − 1)

(qi − 1) . . . (q − 1)
> qi(n−i),

but k2 > 2v, so either i = 3 and n < 10, or i = 2.
First assume i = 3 and q = 2.
If n = 9 then k = 22 · 32 · 72, but the equation k(k − 1) = 2(v − 1) does not hold.
If n = 8 then k = 4 · 7 · 31 but again the equation k(k − 1) = 2(v − 1) does not

hold.
For n = 7 k = 420 or 210, but again, k does not divide 2(v − 1).
Finally, if n = 6 then k = 196 or 98, but neither is a divisor of 2(v − 1).
Now assume i = 3 and q > 2. Then n = 6 or 7.
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If n = 7 then k divides

2

(
q(q3 − 1)(q4 − 1)

(q − 1)2
,
(q7 − 1)(q6 − 1)(q5 − 1)

(q3 − 1)(q2 − 1)(q − 1)
− 1

)
,

but then k2 < v, which is a contradiction.
If n = 6 then k divides

2

(
q(q3 − 1)2

(q − 1)2
,
(q6 − 1)(q5 − 1)(q4 − 1)

(q3 − 1)(q2 − 1)(q − 1)
− 1

)
,

But again k2 < 2v.

Hence i = 2. Here v = (qn−1)(qn−1−1)

(q2−1)(q−1)
, and G has suborbits with sizes:

|{2-subspaces H : dim(H ∩ W) = 1}| = q(q+1)(qn−2−1)
q−1 and

|{2-subspaces H : H ∩ W = 0}| = q4(qn−2−1)(qn−3−1)

(q2−1)(q−1)
.

If n is even then k divides q(qn−2−1)

(q2−1)
, since q + 1 is prime to (qn−3−1)

q−1 , this implies

k2 < v, which is a contradiction.

Hence n is odd, and k divides 2q(qn−2−1)
q−1 (q + 1, n−3

2 ).

First assume n = 5. Then v = (q2 + 1)(q4 + q3 + q2 + q + 1), and k divides
2q(q2 + q + 1). The fact that k2 > 2v forces k = 2q(q2 + q + 1).

The condition k(k − 1) = 2(v − 1) implies

4q2(q2 + q + 1)2 − 2q(q2 + q + 1) = 2(q6 + q5 + 2q4 + 2q3 + 2q2 + q),

so

(q2 + q + 1)
(

2q(q2 + q + 1) − 1
)

= (q5 + q4 + 2q3 + 2q2 + 2q + 1).

If we expand we get the following equality:

q5 + 3q4 + 4q3 + q2 − q − 2 = 0,

which is a contradiction. Therefore n ≥ 7. Here

v = (qn−1 + qn−2 + · · · + q + 1)(qn−3 + qn−5 + · · · + q2 + 1),

and k divides 2dc, where d = q(qn−3 + qn−4 + · · · + q + 1) and c = (q + 1, n−3
2 ).

Say k = 2dc
e

, then v < k2 forces e ≤ 2q . We have the following equality:

v − 1

d
= qn−2 + qn−4 + · · · + q3 + q + 1,

and also, since k(k − 1) = 2(v − 1), we have

k = 2(v − 1)

k
+ 1 = 2e(v − 1)

2dc
= eqn−2 + eqn−4 + · · · + eq3 + eq + e + c

c
.
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Now, (kc, d) divides d , and also
(kc, q(eqn−3 + eqn−5 + · · · + eq2 + e))

= (eqn−2 + eqn−4 + · · · + eq + e + c, q(eqn−3 + eqn−5 + · · · + eq2 + e))

= (eqn−2 + · · · + eq + e + c, e + c), and
(kc, ed

q
)

= (eqn−2 + · · · + eq + e + c, eqn−3 + eqn−4 + · · · + eq + e)

= (eqn−2 + · · · + eq + e + c, (2e + c)q + e + c).

Therefore k divides c(e + c)((2e + c)q + e + c), and since e ≤ 2q and c =(
q + 1, n−3

2

)
, the only possibilities for n and q are n = 7 and q ≤ 3, or n = 9 and

q = 2. However in none of these possibilities is 8v − 7 a square, again contradicting
Lemma 2.

C′
1) Here G contains a graph automorphism and Gx stabilises a pair {U,W } of

subspaces of dimension i and n− i, with i < n
2 . Write G0 for G∩P�Ln(q) of index

2 in G.
First assume U ⊂ W . By Lemma 10, there is a subdegree which is a power of p.

On the other hand, if p is odd then the highest power of p dividing v − 1 is q , it is 2q

if q > 2 is even, and is at most 2n−1 if q = 2. Hence k2 < v, which is a contradiction.
Now suppose V = U ⊕ W . Here p divides v, so (k,p) ≤ 2. First assume i = 1.

If x = {〈v1〉, 〈v2 . . . vn〉}, then consider y = {〈v1, . . . , vn−1〉, 〈vn〉}, so [Gx : Gxy] =
qn−2(qn−1−1)

q−1 and k divides 2(qn−1−1)
q−1 . However v = qn−1(qn−1)

q−1 > q2(n−1), which im-

plies k2 < v, a contradiction.
Now assume i > 1. Consider x = {〈v1, . . . , vi〉, 〈vi+1, . . . , vn〉} and y = {〈v1, . . . ,

vi−1, vi +vn〉, 〈vi+1, . . . , vn〉}. Then [G0
x : G0

xy]p′ divides 2(qi −1)(qn−i −1), which

implies k < 2qn, but v > q2i(n−i), so again k2 < v, a contradiction.
C2) Here Gx preserves a partition V = V1 ⊕ · · · ⊕ Va , with each Vi of the same

dimension, say, b, and n = ab.
First consider the case b = 1 and n = a, and let x = {〈v1〉, . . . , 〈vn〉} and y =

{〈v1 + v2〉, 〈v2〉, . . . , 〈vn〉}. Since n > 2, we see k divides 4n(n − 1)(q − 1) =
2[Gx : Gxy]. Now v >

qn(n−1)

n! and k2 > v, so n = 3 and q ≤ 4, that is v =
q3(q3−1)(q+1)

(3,q−1)6! . As k | 2(v − 1), only for q = 2 can k > 2, so consider q = 2. Then
k | 6 and v = 28, but there is no such value of k satisfying k(k − 1) = 2(v − 1).

Now let b > 1, and consider x = {〈v1, . . . , vb〉, 〈vb+1, . . . , v2b〉, . . .} and y =
{〈v1, . . . , vb−1, vb+1〉, 〈vb, vb+2, . . . , v2b〉, . . . , 〈vn−b+1, . . . , vn〉}. Then k divides
2a(a−1)(qb−1)2

q−1 , so v >
qn(n−b)

a! , forcing n = 4, q ≥ 5, and a = 2 = b. In none of these
cases can we obtain k > 2.

C3) In this case Gx is an extension field subgroup. Since 2|Gx ||Gx |2p′ > |G| by
Corollary 8, either:

(1) n = 3 and X ∩ Gx = (̂q2 + q + 1) · 3 < PSL3(q) = X, or
(2) n is even and Gx = NG( P̂ SLn

2
(q2)).

First consider case (1). Here v = q3(q2−1)(q−1)
3 , so k divides 6(q2 +q +1)(logp q),

and k2 > v implies q = 3, 4, 5, 8, 9, 11, 13, or 16. In none of these cases is 8v − 7 a
square.
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Now consider case (2) and write n = 2m. As p divides v, we have (k,p) ≤ 2. First
suppose n ≥ 8, and let W be a 2-subspace of V considered as a vector space over the
field of q2 elements, so that W is a 4-subspace over a field of q elements. If we con-
sider the stabiliser of W in Gx and in G then in GW \GxW there is an element g such
that Gx ∩ G

g
x contains the pointwise stabiliser of W in Gx as a subgroup. Therefore

k divides 2(qn − 1)(qn−2 − 1), contrary to 2v < k2, which is a contradiction.
Now let n = 6. Then since (k,p) ≤ 2, Lemma 9 implies k is divisible by the index

of a parabolic subgroup of Gx , so it is divisible by the primitive prime divisor q3 of
q3 − 1, but this divides the index of Gx in G, which is v, a contradiction.

Hence n = 4. Then v = q4(q3−1)(q−1)
2 , and so k is odd and prime to q − 1. The fact

that (v − 1, q + 1) = 1 implies k is also prime to q + 1, and hence k | (q2 + 1) logp q ,
contrary to k2 > 2v, another contradiction.

C4) Here Gx stabilises a tensor product of spaces of different dimensions, and
n ≥ 6. In all these cases v > k2.

C5) In this case Gx is the stabiliser in G of a subfield space. So Gx =
NG(PSLn(q0)), with q = qm

0 and m prime.
If m > 2 then 2|Gx ||Gx |2p′ > |G| forces n = 2, a contradiction.

Hence m = 2. If n = 3 then v = (q3
0 +1)(q2

0 +1)q3
0

(q0+1,3)
.

Since p divides v, we have (k,p) ≤ 2, so Lemma 9 implies GxB (where B is a
block incident with x) is contained in a parabolic subgroup of Gx . Therefore q2

0 +
q0 + 1 divides k, and (v − 1, q2

0 + q0 + 1) divides 2q0 + (q0 + 1,3), forcing q0 = 2
and v = 120, but then 8v − 7 is not a square.

If n = 4, then by Lemma 9 we see q2
0 + 1 divides k, but q2

0 + 1 also divides v,
which is a contradiction.

Hence n ≥ 5. Considering the stabilisers of a 2-dimensional subspace of V , we
see k divides 2(qn

0 − 1)(qn−1
0 − 1), but then k2 < v, which is also a contradiction.

C6) Here Gx is an extraspecial normaliser. Since 2|Gx ||Gx |2p′ > |G|, we have n ≤
4. Now, n > 2 implies that Gx ∩X is either 24A6 or 32Q8, with X either PSL4(5) or
PSL3(7) respectively. Since k divides 2(v − 1, |Gx |), we check that k ≤ 6, contrary
to k2 > 2v.

If n = 2 then Gx ∩ X = A4.a < L2(p) = X, with a = 2 precisely when p ≡ ±1
(mod 8), and a = 1 otherwise, (and there are a conjugacy classes in X). From |G| <

|Gx |3 we obtain p ≤ 13. If p = 7 then the action is 2-transitive. The remaining cases
are ruled out by the fact that k divides 2(v − 1, |Gx |), and k(k − 1) = 2(v − 1).

C7) Here Gx stabilises the tensor product of a spaces of the same dimension,
say b, and n = ba . Since |Gx |3 > |G|, we have n = 4 and Gx ∩ X = (PSL2(q) ×
PSL2(q))2d < X = PSL4(q), with d = (2, q − 1). Then v = q4(q2+1)(q3−1)

x
>

q9

x
,

with x = 2 unless q ≡ 1 (mod 4), in which case x = 4. Hence 4 � k, and so k divides

2(q2 − 1) logp q , and if q is odd then k divides
(q2−1) logp q

32 .

If q is odd, then k2 <
q9

32 <
q9

x
= v, a contradiction. Hence q is even, and so

k = 2(q2 − 1)2 logp q

r
,
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and since k2 > 2v we have r2 <
4(q+1)4 logp q

q5 , therefore q ≤ 32.
However, the five cases are dismissed by the fact that k divides 2(v − 1).
C8) Now consider Gx to be a classical group.

(1) First assume Gx is a symplectic group, so n is even. By Lemma 6 k is divisible by

a parabolic index in Gx . If n = 4 then v = q2(q3−1)
(2,q−1)

, and q4−1
q−1 divides k, however

(v − 1, q2 + 1) divides 2, which is a contradiction.

If n = 6 then v = q6(q5−1)(q3−1)
(3,q−1)

and q3 + 1 divides k, but q3 + 1 divides
2(v − 1) only if q = 2, so k = 9, too small.

Now suppose n ≥ 8. If we consider the stabilisers of a 4-dimensional subspace
of Gx and G, we see that k divides twice the odd part of (qn − 1)(qn−2 − 1).

Also, (k, q − 1) ≤ 2, so k divides 2 (qn−1)(qn−2−1)

(q−1)2 , and therefore k ≤ 8q2n−4. The

inequality k2 > 2v forces n = 8. In this case v = q12(q7−1)(q5−1)(q3−1)
(q−1,4)

which im-
plies q ≤ 3, and in neither of these two cases is 8v − 7 a square.

(2) Now let Gx be orthogonal. Then q is odd, since that is the case with odd dimen-
sion, and with even dimension it is a consequence of the maximality of Gx in G.
The case in which n = 4 and Gx is of type O+

4 will be investigated later, in all
other cases Lemma 6 implies that k is divisible by a parabolic index in Gx and is
therefore even, but it is not divisible by 4 since v is also even and (k, v) ≤ 2. This
and the fact that q does not divide k implies k < v, a contradiction.

(3) Finally let Gx be a unitary group over the field of q0 elements, where q = q2
0 .

If n ≥ 4 then considering the stabilisers of a nonsingular 2-subspace of V in
G and Gx , we see k divides 2(qn

0 − (−1)n)(qn−1
0 − (−1)n−1). The inequality

k2 > 2v forces n = 4, and in this case v = q6
0 (q4

0 +1)(q3
0 +1)(q2

0 +1)

(q0−1,4)
. Since k divides

2(q4
0 −1)(q3

0 +1) and (k, (q2
0 +1)(q0 −1) ≤ 2, we see k divides 2(q3

0 +1)(q0 +1),
so k2 ≤ 2v, a contradiction. Therefore n = 3, and by Lemma 6 q2

0 −q0 +1 divides

k, and k divides 2(v −1) with v = q3
0 (q3

0 −1)(q2
0 +1)

x
with x either 1 or 3. This implies

q0 = 2, but then v = 280, and 8v − 7 is not a square.

S) We finally consider the case where Gx is an almost simple group, (modulo the
scalars), not contained in the Aschbacher subgroups of G. From [18, Theorem 4.2]
we have the possibilities |Gx | < q2n+4, G′

x = An−1 or An−2, or Gx ∩ X and X are
as in [18, Table 4].

Also, |G| < |Gx |3 by Corollary 3 and |G| ≤ qn2−n−1, so n ≤ 7, and by the bound
2|Gx ||Gx |2p′ > |G| we need only to consider the following possibilities [15, Chapter
5]:

n = 2, and Gx ∩ X = A5, with q = 11, 19, 29, 31, 41, 59, 61, or 121.
n = 3, and Gx ∩ X = A6 < PSL3(4) = X.
n = 4, and Gx ∩ X = U4(2) < PSL4(7) = X.
In the first case, with A5 < L2(11) the action is 2-transitive. In the remaining

cases, the fact that k divides 2|Gx | and 2(v − 1) forces k2 < v, which is a contradic-
tion. �

This completes the proof of Lemma 12.
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4 X is a symplectic group

Here the socle of G is X = PSp2m(q), with m ≥ 2 and (m,q) 
= (2,2). As a standard
symplectic basis for V , we have β = {e1, f1, . . . , em,fm}.

Lemma 13 The group X is not PSp2m(q) with m ≥ 2, and (m,q) 
= (2,2).

Proof We will consider Gx to be in each of the Aschbacher families of subgroups,
and finally, an almost simple group not contained in any of the Aschbacher families
of G. In each case we will arrive at a contradiction.

When (p,2m) = (2,4) the group Sp4(2f ) admits a graph automorphism, this case
will be treated separately after the eight Aschbacher families of subgroups.

C1) If Gx ∈ C1, then Gx is reducible, so either it is parabolic or it stabilises a
nonsingular subspace of V .

First assume that Gx = Pi , the stabiliser of a totally singular i-subspace of V , with
i ≤ m. Then

v = (q2m − 1)(q2m−2 − 1) . . . (q2m−2i+2 − 1)

(qi − 1)(qi−1 − 1) . . . (q − 1)
.

From this we see v ≡ q + 1 (mod pq), so q is the highest power of p dividing
v − 1. By Lemma 10 there is a subdegree which is a power of p, and since k divides
twice every subdegree, k divides 2q , contrary to v < k2.

Now suppose that Gx = N2i , the stabiliser of a nonsingular 2i-subspace U of V ,
with m > 2i. Then p divides v, so (k,p) ≤ 2.

Take U = 〈e1, f1, . . . ei , fi〉, and W = 〈e1, f1, . . . ei−1, fi−1, ei+1, fi+1〉. The p′-
part of the size of the Gx -orbit containing W is

(q2i − 1)(q2m−2i − 1)

(q2 − 1)2
.

Since v < q4i(m−i), we can only have v < k2 if q = 2 and m = i + 1, which is a
contradiction.

C2) If Gx ∈ C2 then it preserves a partition V = V1 ⊕ · · · ⊕ Va of isomorphic
subspaces of V .

First assume all the Vj ’s to be totally singular subspaces of V of maximal dimen-
sion m. Then Gx ∩ X = ĜLm(q).2, and Gx maximal implies q is odd [17]. Then

v = q
m(m+1)

2 (qm + 1)(qm−1 + 1) . . . (q + 1)

2
>

qm(m+1)

2
,

and (k,p) = 1.
Let

x = {〈e1, . . . , em〉, 〈f1, . . . , fm〉},
and

y = {〈e1, . . . , em−1, fm〉, 〈f1, . . . , fm−1, em〉}.
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Then the p′-part of the Gx -orbit of y divides 2(qm − 1), and so k divides 4(qm − 1),
contrary to v < k2.

Now assume that each of the Vj ’s is nonsingular of dimension 2i, so Gx ∩ X =
Ŝp2i (q)wrSt , with it = m. Let

x = {〈e1, f1, . . . , ei, fi〉, 〈ei+1, fi+1, . . . , e2i , f2i〉, . . .},
and take

y = {〈e1, f1, . . . , ei, fi + ei+1〉, 〈ei+1, fi+1 − ei, ei+2, . . . , e2i , f2i〉, . . .}.
Considering the size of the Gx -orbit containing y, we see k divides

t (t − 1)(q2i − 1)2

q − 1
.

Now,

q2i2t (t−1)

t ! < v,

so v < k2 implies t !t4 > q2i2t (t−1)+2−8i , hence q2t (t−1)−6 < tt+4 and therefore t < 4.
First assume t = 3. Then by the above inequalities i = 1 and q = 2, but then Gx

is not maximal [8, p. 46], a contradiction.
Now let t = 2. Then k < 2q4i−1, so q4i2−8i+2 < 8 and therefore i ≤ 2.
If i = 2 then q = 2 and v = 45696 = 27 · 3 · 7 · 17, but then 8v − 7 is not a square,

which is a contradiction.
If i = 1 then X = PSp4(q),

v = q2(q2 + 1)

2
,

and k divides 2(q +1)2(q −1). Since k divides 2(v −1), we have k divides (q2(q2 +
1) − 2,2(q + 1)2(q − 1)), that is, k divides

((q2 + 2)(q2 − 1),2(q + 1)2(q − 1)) = (q2 − 1)(q2 + 2,2(q + 1)) ≤ 6(q2 − 1).

Therefore

k = 6(q2 − 1)

r
,

with 1 ≤ r ≤ 6. Now 2(v − 1) = (q2 + 2)(q2 − 1), and also 2(v − 1) = k(k − 1), but
we check that for all possible values of r this equality is not satisfied.

C3) If Gx ∈ C3, then it is an extension field subgroup, and there are two possibili-
ties.

Assume first that Gx ∩X = PSp2i (q
t ).t , with m = it and t a prime number. From

|G| < |Gx |3, we obtain t = 2 or 3.
If t = 3, then v < k2 implies i = 1, and so

Gx ∩ X = PSp2(q
3) < PSp6(q) = X,
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and

v = q6(q4 − 1)(q2 − 1)

3
.

This implies that k is coprime to q + 1, but applying Lemma 9 to PSp2(q
3) yields

q3 + 1 divides k, which is a contradiction.
If t = 2, then

v = q2i2
(q4i−2 − 1)(q4i−6 − 1) . . . (q6 − 1)(q2 − 1)

2
.

Consider the subgroup Sp2(q
2)◦Sp2i−2(q

2) of Gx ∩X. This is contained in Sp4(q)◦
Sp4i−4(q) in X. Taking g ∈ Sp4(q) \ Sp2(q

2), we see Sp2i−2(q
2) is contained in

Gx ∩ G
g
x , so k divides 2(q4i − 1) logp q . The inequality v < k2 forces i ≤ 2.

First assume i = 2. Then

v = q8(q6 − 1)(q2 − 1)

2

and k divides 2(q8 − 1) logp q , but since (k, v) ≤ 2 and q2 − 1 divides v, we see k

divides 2(q4 + 1)(q2 + 1) logp q , forcing q = 2. In this case v = 27 · 33 · 7 = 24192,
and k = 2 ·5 ·17 = 170 (otherwise k2 < v), but then k does not divide 2(v−1), which
is a contradiction.

Hence i = 1, so

v = q2(q2 − 1)

2
,

and Gx ∩ X = PSp2(q
2).2 < PSp4(q) = X, Therefore k divides 4q2(q4 − 1), but

since (k, v) ≤ 2, then k divides 4(q2 + 1), so k = 4(q2+1)
r

for some r ≤ 8 (since
v < k2). Now 2(v − 1) = k(k − 1), and also 2(v − 1) = (q2 − 2)(q2 + 1), so we have

r2(q2 − 2) = 16(q2 + 1) − 4r,

that is,

(r + 4)(r − 4)q2 = 2(8 + r(r − 2)).

This implies 4 < r ≤ 8, but solving the above equation for each of these possible
values of r gives non-integer values of q , a contradiction.

Now assume Gx ∩ X = ĜUm(q).2, with q odd. Since v is even, 4 does not divide
k. Also, k is prime to p, so by the Lemma 9, the stabiliser in Gx ∩ X of a block is
contained in a parabolic subgroup. But then q + 1 divides the indices of the parabolic
subgroups in the unitary group, so q + 1 divides k, but q + 1 also divides v, which is
a contradiction.

C4) If Gx ∈ C4, then Gx stabilises a decomposition of V as a tensor product of two
spaces of different dimensions, and Gx is too small to satisfy

|G| < 2|Gx ||Gx |2p′ .
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C5) If Gx ∈ C5, then Gx ∩ X = PSp2m(q0).a, with q = qb
0 for some prime b

and a ≤ 2, (with a = 2 if and only if b = 2 and q is odd). The inequality |G| <

2|Gx ||Gx |2p′ forces b = 2. Then

v = q
m2
2 (qm + 1) . . . (q + 1)

(2, q − 1)
>

q
m(2m+1)

2

2
.

Now Gx stabilises a GF(q0)-subspace W of V . Considering a nonsingular 2-di-
mensional subspace of W we see

Sp2(q0) ◦ Sp2m−2(q0) < Sp2(q) ◦ Sp2m−2(q) < X.

If we take g ∈ Sp2(q) \ Sp2(q0) then Sp2m−2(q0) < Gx ∩ G
g
x . This implies that

there is a subdegree of X with the p′-part dividing q2m
0 − 1, so k divides 2(qm −

1) logp q , contrary to v < k2.

C6) If Gx ∈ C6 then Gx ∩X = 22s
�−

2s (2).a, q is an odd prime, 2m = 2s , and a ≤ 2.
The inequality |G| < |Gx |3 implies s ≤ 3, and if s = 3 then q = 3, but then k is too
small. If s = 2 then q ≤ 11, but again k is too small in each of these cases.

C7) If Gx ∈ C7 then Gx = NG(PSp2a(q)2r2r−1Ar) and 2m = (2a)r ≥ 8, but this
is a contradiction since |G| < |Gx |3.

C8) If Gx ∈ C8 then Gx ∩ X = Oε
2m(q), with q even and 2m ≥ 4. We can assume

q > 2 as when q = 2 the action is 2-transitive and that has been done in [14]. Here

v = qm(qm + ε)

2
,

and from the proof of [23, Prop. 1] the subdegrees of X are (qm − ε)(qm+1 + ε)

and (q−2)
2 qm−1(qm − ε). This implies by Lemma 4 that k divides 2(qm − ε)(q −

2, qm−1 + ε). However, Lemma 9 implies k is divisible by the index of a parabolic
subgroup in Oε

2m(q), which is not the case.
p = m = 2. Here 2m = 4 and q is even, we have the following possibilities:
Gx normalises a Borel subgroup of X in G. Then v = (q + 1)(q3 + q2 + q + 1)

so 2q is the highest power of 2 dividing v − 1. But k is also a power of 2, contrary to
v < k2.

Gx ∩X = D2(q±1) wrS2. So k divides 2(q ±1)2 log2 q , too small to satisfy v < k2.
Gx ∩ X = (q2 + 1).4, which is too small.
S) Finally consider the case in which Gx ∈ S is an almost simple group (modulo

scalars) not contained in any of the Aschbacher subgroups of G. These subgroups are
listed in [15] for 2m ≤ 10.

First assume 2m = 4, so we have one of the following possibilities:

(1) Gx ∩ X = Sz(q) with q even,
(2) Gx ∩ X = PSL2(q) with q ≥ 5, or
(3) Gx ∩ X = A6.a with a ≤ 2 and q = p ≥ 5.

In case (1) v = q2(q2 − 1)(q + 1). Applying Lemma 9 to Sz(q), we see q2 + 1
divides k. Now (v − 1, q2 + 1) = (q − 2,5), so q = 2, contrary to our initial assump-
tions.
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In case (2), since (k, v) ≤ 2, we have k ≤ 2 logp q , contrary to v < k2.
In case (3), 4 does not divide k, so k must divide 90, contrary to v < k2.
Now let 2m = 6. As |G| < 2|Gx ||Gx |2p′ , from [15] either Gx ∩ X = J2 <

PSp6(5) = X, or Gx ∩ X = G2(q) with q even. In the first case k divides 2 · 33 · 7,
which is too small. In the second case v = q3(q4 − 1)4, so (k, q + 1) = 1. Applying

Lemma 9 to G2(q) we see that q6−1
q−1 divides k, a contradiction.

If 2m = 8 or 10, then by [15] either Gx = S10 < Sp8(2) = G or Gx = S14 <

Sp12(2) = G. In the first case k divides 2(v − 1, |Gx |) = 70, which is too small. In
the second case (k, v) ≤ 2 implies that k divides 2 · 72 · 11 · 13, also too small.

If 2m ≥ 12, then by [18] we have |Gx | ≤ q4(m+1), G′
x = An+1 or An+2, or X or

Gx ∩ X are E7(q) ≤ PSp56(q). The latter is not possible as here k2 < v, and the
bound |Gx | < q4(m+1) forces m < 6.

The only possibilities for the alternating groups are q = 2, and m = 7, 8, or 9,
however in all these cases k is too small. �

This completes the proof of Lemma 13.

5 X is an orthogonal group of odd dimension

Here we consider X = P�2m+1(q), with q odd and n = 2m + 1 ≥ 7, (since �3(q) ∼=
L2(q), and �5(q) ∼= PSp4(q)).

Lemma 14 The group X is not P�2m+1(q), with n ≥ 7.

Proof Here, as in the symplectic case, we will consider Gx to be in each of the
Aschbacher families of subgroups, and then to be a subgroup of G not contained in
any of these families, and arrive at a contradiction in each case.

C1) If Gx ∈ C1, then Gx is either parabolic or it stabilises a nonsingular subspace
of V .

First assume Gx = Pi , the stabiliser of a totally singular i-subspace of V . Then, as
in the symplectic case, v ≡ q + 1 (mod pq), so q is the highest power of p dividing
v − 1. By Lemma 10 there is a subdegree which is a power of p, therefore k divides
2q , contradicting v < k2.

Now assume that Gx = Nε
i , the stabiliser of a nonsingular i-dimensional subspace

W of V of sign ε (if i is odd ε is the sign of W⊥).
First let i = 1. Then

v = qm(qm + ε)

2
,

and the X-subdegrees are (qm − ε)(qm + ε), qm−1(qm−ε)
2 , and qm−1(qm−ε)(q−3)

2 . This
implies that k divides qm − ε, contrary to v < k2.

Hence i ≥ 2. Let W be the i-space stabilised by Gx and choose w ∈ W with
Q(w) = 1, and u ∈ W⊥ with Q(u) = −c for some non-square c ∈ GF(q). Then
〈v,w〉 is of type N−

2 , and if g ∈ G stabilises W⊥ pointwise but does not fix neither u
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nor w, then Gx ∩G
g
x contains SOi−1(q)×SOn−i−1(q). This implies k ≤ 4qm logp q ,

but v > q
i(n−i)

4 implies q is odd and m ≥ 3, this is contrary to v < k2.
C2) If Gx ∈ C2 then Gx is the stabiliser of a subspace decomposition into isometric

nonsingular spaces. From the inequality |G| < 2|Gx ||Gx |2p′ it follows that the only
possibilities are either:

Gx ∩ X = 26A7 < �7(q) with q either 3 or 5, or
Gx ∩ X = 2n−1An < �n(3) with n = 7, 9, or 11.

In each case the fact that k divides 2(v − 1) forces v > k2, a contradiction.
C3) If Gx ∈ C3 then Gx ∩ X = �a(q

t ).t with n = at . Since a and t are odd,
a = 2r + 1 < n

2 , so

|Gx |p′ = t

r∏

i=1

(q2it − 1),

and since k divides 2(|Gx |p′ , v − 1), it is too small to satisfy k2 > v.
C4) If Gx ∈ C4 then it stabilises a tensor product of nonsingular subspaces, but

these have to be of odd dimension and so Gx is too small.
C5) If Gx ∈ C5 then Gx ∩ X = �n(q0).a, with q = qb

0 for some prime b, and
a ≤ 2 with a = 2 if and only b = 2. The inequality |G| < |Gx ||Gx |2p′ forces b = 2. If

n = 2m+1 then k divides 2|Gx ∩X| = qm2

0 (q2m
0 −1) . . . (q2

0 −1), but v = qm2
(q2m

0 +
1) . . . (q2

0 + 1), so k is prime to q and therefore (v − 1, (q2m − 1) . . . (q2
0 − 1)) is too

small.
C6), C7), and C8) In the cases C6 and C8, the classes are empty, and for C7 we see

Gx ∩X stabilises the tensor product power of a non-singular space, but it is too small
to satisfy |G| < |Gx |3.

S) Now consider the case in which Gx is a simple group not contained in any of
the Aschbacher collection of subgroups of G. As in the symplectic section, we only
need to consider the following possibilities:

(1) Gx ∩ X = G2(q) < �7(q) = X with q odd,
(2) Gx ∩ X = Sp6(2) < �7(p) with p either 3 or 5, or
(3) Gx ∩ X = S9 < �7(3).

In all three cases as k divides 2(v − 1, |Gx |) it is too small. �

This completes the proof of Lemma 14.

6 X is an orthogonal group of even dimension

In this section X = P�ε
2m(q), with m ≥ 4. We write β+ = {e1, f1, . . . , em,fm} for

a standard basis for V in the O+
2m-case, and β− = {e1, f1, . . . , em−1, fm−1, d, d ′} in

the O−
2m-case.

Lemma 15 The group X is not P�ε
2m(q), with m ≥ 4.
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Proof As before, we take Gx to be in one of the Aschbacher families of subgroups
of G, or a simple group not contained in any of these families, and analyse each case
separately. We postpone until the end of the proof the case where (m, ε) = (4,+) and
G contains a triality automorphism.

C1) If Gx ∈ C1 then we have two possibilities.
First assume Gx stabilises a totally singular i-space, and suppose that i < m. If

i = m − 1 and ε = +, then Gx = Pm,m−1, otherwise Gx = Pi . In any case there is
a unique subdegree of X that is a power of p (except in the case where ε = +, m

is odd, and Gx = Pm or Pm−1). On the other hand, the highest power of p dividing
v − 1 divides q2 or 8, so k is too small.

Now consider Gx = Pm in the case X = P�+
2m(q), and note that in this case

Pm−1 and Pm are the stabilisers of totally singular m-spaces from the two different
X-orbits. If m is even then

x = 〈e1, . . . , em〉, y = 〈f1, . . . , fm〉
are in the same X-orbit, and the size of the Gx -orbit of y is a power of p. However
the highest power of p dividing v − 1 is q , so k is too small.

If m is odd, m ≥ 5, then v = (qm−1 + 1)(qm−2 + 1) . . . (q + 1) > q
m(m−1)

2 . Let

x = 〈e1, . . . , em〉, y = 〈e1, f2, . . . , fm〉.
Then x and y are in the same X-orbit, and the index of Gxy in Gx has p′-part dividing
qm − 1. The highest power of p dividing v − 1 is q so k divides 2q(qm − 1), and
the inequality v < k2 implies m = 5. In this case the action is of rank three, with
nontrivial subdegrees

q(q2 + 1)(q5 − 1)

q − 1
and

q6(q5 − 1)

q − 1
.

Therefore k divides

2q(q5 − 1)

q − 1
,

and v < k2 implies k is either 2q(q4 + q3 + q2 + q + 1) or q(q4 + q3 + q2 + q + 1),
but neither of these satisfies the equality k(k − 1) = 2(v − 1).

Now suppose Gx = Ni . First let i = 1. The subdegrees of X are (see [5]):

q2m−2 − 1, qm−1(qm−1+ε)
2 , qm−1(qm−1−ε)(q−1)

4 , and qm−1(qm−1+ε)(q−3)
4 if q ≡ 1 mod 4,

q2m−2 − 1, qm−1(qm−1−ε)
2 , qm−1(qm−1−ε)(q−3)

4 , and qm−1(qm−1+ε)(q−3)
4 if q ≡ 3 mod 4,

and
q2m−2 − 1, qm(qm−1−ε)

2 , and qm−1(qm−1+ε)(q−2)
2 if q is even.

Here k divides twice the highest common factor of the subdegrees, and in every
case this is too small for k to satisfy v < k2.

Now let Gx = N
ε1
i , with 1 < i ≤ m, and ε1 = ± present only if i is even. If q is

odd, as in the odd-dimensional case SOi−1(q) × SOn−i−1(q) ≤ Gx ∩ G
g
x for some
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g ∈ G \ Gx . Since k and p are coprime k < 8qm logp q , contrary to v < k2. Now
assume q is even. Then i is also even.

If i = 2 then we can find g1, g2 ∈ G \ Gx ∩ X such that (Gx ∩ X) ∩ (Gx ∩
X)g1 ≥ SO+

n−4(q) and (Gx ∩ X) ∩ (Gx ∩ X)g2 ≥ SO−
n−4(q). Therefore k divides

2(q − ε1)(q
m−1 − εε1)(log2 q)2′ , so k2 < v.

If 2 < i ≤ m then we can find g ∈ G \ Gx ∩ X such that (Gx ∩ X) ∩ (Gx ∩ X)g ≥
SO

ε1
i−2(q) × SO

ε2
n−i−2(q), with ε2 = εε1. It follows that k divides

(
q

i
2 − ε1

)(
q

i−2
2 + ε1

)(
q

n−i
2 + ε2

)(
q

n−i−2
2 + ε2

)
(log2 q)2′ ,

forcing k2 < v, a contradiction.
C2) If Gx ∈ C2 then Gx stabilises a decomposition V = V1 ⊕· · ·⊕Va of subspaces

of equal dimension, say b, so n = ab. Here we have three possibilities.
First assume all the Vi are nonsingular and isometric. (Also, if b is odd then so

is q). If b = 1 then the inequality |G| < 2|Gx ||Gx |2p′ implies Gx ∩X = 2n−2An, with

n being either 8 or 10 and X either P�+
8 (3) or P�−

10(3) respectively. (Note that if
X = P�+

8 (5) then the maximality of Gx in G forces G ≤ X.2 ([16]), so Gx is too
small). In the first case, k divides 112, and in the second it is a power of 2. Both
contradict the inequality v < k2.

Now let b = 2. If q > 2 then we can find g ∈ G \ Gx so that Gx ∩ G
g
x con-

tains the stabiliser of V3 ⊕ · · · ⊕ Va . From this it follows that k ≤ 2a(a − 1).
(2(q + 1))2|OutX|, and from v < k2 we obtain n = 8 and q = 3. If q = 2 then
we can find g ∈ G \ Gx so that Gx ∩ G

g
x contains the stabiliser of V4 ⊕ · · · ⊕ Va , and

in this case k is at most 2a(a − 1)(a − 2)(2(q + 1))3|OutX|, and so n = 8 or 10.
Using the condition that k divides 2(v − 1) we rule out these three cases.

Finally let b > 2. The inequality |G| < 2|Gx ||Gx |2p′ forces b = m, (and so ε = +).
Let δ be the type of the Vi if m is even. Assume first that m = 4. Then

v = q8(q2 + 1)2(q4 + q2 + 1)

4

if δ = +, and

v = q8(q6 − 1)(q2 − 1)

4

if δ = −. In the first case, (q2 − 1, v − 1) ≤ 2 and 4 does not divide v − 1, so k

divides 6(logp q)2′ , contrary to v < k2. In the latter case, v is even and divisible by
(q2 − 1), and k divides the odd part of 3(q2 + 1)2 logp q , again contrary to v < k2.
Hence m ≥ 5, and we argue as in C1.

In the case where m and q are odd, a = 2, and V1, V2 are similar but not isometric,
we also argue as in C1.

Now consider the case ε = +, a = 2, and V1 and V2 totally singular. If m = 4,
then we can apply a triality automorphism of X to get to the case Gx = N+

2 , which
we have ruled out in C1. Assume then that m ≥ 5. Then

v = q
m(m−1)

2 (qm−1 + 1)(qm−2 + 1) . . . (q + 1)

2e
,



J Algebr Comb (2007) 26: 529–552 547

where e is either 0 or 1 ([17, 4.2.7]), so

v >
qm(m−1)

2
.

However, there exists g ∈ G \ Gx such that GLm−2(q) ≤ Gx ∩ G
g
x , and so k

divides 2(qm −1)(qm−1 −1) logp q , and in fact (k, v)≤2 implies k divides twice the

odd part of
(qm−1)(qm−1−1) logp q

q+1 , which is contrary to k2 < v.

C3) If Gx ∈ C3, then Gx is an extension field subgroup, and there are two possibil-
ities ([17]).

First assume Gx = NG(�δ
n
s
(qs)), with s a prime and δ = ± if n

s
is even (and empty

otherwise). The inequality |G| < |Gx |3 forces s = 2. If q is odd, then by Lemma 9
we see that a parabolic degree of Gx divides k, and so it follows that k is even, but
since v is even then 4 does not divide k, which is a contradiction.

If q is even then m is also even, and

v = q
m2
2 (q2m−2 − 1)(q2m−2 − 1) . . . (q2 − 1)

2e
,

with e ≤ 2 ([17, 4.3.14,4.3.16]). As k divides 2(v − 1) it is prime to q2 − 1, and it
follows that k2 < v, another contradiction.

Now let Gx = NG( ĜUm(q)), with ε = (−1)m. If q is odd, then as in the sym-
plectic case q + 1 divides v and k, which is a contradiction.

So let q be even. If m = 4 then applying a triality automorphism of X the action
of G becomes that of N−

2 , which has been ruled out in the case C1. So let m ≥ 5.
Now, Gx is the stabiliser of a hermitian form [, ] on V over GF(q2) such that the
quadratic form Q preserved by X satisfies Q(v) = [v, v] for v ∈ V . Let W be a
nonsingular 2-dimensional hermitian subspace over GF(q2). Then W over GF(q) is
of type O+

4 . The pointwise stabiliser of W⊥ in Gx ∩ X is GU2(q), which is properly
contained in the pointwise stabiliser of W⊥ in X. Thus we can find g ∈ G \ Gx so
that GUm−2(q) ≤ Gx ∩G

g
x . Then k divides 2(qm−(−1)m)(qm−1 −(−1)m−1) logp q ,

contrary to v < k2.
C4) If Gx ∈ C4 then Gx stabilises an asymmetric tensor product, so either

Gx = NG(PSpa(q) × PSpb(q)) with a and b distinct even numbers, or Gx =
NG(P�

ε1
a (q) × P�

ε2
b (q)) with a, b ≥ 3 and n = ab. The inequality |G| <

2|Gx ||Gx |2p′ implies n = 8 and Gx = NG(PSp2(q) × PSp4(q)). Applying a
triality automorphism of X, the action becomes that of N3, a case that has been
ruled out in C1.

C5) If Gx ∈ C5 then it is a subfield subgroup. The inequality |G| < 2|Gx ||Gx |2p′ im-

plies Gx ∩X = P�δ
2m(q0).2e < P�+

2m(q) = X, with q = q2
0 and e ≤ 2 ([17, 4.5.10]),

so

v >
q2m2−m

0

4
.

Now, Gx stabilises a GF(q0)-subspace V0 of V . Let U0 be a 2-subspace of V0 of
type O+

2 (q0), and U a subspace of V of type O+
2 (q) containing U0. There exists
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an element g ∈ G \ Gx that stabilises U⊥ pointwise, from this it follows that Gx ∩
G

g
x involves P�δ

2m−2(q0). This implies that k divides 2(qm
0 − δ)(qm−1

0 + δ)|OutX|,
which contradicts the inequality v < k2.

C6) If Gx ∈ C6, it is an extraspecial normaliser. From |G| < |Gx |3 we have Gx ∩
X = 26A8 < P�+

8 (3) = X. Applying a triality automorphism of X, we have one of
the cases already ruled out in C2.

C7) If Gx ∈ C7, then it stabilises a symmetric tensor product of a spaces of dimen-
sion b, with n = ba . Here Gx is too small.

C8) In this case this class is empty.
S) Now consider the case in which Gx is an almost simple group (modulo scalars)

not contained in any of the Aschbacher subgroups of G. For n ≤ 10, the subgroups
Gx are listed in [15] and [16]. Since |G| < 2|Gx ||Gx |2p′ , we have one of the follow-
ing:

(1) �7(q) < P�+
8 (q),

(2) �+
8 (q) < P�+

8 (q) with q = 3, 5, or 7, or
(3) A9 < �+

8 (q),A12 < �−
10(2),A12 < P�+

10(3).

In the first case applying a triality automorphism gives an action on N1, which
was excluded in C1. In the second case the fact that k divides 2(|Gx |, v − 1) implies
k divides 20, 6, and 2 · 35 · 52, and so is too small. In the third case since 6 divides v,
again k is too small.

So n ≥ 12. If n > 14, then by [18, Theorem 4.2] we need only to consider the cases
in which G′

x is alternating on the deleted permutation module, and in fact A17 <

�+
16(2) is the only group which is big enough. Again, since v is divisible by 2 · 3 · 17

we conclude k is too small. Now let n = 12, respectively 14. If X is alternating, we
only have to consider A13 < �−

12(2), respectively A16 < �+
14(2), however k divides

2(v − 1, |Gx |), so k2 < v, a contradiction. If X is not alternating, then again since
|Gx | < q2n+4 by [18, Theorem 4.2] it follows that |Gx | < q28, respectively |Gx | <

q32. On the other hand, from |G| < 2|Gx ||Gx |2p′ we obtain |Gx |p′ >
q19√

2
, respectively

|Gx |p′ > q29. We can now see (cf. [19, Sections 2, 3, and 5]) that no sporadic or Lie
type group will do for Gx .

Finally assume that X = P�+
8 (q), and G contains a triality automorphism. The

maximal groups are determined in [16]. If Gx ∩X is a parabolic subgroup of X, then
it is either P2 or P134. The first was ruled out in C1, so consider the latter. In this case

v = (q6 − 1)(q4 − 1)

(q − 1)3
> q11,

and (3, q)q is the highest power of p dividing v −1. Since X has a unique suborbit of
size a power of p (by Lemma 10), we have k < 2q(3, q), which contradicts v < k2.

Now, by [16] and |G| < |Gx ||Gx |2p′ , the only cases we have to consider are G2(q)

for any q and (29)L3(2) for q = 3. In the first case,

v = q6(q4 − 1)2

(q − 1,2)2
,
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and Lemma 9 applied to G2(q) implies GxB is contained a parabolic subgroup, so
q6−1
q−1 divides k. However k is prime to q + 1, which is a contradiction. In the second

case, k divides 28, which is too small.
�

This completes the proof of Lemma 15.

7 X is a unitary group

Here X = Un(q) with n ≥ 3, and (n, q) 
= (3,2), (4,2), since these are isomorphic
to 32.Q8 and PSp4(3) respectively. We write β = {u1, . . . , un} for an orthonormal
basis of V .

Lemma 16 The group X is not Un(q), with n ≥ 3 and (n, q) 
= (3,2), (4,2).

Proof As we have done throughout, we will consider Gx to be in one of the Asch-
bacher families of subgroups of G, or a nonabelian simple group not contained in any
of these families, and analyse each of these cases separately.

C1) If Gx is reducible, then it is either a parabolic subgroup Pi , or the stabiliser
Ni of a nonsingular subspace.

First assume Gx = Pi for some i ≤ n
2 . Then

v = (qn − (−1)n)(qn−1 − (−1)n−1) . . . (qn−2i+1 − (−1)n−2i+1)

(q2i − 1)(q2i−2 − 1) . . . (q2 − 1)
.

There is a unique subdegree which is a power of p. The highest power of p di-
viding v − 1 is q2, unless n is even and i = n

2 , in which case it is q , or n is odd and
i = n−1

2 , in which case it is q3. If n = 3 then the action is 2-transitive, so consider
n > 3. Then v > qi(2n−3i), and so v < k2, which is a contradiction.

Now suppose that Gx = Ni , with i < n
2 , and take x = 〈u1, . . . , ui〉. If we consider

y = 〈u1, . . . , ui−1, ui+1〉, then k divides
2(qi − (−1)i)(qn−i − (−1)n−i ). However in this case

v = qi(n−1)(qn − (−1)n) . . . (qn−i+1 − (−1)n−i+1)

(qi − (−1)i) . . . (q + 1)
,

and v < k2 implies i = 1. Therefore k divides 2(q + 1)(qn−1 − (−1)n−1). Applying
Lemma 9 to Un−1(q), we see k is divisible by the degree of a parabolic action of
Un−1(q). We check the subdegrees, and by the fact that k divides |Gx |2 as well as
k2 > v we conclude n ≤ 5.

If n = 5 then k divides 2(q +1)(q4 −1) and is divisible by q3 +1, which can only
happen if q = 2, but in this case none of the possibilities for k satisfy the equality
2(v − 1) = k(k − 1).

If n = 4 then q3 + 1 divides k, but (2(v − 1), q3 + 1) ≤ 2(q2 − q + 1), which is a
contradiction.
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Finally, if n = 3 then q + 1 divides k, but q + 1 is prime to v − 1, which is another
contradiction.

C2) If Gx ∈ C2, then it preserves a partition V = V1 ⊕ · · ·⊕Va of subspaces of the
same dimension, say b, so n = ab and either the vi are nonsingular and the partition
is orthogonal, or a = 2 and the Vi are totally singular.

First assume that the Vi are nonsingular. If b > 1, then taking

x = {〈u1, . . . , ub〉, 〈ub+1, . . . , u2b〉, . . .}
and

y = {〈u1, . . . , ub−1, ub+1〉, 〈ub,ub+2, . . . , u2b〉, . . .},
we see k divides 2a(a − 1)(qb − (−1)b)2. From the inequality v < k2 we have n = 4
and b = 2. Therefore

v = q4(q4 − 1)(q3 + 1)

2(q2 − 1)(q + 1)
,

and k divides 4(q2 − 1)2. However, (v − 1, q + 1) = (2, q + 1), so k divides
16(q − 1)2, which is contrary to v < k2.

If b = 1 then Gx ∩ X = (̂q + 1)n−1Sn. First let n = 3, with q > 2. Then

v = q3(q3 + 1)(q2 − 1)

6(q + 1)2
,

and k divides 12(q + 1)2 logp q . The inequality v < k2 forces q ≤ 17, but by the
fact that k divides 2(v − 1) we rule out all these values. Now let n > 3, and let
x = {〈u1〉, 〈u2〉, . . . , 〈un〉}. If q > 3 let W = 〈u1, u2〉. If we take g ∈ G \ Gx acting
trivially on W⊥ we see k divides n(n − 1)(q + 1)2, contrary to v < k2. If q ≤ 3 then
let W = 〈u1, u2, u3〉. Taking g ∈ G \ Gx acting trivially on W⊥ we see that now k

divides n(n−1)(n−2)(q+1)3

3 , so n ≤ 6 if q = 2, or n ≤ 4 if q = 2. By the fact that k

divides 2(v − 1) we rule these cases out.
Now assume that a = 2 and both the Vi ’s are totally singular. Let {e1, f1, . . . ,

eb, fb} be a standard unitary basis. Take

x = {〈e1, . . . , eb〉, 〈f1, . . . , fb〉}, and y = {〈e1, . . . , eb−1, fb〉, 〈f1, . . . , fb−1, eb〉}.
Then k divides 4(qn − 1). The inequality v < k2 forces n = 4, but then

v = q4(q3 + 1)(q + 1)

2
,

so in fact k divides 2(q2 + 1)(q − 1), contrary to v < k2.
C3) If Gx ∈ C3 then it is a field extension group for some field extension of GF(q)

of odd degree b. From the inequality |G| < 2|Gx ||Gx |2p′ we have b = 3 and n = 3.
Then

v = q3(q2 − 1)(q + 1)

3
.
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Therefore 4 does not divide k, and so k < 6q2(logp q)2′ . Since v < k2, we have q ≤ 9.
With the condition that k divides 2(v − 1) we rule out these cases.

C4) If Gx ∈ C4 then it is the stabiliser of a tensor product of two nonsingular
subspaces of dimensions a > b > 1, but then the inequality |G| < 2|Gx ||Gx |2p′ is not
satisfied.

C5) If Gx ∈ C5 then it is a subfield subgroup. We have three possibilities:
If Gx is a unitary group of dimension n over GF(q0), where q = qb

0 with b an odd
prime, then |G| < |Gx |3 implies b = 3. However |G| < 2|Gx ||Gx |2p′ forces q = 8 and
n ≤ 4, but in these cases since k divides 2(v − 1) it is too small.

If Gx ∩ X = PSOε
n(q).2, with n even and q odd, then by Lemma 6 k is divisible

by the degree of a parabolic action of Gx . Here q +1 divides k, and q+1
(4,q+1)

divides v.
The fact that k divides 2(v − 1) forces q = 3, so v = 2835, but then 8v − 7 is not a
square, which is a contradiction.

Finally, if Gx = N(PSpn(q)), with n even, then by Lemma 9 GxB is contained
on some parabolic subgroup, so k is divisible by the degree of some parabolic action
of Gx , and so is divisible by q + 1. However v is divisible by q+1

(q+1,2)
, contradicting

the fact that k divides 2(v − 1)

C6) If Gx ∈ C6, then it is an extraspecial normaliser, and since |G| < |Gx |3, we
only have to consider the cases Gx ∩ X = 32Q8, 24A6, or 24S6, and X = U3(5),
U4(3), and U4(7) respectively. In all cases the fact that k divides 2(|Gx |, v−1) forces
k2 < v, a contradiction.

C7) If Gx ∈ C7, then it stabilises a tensor product decomposition of Vn(q) into t

subspaces Vi of dimension m each, so n = mt . Since m ≥ 3 and t ≥ 3, we see |Gx | is
too small to satisfy |G| < |Gx |3.

C8) This class is empty.
S) Finally consider the case in which Gx is an almost simple group (modulo the

scalars) not contained in any of the Aschbacher families of subgroups. For n ≤ 10
the subgroups Gx are listed in [15, Chapter 5]. Since |G| < |Gx |3, we only need to
consider the following possibilities:

L2(7) in U3(3),
A6.2, L2(7), and A7 in U3(5),
A6 in U3(11),
L2(7), A7, and L2(4) in U4(3),
U4(2) in U4(5),
L2(11) in U5(2), and
U4(3) and M22 in U6(2).

Since k divides 2(|Gx |, v − 1), we have k2 < v in all cases except in the case
L2(7) < U3(3). In this last case v = 36, but then there is no k such that k(k − 1) =
2(v − 1), which is a contradiction.

If n ≥ 14, then by [18] we have |G| > |Gx |3, a contradiction. Hence n = 11, 12, or
13. By [18], |Gx | is bounded above by q4n+8, and |G| < 2|Gx ||Gx |2p′ implies |Gx |p′

is bounded below by q33, q43, or q53 respectively. Using the methods in [18, 19] we
rule out all the almost simple groups Gx . �

This completes the proof of Lemma 16, and hence if X is a simple classical group,
then it is either PSL2(7) or PSL2(11).
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