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Abstract A finite graph X is half-arc-transitive if its automorphism group is transi-
tive on vertices and edges, but not on arcs. When X is tetravalent, the automorphism
group induces an orientation on the edges and a cycle of X is called an alternating
cycle if its consecutive edges in the cycle have opposite orientations. All alternating
cycles of X have the same length and half of this length is called the radius of X.
The graph X is said to be tightly attached if any two adjacent alternating cycles in-
tersect in the same number of vertices equal to the radius of X. Marušič (J. Comb.
Theory B, 73, 41–76, 1998) classified odd radius tightly attached tetravalent half-arc-
transitive graphs. In this paper, we classify the half-arc-transitive regular coverings
of the complete bipartite graph K4,4 whose covering transformation group is cyclic
of prime-power order and whose fibre-preserving group contains a half-arc-transitive
subgroup. As a result, two new infinite families of even radius tightly attached tetrava-
lent half-arc-transitive graphs are constructed, introducing the first infinite families of
tetravalent half-arc-transitive graphs of 2-power orders.
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1 Introduction

Throughout this paper, all graphs are assumed to be finite, connected, undirected and
simple unless otherwise stated. For a graph X we let V (X), E(X), A(X) and Aut(X)

denote the vertex, the edge, the arc set and the full automorphism group of X, re-
spectively. A graph X is said to be vertex-, edge-, or arc-transitive if Aut(X) acts
transitively on V (X), E(X) or A(X), respectively. An edge- but not vertex-transitive
graph with regular valency is called semisymmetric. Such a graph is necessarily bi-
partite. A graph is 1

2 -arc-transitive (or half-arc-transitive) if it is vertex- and edge-
but not arc-transitive. More generally, by a 1

2 -arc-transitive action of a group G on
X we shall mean a vertex- and edge- but not arc-transitive action of G on X. In this
case we say that the graph X is (G, 1

2 )-arc-transitive.
The investigation of 1

2 -arc-transitive graphs was initiated by Tutte [43] who proved
that a vertex- and edge-transitive graph with odd valency must be arc-transitive. In
1970, Bouwer [4] constructed the first infinite family of 1

2 -arc-transitive graphs and
later more such graphs were constructed (see [1, 8, 15, 17, 30, 36, 42, 44]). Con-
structing and characterizing tetravalent 1

2 -arc-transitive graphs is currently an ac-
tive topic in algebraic graph theory (see [2, 5, 9, 13, 19, 22, 23, 29, 31–33, 35,
37–40, 46, 47]). Apart from research in regular maps related to 1

2 -arc-transitive
graphs (see [6] and [32]), and research regarding primitivity/imprimitivity of action
for 1

2 -arc-transitive graphs (see [18] and [42]), there are two other directions research
in 1

2 -arc-transitive graphs has taken. The first one deals with the study of tetrava-
lent 1

2 -arc-transitive graphs with large order vertex stabilizers, initiated by Marušič
and Nedela [34]. Our results have no immediate implications to this area of research
because the 1

2 -arc-transitive graphs constructed in this paper have vertex stabilizers
isomorphic to Z2. In this paper we explore the second of these two research direc-
tions and investigate the “attachment of alternating cycles” question for tetravalent
1
2 -arc-transitive graphs.

Let X be a tetravalent (G, 1
2 )-arc-transitive graph with a subgroup G of Aut(X).

Then under the natural G-action on V (X) × V (X), the arc set A(X) is parti-
tioned into two G-orbits, say A1 and A2, which are paired with each other, that is,
A2 = {(v,u)|(u, v) ∈ A1}. Each of two corresponding oriented graphs (V (X),A1)

and (V (X),A2) has out-valency and in-valency equal to 2, and admits G as a vertex-
and arc-transitive group of automorphisms. Moreover, each of them has X as its un-
derlying graph. Let DG(X) be one of these two oriented graphs, fixed from now on.
For an arc (u, v) in DG(X), we say that u and v are the tail and the head of the arc
(u, v), respectively. An even length cycle C in X is called a G-alternating cycle if
the vertices of C are alternatively the tail or the head in DG(X) of their two incident
edges in C. It is proved [29, Proposition 2.4(i)] that all G-alternating cycles in X

have the same length and form a decomposition of the edge set of X. The half of
this length is denoted by rG(X) and is called the G-radius of X. Two G-alternating
cycles are said to be adjacent if they have at least one vertex in common. It is also
shown [29, Proposition 2.6] that any two adjacent G-alternating cycles in X intersect
in the same number of vertices, called the G-attachment number of X and denoted
by aG(X). Furthermore, the G-attachment number aG(X) is a divisor of 2rG(X),
twice the G-radius of X. If X has only two G-alternating cycles then these cycles
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have the same set of vertices and X is arc-transitive circulant, that is a Cayley graph
on a cyclic group. These graphs were characterized in [29]. We say that X is tightly
G-attached if aG(X) = rG(G) and loosely G-attached if aG(X) = 1. If two adjacent
G-alternating cycles of X intersect in a pair of antipodally opposite vertices then X

is said to be antipodally G-attached. If X is 1
2 -arc-transitive, the terms an Aut(X)-

alternating cycle, Aut(X)-radius, and Aut(X)-attachment number are referred to as
an alternating cycle of X, radius of X and attachment number of X, respectively.
Similarly, if X is tightly Aut(X)-attached, we say that X is tightly attached.

Marušič and Praeger [37] proved that every finite connected tetravalent (G, 1
2 )-arc-

transitive graph is a cover of a smaller tetravalent (G, 1
2 )-arc-transitive graph which

is tightly G-attached, loosely G-attached or antipodally G-attached. Thus, tightly,
loosely and antipodally G-attached tetravalent graphs are basic ones for investigating
tetravalent (G, 1

2 )-arc-transitive graphs and half-arc-transitive graphs. Wilson [45]
demonstrated a variety of means for constructing 1

2 -arc-transitive graphs and com-
pleted the constructive characterization of tightly G-attached tetravalent (G, 1

2 )-arc-
transitive graphs considered in [29, 37]. Marušič [29] classified the tightly attached
tetravalent 1

2 -arc-transitive graphs with odd radius, and the same graphs with even
radius are definitely objects worth exploring. However, no even radius tightly at-
tached tetravalent 1

2 -arc-transitive graph was given in these papers. In this paper, we
construct two infinite families of tetravalent 1

2 -arc-transitive graphs that are of even
radius and tightly attached. This may be a starting step for a possible classification
of all even radius tightly attached tetravalent 1

2 -arc-transitive graphs of order a power
of 2.

2 Main theorem

Let X be a connected graph. For u,v ∈ V (X), we denote by uv the edge incident to u

and v in X, and by NX(u) the neighborhood of u in X, that is, the set of vertices adja-
cent to u in X. A graph ˜X is called a covering of X with a projection p : ˜X → X, if p

is a surjection from V (˜X) to V (X) such that p|N
˜X(ṽ) : N

˜X(ṽ) → NX(v) is a bijection

for any vertex v ∈ V (X) and ṽ ∈ p−1(v). The graph ˜X is called the covering graph
and X is the base graph. A covering ˜X of X with a projection p is said to be regu-
lar (or K-covering) if there is a semiregular subgroup K of the automorphism group
Aut(˜X) such that the orbits of K on V (˜X) coincide with the sets p−1(v), v ∈ V (X).
If K is cyclic or elementary abelian then ˜X is called a cyclic or an elementary abelian
covering of X, and if ˜X is connected K becomes the covering transformation group.
The fibre of an edge or a vertex is its preimage under p. An automorphism of ˜X is said
to be fibre-preserving if it maps a fibre to a fibre, while every covering transformation
maps a fibre onto itself. All such fibre-preserving automorphisms form a group called
the fibre-preserving group.

Covering techniques has been used as a powerful tool in topology and graph the-
ory. The connected symmetric or semisymmetric coverings of a small graph have
received considerable attention in recent years. For example, Malnič et al. [27] and
Feng et al. [10] classified connected cubic semisymmetric or s-regular cyclic cover-
ings of the bipartite graph K3,3 for each 1 ≤ s ≤ 5 when the fibre-preserving group
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contains an edge-, but not vertex-transitive or an arc-transitive subgroup, respectively.
The s-regular cyclic or elementary abelian coverings of the hypercube Q3 were clas-
sified in [11, 12] for each 1 ≤ s ≤ 5 when the fibre-preserving group is arc-transitive.
Furthermore, using a method developed in [25, 26], Malnič and Potočnik [24] clas-
sified connected vertex-transitive elementary abelian coverings of the Petersen graph
when the fibre-preserving group is vertex-transitive. In order to obtain tetravalent
1
2 -arc-transitive graphs with special attachment property, Marušič and Waller [38]
constructed infinitely many tetravalent 1

2 -arc-transitive graphs as cyclic coverings of
1
2 -arc-transitive graphs constructed in [23]. Note that the smallest 1

2 -arc-transitive
graph has order 27 (see [46]) and the smallest valency of 1

2 -arc-transitive graphs is 4.
One may show that there is no 1

2 -arc-transitive cyclic coverings of a tetravalent graph
with order less than 8 when the fibre-preserving group contains a 1

2 -arc-transitive
subgroup. The purpose of this paper is to classify the connected 1

2 -arc-transitive
regular coverings of the complete bipartite graph K4,4 whose covering transfor-
mation group is cyclic of prime-power order and the fibre-preserving group con-
tains a 1

2 -arc-transitive subgroup. As a result, two new infinite families of tetravalent
1
2 -arc-transitive graphs of 2-power orders are constructed, of which the smallest one
has order 27. All of these graphs have 2-power orders with girth 8 and force a lifted
1
2 -arc-transitive action to give rise to even radius tightly attached 1

2 -arc-transitive
graphs. Also, it is easy to check that these graphs do not belong to any previously
known families of 1

2 -arc-transitive graphs (note that the half-arc-transitive graphs
constructed in [40, Theorem 3.1] have orders 2r times an odd integer with 2 ≤ r ≤ 3
(see [40, Lemma 3.5])).

To state the main theorem of this paper, we first introduce infinitely many tetrava-
lent 1

2 -arc-transitive graphs of 2-power orders. Let Zn be the cyclic group of order n,
as well as the ring of integers modulo n. Denote by Z

∗
n the multiplicative group of Zn

consisting of numbers coprime to n. Denote by V (K4,4) = {a,b, c,d,u,v,w,x} the
vertex set of the bipartite graph K4,4 as in Fig. 1. Let m ≥ 4 and let k be an element
of order 4 in Z

∗
2m . The graphs CK(2m,1, k) and CK(2m,2, k) are defined to have the

Fig. 1 The graph K4,4 with
voltage assignment φ
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same vertex set V (CK(2m,1, k)) = V (CK(2m,2, k)) = V (K4,4)×Z2m and edge sets

E(CK(2m,1, k)) = {

(u, x)(a, x), (v, x)(a, x), (v, x)(b, x), (w, x)(a, x),

(w, x)(c, x), (x, x)(a, x), (x, x)(d, x), (u, x)(b, x + 2k),

(u, x)(c, x + k + 2m−1), (u, x)(d, x + k),

(v, x)(c, x + 2m−1 − 1), (v, x)(d, x + 1),

(w, x)(b, x + k + 2m−1 + 1), (w, x)(d, x + k + 1),

(x, x)(b, x + k + 2m−1 − 1), (x, x)(c, x + k − 1) | x ∈ Z2m

}

,

E(CK(2m,2, k)) = {

(u, x)(a, x), (v, x)(a, x), (v, x)(b, x), (w, x)(a, x),

(w, x)(c, x), (x, x)(a, x), (x, x)(d, x),

(u, x)(b, x + 2k + 2m−1), (u, x)(c, x + k + 2m−1),

(u, x)(d, x + k), (v, x)(c, x − 1),

(v, x)(d, x + 1), (w, x)(b, x + k + 1),

(w, x)(d, x + k + 2m−1 + 1),

(x, x)(b, x + k + 2m−1 − 1), (x, x)(c, x + k − 1) | x ∈ Z2m

}

,

respectively. The notation CK means a cyclic covering. It is easy to see that
CK(2m,1, k) and CK(2m,2, k) are bipartite graphs. In fact, both are cyclic cover-
ings of K4,4. Since Z

∗
2m

∼= Z2 × Z2m−2 for each m ≥ 4, there are exactly 4 elements
of order 4 in Z

∗
2m , that is, 2m−2 ± 1 and 2m−2 + 2m−1 ± 1. It will be shown that

the graphs CK(2m, i,2m−2 + 1), CK(2m, i,2m−2 − 1), CK(2m, i,2m−2 + 2m−1 + 1)

and CK(2m, i,2m−2 + 2m−1 − 1) are isomorphic one another for each i = 1,2 in
Lemma 4.1. Thus, the graphs CK(2m,1, k) and CK(2m,2, k) are independent of the
choice of the element k of order 4 and we simply denote them by CK(2m,1) and
CK(2m,2), respectively. The main result of this paper is the following theorem.

Theorem 2.1 Let ˜X be a connected regular covering of the complete bipartite graph
K4,4 whose fibre-preserving group contains a 1

2 -arc-transitive subgroup. If the cov-
ering transformation group is a cyclic group Zpm of order pm for a prime p then
˜X is 1

2 -arc-transitive if and only if p = 2, m ≥ 4 and ˜X ∼= CK(2m,1) or CK(2m,2).
Furthermore, all of these graphs are tightly attached with radius 2m.

The smallest graphs in the two infinite families of half-arc-transitive graphs given
in Theorem 2.1 are CK(16,1) and CK(16,2), of which the first is depicted in Fig. 2.
These two smallest graphs have 128 vertices, and we do not know any example of
even radius tightly attached half-arc-transitive graphs of valency 4 with order less
than 128.

To end the section, we lay out the strategy of the proof of Theorem 2.1. Let ˜X

be a connected regular covering of the graph K4,4 satisfying the hypotheses in Theo-
rem 2.1. Then a minimal 1

2 -arc-transitive subgroup of Aut(K4,4) lifts (or, equivalently
the fibre-preserving group contains a 1

2 -arc-transitive subgroup). There are only three
minimal 1

2 -arc-transitive groups of Aut(K4,4) up to conjugacy, say G1, G2 or G3. In
Sect. 5, we deal with the three cases: G1, G2 or G3 lifts, respectively. In particular,
˜X cannot be 1

2 -arc-transitive when G2 or G3 lifts (Lemmas 5.3 and 5.4) and infinitely
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Fig. 2 The graph CK(16,1,3) = CK(16,1)

many tetravalent 1
2 -arc-transitive graphs are constructed when G1 lifts (Lemmas 5.1

and 5.2), of which the pairwise non-isomorphic ones are given in Sect. 4.

3 Voltage graphs and lifting problems

Let X be a graph and K a finite group. By a−1 we mean the reverse arc to an arc a.
A voltage assignment (or, K-voltage assignment) of X is a function φ : A(X) → K

with the property that φ(a−1) = φ(a)−1 for each arc a ∈ A(X). The values of φ are
called voltages, and K is the voltage group. The graph X×φ K derived from a voltage
assignment φ : A(X) → K has vertex set V (X) × K and edge set E(X) × K , so that
an edge (e, g) of X ×φ K joins a vertex (u, g) to (v,φ(a)g) for a = (u, v) ∈ A(X)

and g ∈ K , where e = uv.
Clearly, the derived graph X ×φ K is a covering of X with the first coordinate

projection p : X ×φ K → X, which is called the natural projection. By defining
(u, g′)g := (u, g′g) for any g ∈ K and (u, g′) ∈ V (X ×φ K), K becomes a sub-
group of Aut(X ×φ K) which acts semiregularly on V (X ×φ K). Therefore, X ×φ K

can be viewed as a K-covering. For each u ∈ V (X) and uv ∈ E(X), the vertex set
{(u, g) | g ∈ K} is the fibre of u and the edge set {(u, g)(v,φ(a)g) | g ∈ K} is the
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fibre of uv, where a = (u, v). Conversely, each regular covering ˜X of X with a cov-
ering transformation group K can be derived from a K-voltage assignment. Given
a spanning tree T of the graph X, a voltage assignment φ is said to be T -reduced
if the voltages on the tree arcs are the identity. Gross and Tucker [14] showed that
every regular covering ˜X of a graph X can be derived from a T -reduced voltage as-
signment φ with respect to an arbitrary fixed spanning tree T of X. It is clear that if
φ is reduced, the derived graph X ×φ K is connected if and only if the voltages on
the cotree arcs generate the voltage group K .

Let ˜X be a K-covering of X with a projection p. If α ∈ Aut(X) and α̃ ∈ Aut(˜X)

satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃ (for the pur-
pose of this paper, all mappings are composed from left to right). Concepts such
as a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(˜X) are
self-explanatory. The lifts and the projections of such subgroups are of course sub-
groups in Aut(˜X) and Aut(X), respectively. In particular, if the covering graph ˜X is
connected, then the covering transformation group K is the lift of the trivial group,
that is, K = {̃α ∈ Aut(˜X) : p = α̃p}. Clearly, all possible lifts of automorphisms of X

form a group and one may show that this group is exactly the fibre-preserving group.
Let X ×φ K → X be a connected K-covering derived from a T -reduced voltage

assignment φ. The problem whether an automorphism α of X lifts or not can be
grasped in terms of voltages as follows. Observe that a voltage assignment on arcs
extends to a voltage assignment on walks in a natural way. Given α ∈ Aut(X), we
define a function α from the set of voltages of fundamental closed walks based at
a fixed vertex v ∈ V (X) to the voltage group K by

(φ(C))α = φ(Cα),

where C runs over all fundamental closed walks at v, and φ(C) and φ(Cα) are the
voltages of C and Cα , respectively. Note that if K is abelian, α does not depend on
the choice of the base vertex, and the fundamental closed walks at v can be substituted
by the fundamental cycles generated by the cotree arcs of X.

The next proposition is a special case of [20, Theorem 4.2].

Proposition 3.1 Let X ×φ K → X be a connected K-covering derived from
a T -reduced voltage assignment φ. Then an automorphism α of X lifts if and only if
α extends to an automorphism of K .

For more results on the lifts of automorphisms of X, we refer the reader to
[7, 21, 28].

Two coverings ˜X1 and ˜X2 of X with projections p1 and p2 respectively, are said to
be equivalent if there exists a graph isomorphism α̃ : ˜X1 → ˜X2 such that α̃p2 = p1.
We quote the following proposition.

Proposition 3.2 [16, 41] Two connected regular coverings X ×φ K and X ×ψ K ,
where φ and ψ are T -reduced, are equivalent if and only if there exists an automor-
phism σ ∈ Aut(K) such that φ(u, v)σ = ψ(u,v) for any cotree arc (u, v) of X.
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4 Isomorphism types of constructed graphs

Let m ≥ 4 and let k be an element of order 4 in Z
∗
2m . Then k = 2m−2 ± 1 or

2m−2 + 2m−1 ± 1. In this section we shall prove that the graphs CK(2m, i,2m−2 + 1),
CK(2m, i,2m−2 − 1), CK(2m, i,2m−2 + 2m−1 + 1) and CK(2m, i,2m−2 + 2m−1 − 1)

(defined in Sect. 2) are pairwise isomorphic for each i = 1,2.

Lemma 4.1 Let m ≥ 4 and i = 1 or 2. Then CK(2m, i,2m−2 + 1), CK(2m, i,

2m−2 − 1), CK(2m, i,2m−2 + 2m−1 + 1) and CK(2m, i,2m−2 + 2m−1 − 1) are pair-
wise isomorphic.

Proof Recall that all graphs CK(2m, i,2m−2 + 1), CK(2m, i,2m−2 − 1), CK(2m, i,

2m−2 + 2m−1 + 1) and CK(2m, i,2m−2 + 2m−1 − 1) have the same vertex set
V (K4,4) × Z2m . For small integers m, one can find an isomorphism from CK(2m,1,

2m−2 + 1) to CK(2m,1,2m−2 − 1) by direct observation. From such isomorphisms,
one can derive a map α : CK(2m,1,2m−2 +1) 	→ CK(2m,1,2m−2 −1) for any integer
m ≥ 4 as follows:

(a, x) 	→ (a, (2m−2 + 2m−1 + 1)x)

(b, x) 	→ (b, (2m−2 + 2m−1 + 1)x + 2m−2 + 2m−1 − 2)

(c, x) 	→ (c, (2m−2 + 2m−1 + 1)x + 2m−1 − 1)

(d, x) 	→ (d, (2m−2 + 2m−1 + 1)x + 2m−2 − 1)

(u, x) 	→ (w, (2m−2 + 2m−1 + 1)x)

(w, x) 	→ (v, (2m−2 + 2m−1 + 1)x)

(v, x) 	→ (x, (2m−2 + 2m−1 + 1)x)

(x, x) 	→ (u, (2m−2 + 2m−1 + 1)x)

where x ∈ Z2m . By the definitions of CK(2m,1,2m−2 + 1) and CK(2m,1,2m−2 − 1),

NCK(2m,1,2m−2+1)((u, x))

= {

(a, x), (b, x + 2m−1 + 2), (c, x + 2m−2 + 2m−1 + 1), (d, x + 2m−2 + 1)
}

and

NCK(2m,1,2m−2−1)((u, x)α) = NCK(2m,1,2m−2−1)((w, (2m−2 + 2m−1 + 1)x))

= {

(a, (2m−2 + 2m−1 + 1)x), (b, (2m−2 + 2m−1 + 1)x + 2m−2 + 2m−1),

(c, (2m−2 + 2m−1 + 1)x), (d, (2m−2 + 2m−1 + 1)x + 2m−2)
}

where NCK(2m,1,2m−2+1)((u, x)) and NCK(2m,1,2m−2−1)((u, x)α) are the neighbor-
hoods of (u, x) and (u, x)α in CK(2m,1,2m−2 + 1) and CK(2m,1,2m−2 − 1), re-
spectively.

Now, one can easily show that

[NCK(2m,1,2m−2+1)((u, x))]α = NCK(2m,1,2m−2−1)((u, x)α).
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Similarly, one can show that

[NCK(2m,1,2m−2+1)((z, x))]α = NCK(2m,1,2m−2−1)((z, x)α).

for z = v,w or x and x ∈ Z2m . This implies that α is an isomorphism from
CK(2m,1,2m−2 + 1) to CK(2m,1,2m−2 − 1) because these two graphs are bipar-
tite, as required.

Set t1 = 2m−2 +1, t2 = 2m−2 −1, t3 = 2m−1 +2m−2 +1 and t4 = 2m−1 +2m−2 −1.
With a similar argument as above, one can prove that the following two maps

(a, x) 	→ (a, t1x) (a, x) 	→ (a, t2x)

(b, x) 	→ (b, t1x + 2m−2) (b, x) 	→ (b, t2x + 2m−2 − 2)

(c, x) 	→ (d, t1x + t1 + 2m−1) (c, x) 	→ (d, t2x + t2 + 2m−1)

(d, x) 	→ (c, t1x + 2m−1 − 1) and (d, x) 	→ (c, t2x + 2m−1 − 1)

(u, x) 	→ (w, t1x) (u, x) 	→ (w, t2x)

(v, x) 	→ (x, t1x) (v, x) 	→ (x, t2x)

(w, x) 	→ (u, t1x) (w, x) 	→ (u, t2x)

(x, x) 	→ (v, t1x) (x, x) 	→ (v, t2x)

are actually isomorphisms from CK(2m,1,2m−2 +1) to CK(2m,1,2m−2 +2m−1 +1)

and from CK(2m,1,2m−2 − 1) to CK(2m,1,2m−2 + 2m−1 − 1), respectively, where
x ∈ Z2m . And the following three maps

(a, x) 	→ (a,−x) (a, x) 	→ (a, t3x) (a, x) 	→ (a, t4x)

(b, x) 	→ (b,−x) (b, x) 	→ (b, t3x + 2m−2) (b, x) 	→ (b, t4x + 2m−2 − 2)

(c, x) 	→ (d,−x) (c, x) 	→ (d, t3x + t3) (c, x) 	→ (d, t4x + t4)

(d, x) 	→ (c,−x) (d, x) 	→ (c, t3x − 1) (d, x) 	→ (c, t4x − 1)

(u, x) 	→ (u,−x) (u, x) 	→ (w, t3x) (u, x) 	→ (w, t4x)

(v, x) 	→ (v,−x) (v, x) 	→ (x, t3x) (v, x) 	→ (x, t4x)

(w, x) 	→ (x,−x) (w, x) 	→ (u, t3x) (w, x) 	→ (u, t4x)

(x, x) 	→ (w,−x), (x, x) 	→ (v, t3x), (x, x) 	→ (v, t4x)

are isomorphisms from CK(2m,2,2m−2 + 1) to CK(2m,2,2m−2 − 1), CK(2m,2,

2m−2 + 1) to CK(2m,2,2m−2 + 2m−1 + 1), and CK(2m,2,2m−2 − 1) to CK(2m,2,

2m−2 + 2m−1 − 1), respectively, where x ∈ Z2m . �

Note that the graphs CK(2m,1, k) and CK(2m,2, k) are denoted by CK(2m,1) and
CK(2m,2) respectively in Theorem 2.1, where k = 2m−2 ± 1 or 2m−2 + 2m−1 ± 1. It
will be shown that CK(2m,1) is not isomorphic to CK(2m,2) in Lemma 5.2.

5 The proof of Theorem 2.1

Let ˜X = K4,4 ×φ Zpm be a connected regular covering of the graph K4,4 satisfy-
ing the hypotheses in Theorem 2.1, where φ = 0 on a spanning tree T as illustrated
by dark lines in Fig. 1 and we assign voltages z1, z2, z3, z4, z5, z6, z7, z8 and z9
to the cotree arcs of K4,4, where zi ∈ Z

m
p for 1 ≤ i ≤ 9. Thus, the fibre-preserving
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group contains a 1
2 -arc-transitive subgroup of Aut(K4,4 ×φ Zpm). Hence, the projec-

tion of this subgroup is 1
2 -arc-transitive on the base graph K4,4 and so a minimal

1
2 -arc-transitive subgroup, say L, of K4,4 lifts. Since K4,4 ×φ Zpm is assumed to be
connected, we have 〈z1, z2, z3, z4, z5, z6, z7, z8, z9〉 = Zpm . Note that the vertex set
of K4,4 is {a,b, c,d,u,v,w,x}.

Possibly with aid of computer software package like MAGMA [3], or by a direct
analysis of half-arc-transitive subgroups of Aut(K4,4) ∼= (S4 × S4) � Z2, one can
show that a minimal 1

2 -arc-transitive subgroup of Aut(K4,4) is conjugate to one of
G1 = 〈α1, β1〉, G2 = 〈α1, β2〉 and G3 = 〈α2, β1〉, where α1 = (a u c w b v d x),
α2 = (a u c w)(b v d x), β1 = (u v)(w x) and β2 = (u w)(v x)(c d). In each case, the
stabilizer of u is isomorphic to Z2. Set γ1 = (u w v x)(c d), γ2 = (u w v x) and γ3 =
(u w)(v x). Clearly, all αi , βj , and γk (i, j = 1,2; k = 1,2,3) are automorphisms
of K4,4.

For g ∈ Aut(K4,4), let K4,4 ×ψ Zpm be the regular covering of K4,4 derived
by a voltage assignment ψ defined by ψ((y, z)g) = φ((y, z)) for each arc (y, z) ∈
A(K4,4). Clearly, ψ is T g-reduced (T g is the image of the spanning tree T under g)
and g̃: (z, x) 	→ (zg, x) is an isomorphism from ˜X = K4,4 ×φ Zpm to K4,4 ×ψ Zpm ,
where z ∈ V (K4,4) and x ∈ Zpm . By Proposition 3.1, L lifts in K4,4 ×φ Zpm if and
only if Lg lifts in K4,4 ×ψ Zpm (see also [24, Proposition 2.1]). Thus, to classify
1
2 -arc-transitive cyclic coverings of K4,4, one may assume that one of the minimal
1
2 -arc-transitive subgroups G1, G2 and G3 lifts.

Denote by i1i2 · · · is the cycle having the consecutively adjacent vertices
i1, i2, . . . , is . There are nine fundamental cycles ubva, wbva, xbva, ucwa, vcwa,
xcwa, udxa, vdxa and wdxa, which are generated by the nine cotree arcs (u,b),
(w,b), (x,b), (u, c), (v, c), (x, c), (u,d), (v,d) and (w,d), respectively. Each cy-
cle maps to a cycle of the same length under the actions of α1, α2, β1, β2, γ1, γ2,
and γ3. We list these cycles and their voltages in Tables 1 and 2, in which C denotes
a fundamental cycle of K4,4 and φ(C) denotes the voltage on C.

Consider the mapping α1 from the set of voltages of the nine fundamental cycles
of K4,4 to the cyclic group Zpm defined by φ(C)α1 = φ(Cα1), where C runs over
the nine fundamental cycles. Similarly, we can define α2, β1, β2, γ 1, γ 2 and γ 3.
By Proposition 3.1, if α1 lifts then α1 can be extended to an automorphism of Zpm

Table 1 Voltages on fundamental cycles and their images under α1, β1 and γ1

C φ(C) Cα1 φ(Cα1 ) Cβ1 φ(Cβ1 ) Cγ1 φ(Cγ1 )

ubva z1 cvdu −z5 + z8 − z7 + z4 vbua −z1 wbxa z2 − z3

wbva z2 bvdu z8 − z7 + z1 xbua z3 − z1 vbxa −z3

xbva z3 avdu z8 − z7 wbua z2 − z1 ubxa z1 − z3

ucwa z4 cwbu z2 − z1 + z4 vcxa z5 − z6 wdva z9 − z8

vcwa z5 dwbu −z9 + z2 − z1 + z7 ucxa z4 − z6 xdva −z8

xcwa z6 awbu z2 − z1 wcxa −z6 udva z7 − z8

udxa z7 cxau −z6 + z4 vdwa z8 − z9 wcua −z4

vdxa z8 dxau z7 udwa z7 − z9 xcua z6 − z4

wdxa z9 bxau −z3 + z1 xdwa −z9 vcua z5 − z4
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Table 2 Voltages on fundamental cycles and their images under α2, β2, γ2 and γ3

Cα2 φ(Cα2 ) Cβ2 φ(Cβ2 ) Cγ2 φ(Cγ2 ) Cγ3 φ(Cγ3 )

cvdu −z5 + z8 − z7 + z4 wbxa z2 − z3 wbxa z2 − z3 wbxa z2 − z3

avdu z8 − z7 ubxa z1 − z3 vbxa −z3 ubxa z1 − z3

bvdu z8 − z7 + z1 vbxa −z3 ubxa z1 − z3 vbxa −z3

cwau z4 wdua z9 − z7 wcva −z5 wcua −z4

dwau −z9 + z7 xdua −z7 xcva z6 − z5 xcua z6 − z4

bwau −z2 + z1 vdua z8 − z7 ucva z4 − z5 vcua z5 − z4

cxbu −z6 + z3 − z1 + z4 wcva −z5 wdua z9 − z7 wdva z9 − z8

dxbu z3 − z1 + z7 xcva z6 − z5 xdua −z7 xdva −z8

axbu z3 − z1 ucva z4 − z5 vdua z8 − z7 udva z7 − z8

and in this case, denote by α∗
1 the extended automorphism. Clearly, there is a ho-

momorphism from the generated group 〈α1〉 to Z
∗
pm defined by αi

1 	→ (α∗
1)i for

any i. Since α1 has order 8, we have (α∗
1)8 = 1. Similarly, one has the notation

α∗
2 , β∗

1 , β∗
2 , γ ∗

1 , γ ∗
2 and γ ∗

3 if they lift. Since α2, β1, β2 have orders 4,2,2, we have
(α∗

2)4 = (β∗
1 )2 = (β∗

2 )2 = 1. To finish the proof of Theorem 2.1, we consider three
cases separately, depending on whether G1, G2, or G3 lifts.

Lemma 5.1 If G1 lifts and ˜X is 1
2 -arc-transitive then p = 2, m ≥ 4 and ˜X ∼=

CK(2m,1) or CK(2m,2).

Proof Since G1 = 〈α1, β1〉 lifts, α∗
1 and β∗

1 exist. Let 1α1
∗ = k. Then k ∈ Z

∗
pm . By

Table 1, kz8 = z
α∗

1
8 = z7, that is, z7 = kz8. Thus, kz3 = z

α∗
1

3 = z8 − z7 implies that
z3 = (k−1 − 1)z8, where k−1 is the inverse of k in Z

∗
pm . Similarly, by considering the

images of z2, z6, z7, z9 and z5 under α∗
1 respectively, one may obtain that z1, z6, z4,

z9 and z5 are combinations of z2 and z8. Thus, we have Eqs. 1–7 which means that

Zpm is generated by z2 and z8. Since kz4 = z
α∗

1
4 = z2 − z1 + z4, by Eqs. 1 and 3, one

may obtain Eq. 8. Since β∗
1 exists, one has 1β1

∗ = s for some s ∈ Z
∗
pm . By Table 1,

sz1 = −z1, sz2 = z3 − z1, sz3 = z2 − z1, sz4 = z5 − z6, sz5 = z4 − z6, sz6 = −z6,
sz7 = z8 − z9, sz8 = z7 − z9 and sz9 = −z9. Since (β∗

1 )2 = 1, one has s2 = 1 in the
ring Zpm .

z1 = kz2 + (k − 1)z8 (1)

z3 = (k−1 − 1)z8 (2)

z4 = (k−1 − 1)z2 + (k2 + k−1 − 1)z8 (3)

z5 = −z2 + k−3z8 (4)

z6 = (k−1 − 1)z2 + (k−1 − 1)z8 (5)

z7 = kz8 (6)

z9 = z2 + (1 − k−2)z8 (7)

(k − 1)z2 = −(k − 1)(k3 + 1)z8. (8)
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Substituting Eqs. 6 and 7 to the equation sz8 = z7 − z9, one has z2 = (k + k−2 −
s − 1)z8, implying that Zpm can be generated by z8. By Proposition 3.2, one may
assume that z8 = 1 and so z2 = k + k−2 − s − 1. Suppose β2 lifts. Then the arc-
transitive subgroup 〈α1, β1, β2〉 of K4,4 lifts, contradicting half-arc-transitivity of ˜X.
By Proposition 3.1, β2 cannot be extended to an automorphism of Zpm . Similarly,
γ 2 also cannot be extended to an automorphism of Zpm .

Assume that p is odd. Then s2 = 1 implies that s = 1 or −1 because Z
∗
pm is

cyclic. Suppose s = 1. Then z2 = k + k−2 − 2 and z8 = 1. Since sz9 = −z9, we have
2z9 = 0, forcing that z9 = 0 because p is odd. By Eq. 7, k = 1 and so z2 = 0 and
z8 = 1. By Eqs. 1–7, z1 = z3 = z6 = z9 = 0 and z4 = z5 = z7 = 1. By Table 2, β2 can
be extended to the automorphism of Zpm induced by 1 	→ −1, a contradiction. Thus,
s = −1. Then z2 = k +k−2 − s −1 = k +k−2 and z8 = 1. Furthermore, sz2 = z3 −z1
means that z1 = z2 + z3. Substituting Eqs. 1 and 2 to z1 = z2 + z3, one has k4 = 1.
It follows that k2 = 1 or k2 = −1 because Z

∗
pm is cyclic. If k2 = 1 then z2 = k + 1

and z8 = 1. By Eqs. 1–7, one has z1 = 2k, z3 = k − 1, z4 = k, z5 = −1, z6 = k − 1,
z7 = k and z9 = k + 1. By Table 2, β2 can be extended to the automorphism of Zpm

induced by 1 	→ k, contrary to our hypothesis. Similarly, if k2 = −1 then one may
have that z1 = −2, z2 = k − 1, z3 = −k − 1, z4 = −k, z5 = 1, z6 = −k + 1, z7 = k,
z8 = 1 and z9 = k + 1. By Table 2, γ 2 can be extended to the automorphism of Zpm

induced by 1 	→ −k, a contradiction.
Now assume that p = 2. For m = 1, |V (˜X)| = 16 and since the smallest 1

2 -arc-
transitive graph has order 27 [46], we have m ≥ 2. Then s2 = 1 implies that s = ±1
or 2m−1 ± 1 because Z

∗
2m

∼= Z2 × Z2m−2 . Thus, s = δ + 1 or δ − 1, where δ = 0 or
2m−1. Suppose s = δ + 1. Then z8 = 1 and z2 = k + k−2 + δ − 2. Since k ∈ Z

∗
2m , k is

odd and so z2 is even. By Eq. 7, z9 is even. Since sz9 = −z9, s = δ + 1 implies that
2z9 = 0. It follows that z9 = 0 or 2m−1. Write z9 = δ1 where δ1 = 0 or 2m−1. Again
by Eq. 7, z2 = k−2 + δ1 − 1. Since z2 = k + k−2 + δ − 2, one has k = δ + δ1 + 1. In
this case, z2 = δ1 and z8 = 1. Since k is odd, kδ = δ and kδ1 = δ1, and by Eqs. 1–7,
z1 = δ, z3 = δ + δ1, z4 = δ + δ1 + 1, z5 = δ + 1, z6 = δ + δ1, z7 = δ + δ1 + 1 and
z9 = δ1. By Table 2, β2 can be extended to the automorphism of Z2m induced by
1 	→ δ1 − 1, a contradiction. Thus, s = δ − 1.

We have z8 = 1 and z2 = k + k−2 − s − 1 = k + k−2 + δ when s = δ − 1. Recall
that k is odd and so kδ = δ. Substituting Eqs. 1 and 2 to sz2 = z3 − z1, one has
k4 = 1. Since Z

∗
2m

∼= Z2 × Z2m−2 (m ≥ 2), if m = 2 or 3 then k2 = 1 and if m ≥ 3
then k = ±1, 2m−1 ± 1, 2m−2 ± 1 or 2m−2 + 2m−1 ± 1, implying that k2 = 1 or
k2 = 2m−1 + 1. Suppose k2 = 1. Then z2 = k + δ + 1 and z8 = 1. By Eqs. 1–7, one
has z1 = 2k +δ, z3 = k −1, z4 = k, z5 = δ −1, z6 = k −1, z7 = k and z9 = k +δ +1.
By Table 2, β2 can be extended to the automorphism of Z2m induced by 1 	→ k + δ,
a contradiction. Thus, one may assume that m ≥ 4 and k2 = 2m−1 + 1, forcing that
k is an element of order 4 in Z

∗
2m . In this case, z8 = 1 and z2 = k + k−2 − s − 1 =

k+2m−1 +δ+1. By Eqs. 1–7, one has z1 = 2k+δ, z3 = k+2m−1 −1, z4 = k+2m−1,
z5 = 2m−1 + δ − 1, z6 = k − 1, z7 = k and z9 = k + δ + 1. By the constructions
of graphs in Sect. 1, ˜X ∼= CK(2m,1, k) when δ = 0 and ˜X ∼= CK(2m,2, k) when
δ = 2m−1. Thus, ˜X ∼= CK(2m,1) or ˜X ∼= CK(2m,2) by Lemma 4.1. �

Lemma 5.2 CK(2m,1) and CK(2m,2) are non-isomorphic 1
2 -arc-transitive graphs

for each m ≥ 4. Furthermore, these graphs are of even radius and tightly attached.
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Proof By the proof of Lemma 5.1, it suffices to show that CK(2m,1,2m−2 + 1) and
CK(2m,2,2m−2 + 1) are non-isomorphic 1

2 -arc-transitive graphs, which are of even
radius and tightly attached. Let ˜X = CK(2m,1,2m−2 + 1) or CK(2m,2,2m−2 + 1),
where m ≥ 4. Then ˜X is the Z2m -covering of K4,4 with voltages z1 = 2m−1 + δ + 2,
z2 = −2m−2 + δ + 2, z3 = −2m−2, z4 = −2m−2 + 1, z5 = 2m−1 + δ − 1, z6 = 2m−2,
z7 = 2m−2 + 1, z8 = 1 and z9 = 2m−2 + δ + 2, where δ = 0 corresponds to the graph
CK(2m,1,2m−2 + 1) and δ = 2m−1 corresponds to the graph CK(2m,2,2m−2 + 1).
By Table 1, α1 and β1 can be extended to the automorphisms of Z2m induced by 1 	→
2m−2 + 1 and 1 	→ δ − 1 respectively. Suppose β2 lifts. Then β∗

2 exists. By Table 2,

z
β∗

2
8 = 1β∗

2 = z6 −z5 = −2m−2 +δ+1 and z
β∗

2
7 = (2m−2 +1)β

∗
2 = −z5 = 2m−1 +δ+1.

This is impossible because (2m−2 +1)β
∗
2 = (−2m−2 +δ+1)(2m−2 +1) = δ+1. Thus,

β2 does not lift. Since G1 = 〈α1, β1〉 is 1
2 -arc-transitive on K4,4, the lifting group of

G1, say B , is 1
2 -arc-transitive on ˜X. Clearly, B ≤ Aut(˜X) and since |G1| = 24, one

has |B| = 2m+4. Moreover, the stabilizer B(z,x) of a vertex (z, x) ∈ V (˜X) in B is
isomorphic to Z2.

For convenience, we use zx to denote the vertex (z, x) of ˜X for z ∈ V (K4,4) and
x ∈ Z2m . It is easy to show that the numbers of vertices at distance 2 and 3 from a0 in
˜X are 12 and 36 respectively. Thus, ˜X has girth at least 8 because ˜X is bipartite. Let
T1, T2, T3 and T4 be the sets of vertices passing through the arcs (a0,u0), (a0,v0),
(a0,w0) and (a0,x0) respectively, and having distance 4 from the vertex a0 in ˜X. One
may compute the following:

T1 = {

a2m−1+δ+2,a−2m−2 ,a−2m−2+δ+2,a2m−2+δ+2,a−2m−2+1,a2m−1+1,a2m−2 ,aδ−1,

a2m−2+1,b2m−2+δ+2,b2m−1+δ+3,b2m−2+1,b2m−2 ,b−2m−2+1,b1, c1, c−2m−2 ,

cδ+2, c−2m−2+δ−1, cδ−1, c2m−1+1,d2m−1+δ+3,dδ+2,d−2m−2+δ+2,d2m−2+δ+3,

dδ+3,d2m−1+1

}

,

T2 = {

a2m−1+δ−2,a2m−2+δ−2,a2m−2 ,a−2m−2+δ−2,a2m−1+δ−1,a2m−2+δ−1,a−2m−2 ,

a−2m−2+δ−1,a1,b2m−2 ,b2m−2+1,bδ−1,b2m−2+δ+2,b2m−1+1,b−2m−2+1,

c2m−2+δ−1, c2m−2+δ−2, c2m−1 , c2m−1+1, c−2m−2+δ−1, c2m−2+1,d−2m−2+δ−1,

d2m−1 ,d2m−2 ,dδ−1,d−2m−2+1,d2m−2+δ−1

}

,

T3 = {

a2m−2 ,a−2m−2+δ+2,aδ+2,a2m−2−1,a2m−1+δ+1,a−2m−2 ,aδ+1,a2m−2+δ+1,

a2m−2+δ+2,b−2m−2+δ+1,b2m−1+δ+1,b2m−1 ,b2m−1+3,b2m−2+δ+1,bδ+2, c1,

c2m−2+1, c−2m−2+δ+2, c2m−2+δ+2, c−2m−2 , c2m−1+δ+2,d2m−1+1,d−2m−2+δ+3,

dδ+2,d2m−1 ,d2m−1+δ+2,d−2m−2

}

,

T4 = {

a2m−2+δ−2,a−2m−2 ,aδ−2,a2m−1−1,a−2m−2+δ+1,a2m−2 ,a−2m−2−1,a−1,

a−2m−2+δ−2,bδ+1,b−2m−2+δ+1,bδ+2,b2m−2+δ+1,b−1,b2m−1 , cδ−1, c2m−2+δ−1,

cδ−2, c2m−1+δ−2, c2m−1 , c−2m−2+δ−2,d2m−1+δ−1,d−2m−2+1,d2m−2 ,d−2m−2 ,

d−2m−2+δ+2,d2m−1+δ+2

}

.

Furthermore, one may obtain that if ˜X = CK(2m,1,2m−2 + 1) (δ = 0) then

for m ≥ 5, |T1 ∩ T2| = |T3 ∩ T4| = 8, |T1 ∩ T3| = |T2 ∩ T4| = 13,

|T1 ∩ T4| = |T2 ∩ T3| = 9;
for m = 4, |T1 ∩ T2| = |T3 ∩ T4| = |T1 ∩ T3| = |T2 ∩ T4| = 13,

|T1 ∩ T4| = |T2 ∩ T3| = 12.
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If ˜X = CK(2m,2,2m−2 + 1) (δ = 2m−1) then

for m ≥ 5, |T1 ∩ T2| = |T3 ∩ T4| = |T1 ∩ T4| = |T2 ∩ T3| = 8,

|T1 ∩ T3| = |T2 ∩ T4| = 13;
for m = 4, |T1 ∩ T2| = |T3 ∩ T4| = |T1 ∩ T3| = |T2 ∩ T4| = 13,

|T1 ∩ T4| = |T2 ∩ T3| = 11.

Thus, ˜X has girth 8 and CK(2m,1,2m−2 + 1) 
∼= CK(2m,2,2m−2 + 1) because if
m ≥ 5, |T1 ∩ T4| = 9 in CK(2m,1,2m−2 + 1) and for any 1 ≤ i, j ≤ 4, |Ti ∩ Tj | 
= 9
in CK(2m,2,2m−2 + 1); if m = 4, |T1 ∩T4| = 12 in CK(2m,1,2m−2 + 1) and for any
1 ≤ i, j ≤ 4, |Ti ∩ Tj | 
= 12 in CK(2m,2,2m−2 + 1) (note that |T1 ∩ T4| = 9 implies
that there are exactly 9 cycles of length 8 passing through the two arcs (a0,u0) and
(a0,x0) in CK(2m,1,2m−2 + 1)).

Let H = Aut(˜X). First we show that H is a 2-group. Since ˜X has valency 4, Ha0

is a {2,3}-group. Suppose that H is not a 2-group. Since |V (˜X)| = 2m+3, |Ha0 | is
divisible by 3 and the transitivity of H implies that there is an element of order 3,
say α, in Ha0 such that α has a 3-orbit on {u0,v0,w0,x0}, the neighborhood of a0
in ˜X. If α fixes u0 then |T1 ∩ T2| = |T1 ∩ T3| = |T1 ∩ T4|, which is not true for both
graphs CK(2m,1,2m−2 + 1) and CK(2m,2,2m−2 + 1). One may obtain a similar
contradiction if α fixes any given vertex in {u0,v0,w0,x0}. Thus, H is a 2-group.
Recall that B is 1

2 -arc-transitive on ˜X and |B| = 2m+4.
To prove half-arc-transitivity of ˜X, it suffices to show that H = B . Suppose to

the contrary that H 
= B . Since H is a 2-group, there is a subgroup A of H such
that B ≤ A and |A : B| = 2. Thus, |A| = 2m+5 and B � A. Let p1 be the projection
corresponding to the regular covering ˜X of K4,4. Since B is the lift of G1, B is fibre-
preserving along p1.

We claim that A is fibre-preserving along p1. Note that the covering transforma-
tion group K = Z2m (m ≥ 4) is identified as an automorphism group of ˜X by right
multiplication on the second coordinate of each vertex in ˜X (see the second para-
graph in Sect. 3). Then K �B because B is the lift of the group G1 = 〈α1, β1〉. Since
|A : B| = 2, K has at most two conjugacy classes in A, that is, K and Ka for some
a ∈ A (if the conjugacy class is only one then K = Ka). It follows that K ∩ Ka � A.
Clearly, Ka �B . Suppose KKa = B . Then B/K = KKa/K ∼= Ka/K ∩Ka is cyclic.
On the other hand, B/K ∼= 〈α1, β1〉 is not cyclic, a contradiction. Thus, KKa 
= B

and so |KKa | = 2m+i for some 0 ≤ i ≤ 3 because |B| = 2m+4. It follows that
|K ∩ Ka| = 2m−i and so K ∩ Ka = 〈2i〉 because K = Z2m is cyclic. Since K ∩ Ka

is cyclic, each of its subgroups is characteristic in K ∩ Ka . Thus, each subgroup of
K ∩ Ka is normal in A because K ∩ Ka �A. Since K ∩ Ka = 〈2i〉 for 0 ≤ i ≤ 3, we
always have 〈23〉�A. Let Y be the quotient graph of ˜X corresponding to the orbits of
〈23〉. Write Ai = {ax+i |x ∈ 〈23〉} for i ∈ Z8, and denote by Bi , Ci , Di , Ui , Vi , Wi and
Xi the similar sets as Ai . Then these sets are the orbits of 〈23〉 and so the vertices of Y .
Recall that z1 = 2m−1 + δ + 2, z2 = −2m−2 + δ + 2 z3 = −2m−2, z4 = −2m−2 + 1,
z5 = 2m−1 + δ − 1, z6 = 2m−2, z7 = 2m−2 + 1, z8 = 1 and z9 = 2m−2 + δ + 2, where
δ = 0 or δ = 2m−1. If m ≥ 5 then 2m−2 ∈ 〈23〉 and by Fig. 1, it is easy to see that

E(Y) = {

UiAi ,UiBi+2,UiCi+1,UiDi+1,ViAi ,ViBi ,ViCi+7,ViDi+1,

WiAi ,WiBi+2,WiCi ,WiDi+2,XiAi ,XiBi ,XiCi ,XiDi | i ∈ Z8
}

.
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If m = 4 then 2m−2 = 4 and similarly, one has

E(Y) = {

UiAi ,UiBi+2,UiCi+5,UiDi+5,ViAi ,ViBi ,ViCi+7,ViDi+1,

WiAi ,WiBi+6,WiCi ,WiDi+6,XiAi ,XiBi+4,XiCi+4,XiDi | i ∈ Z8
}

.

Thus, Y is a T -reduced Z8-covering of K4,4 with the voltage assignment z1 = 2,
z2 = 2, z3 = 0, z4 = 1, z5 = 7, z6 = 0, z7 = 1, z8 = 1, z9 = 2 when m ≥ 5 and
z1 = 2, z2 = 6, z3 = 4, z4 = 5, z5 = 7, z6 = 4, z7 = 5, z8 = 1, z9 = 6 when m = 4.
Denote by p2 the projection corresponding to this regular covering Y of K4,4. Since
〈23〉 ≤ K , ˜X is a 〈23〉-covering of Y with the covering transformation 〈23〉 ∼= Z2m−3

and denote by p3 the projection corresponding to this regular covering ˜X of Y . By
definition of Y , it is clear that p1 = p3p2. Since ˜X and Y both have the same valency
4 and 〈23〉 � A is transitive on each fibre under p3, 〈23〉 is the kernel of A acting on
V (Y ). Thus, A/〈23〉 is a subgroup of Aut(Y ). Clearly, A is fibre-preserving along the
projection p3. To prove that A is fibre-preserving along p1, it suffices to show that
Aut(Y ) is fibre-preserving along p2 because A/〈23〉 ≤ Aut(Y ) and p1 = p3p2.

By Tables 1 and 2, α1, β1 and β2 can be extended to the automorphisms of Z8
induced by 1 	→ 1, 1 	→ −1 and 1 	→ 1 respectively when m ≥ 5, and by 1 	→ 5,
1 	→ −1 and 1 	→ 5 respectively when m = 4. By Proposition 3.1, α1, β1 and
β2 lift to automorphisms of Y along the projection p2. One may easily show that
|〈α1, β1, β2〉| = 25 and so the lift of 〈α1, β1, β2〉 has order 28. With the help of com-
puter software package MAGMA [3], Aut(Y ) has order 28 (also this can be obtained
from the fact that the stabilizer of any given arc in Aut(Y ) is a trivial group, which
can be proved by considering the girth cycles of Y together with arc-transitivity of the
lift of 〈α1, β1, β2〉). It follows that the lift of 〈α1, β1, β2〉 is exactly the full automor-
phism group Aut(Y ) of Y because both of them have the same order. Thus, Aut(Y )

is fibre-preserving along p2 and so A is fibre-preserving along p1, as claimed.
Since |A/〈23〉| = 2m+5/2m−3 = 28, one has Aut(Y ) = A/〈23〉 because A/〈23〉 is

a subgroup of Aut(Y ) and |Aut(Y )| = 28, that is, the projection of A along p3 is
Aut(Y ). Note that Aut(Y ) is fibre-preserving along p2 and the projection of Aut(Y )

along p2 is 〈α1, β1, β2〉. Since A is fibre-preserving along p1 = p3p2, the projection
of A along p1 is also 〈α1, β1, β2〉. It follows that β2 lifts along p1, contrary to the
fact that β2 does not lift. Thus, Aut(˜X) = H = B and so ˜X is 1

2 -arc-transitive.
To finish the proof, it remains to show that CK(2m, i,2m−2 + 1) is of even ra-

dius and tightly attached for i = 1, 2. Note that K4,4 is tightly G1-attached and has
two adjacent G1-alternating cycles (a,u,b,v) and (a,w,b,x). Since the full auto-
morphism group of CK(2m, i,2m−2 + 1) is exactly the lift of G1 for i = 1, 2, one
may easily obtain two adjacent alternating cycles of CK(2m, i,2m−2 + 1) having ver-
tex sets {a2j ,b2j ,u2j ,v2j | 2j ∈ Z2m} and {a2j ,b2j ,w2j ,x2j | 2j ∈ Z2m}. Thus,
CK(2m, i,2m−2 + 1) has radius 2m and is tightly attached for i = 1,2. �

Remark The smallest ones in the two infinite families of half-arc-transitive graphs
CK(2m, i) for i = 1,2 given in Lemma 5.2 are CK(16,1) and CK(16,2), which have
128 vertices. We depict CK(16,1) in Fig. 2. By Lemma 4.1 and the definition of
the graphs CK(2m, i) for i = 1,2 in the paragraph preceding Theorem 2.1, one has
CK(16,1) = CK(16,1,3) and hence it suffices to depict the graph CK(16,1,3) (de-
fined before Theorem 2.1). The four cycles with dotted lines are four alternating
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cycles with vertex sets

{a2j ,u2j ,b2j ,v2j | 2j ∈ Z16}, {a2j+1,u2j+1,b2j+1,v2j+1 | 2j ∈ Z16},
{c2j ,w2j ,d2j ,x2j | 2j ∈ Z16}, {c2j+1,w2j+1,d2j+1,x2j+1 | 2j ∈ Z16}.

The other four alternating cycles have vertex sets

{a2j ,w2j ,b2j ,x2j | 2j ∈ Z16}, {a2j+1,w2j+1,b2j+1,x2j+1 | 2j ∈ Z16},
{c2j+1,u2j ,d2j+1,v2j | 2j ∈ Z16}, {c2j ,u2j+1,d2j ,v2j+1 | 2j ∈ Z16}.

Clearly, if two adjacent vertices in an alternating cycle are labeled, then all vertices
in the alternating cycle can be uniquely labeled. Thus, for each alternating cycle we
only label two adjacent vertices in Fig. 2.

Lemma 5.3 If G2 lifts then ˜X is not 1
2 -arc-transitive.

Proof Suppose to the contrary that ˜X is 1
2 -arc-transitive. Since G2 = 〈α1, β2〉 lifts,

α∗
1 and β∗

2 exist. Thus, Eqs. 1–8 hold and so Zpm is generated by z2 and z8. Since
β∗

2 exists, we have 1β∗
2 = t for some t ∈ Z

∗
pm . By Table 2, we have tz1 = z2 − z3,

tz2 = z1 − z3, tz3 = −z3, tz4 = z9 − z7, tz5 = −z7, tz6 = z8 − z7, tz7 = −z5, tz8 =
z6 − z5 and tz9 = z4 − z5. Since (β∗

2 )2 = 1, one has t2 = 1. Substituting Eqs. 4 and
6 to tz5 = −z7, one has z2 = (kt−1 + k−3)z8 = (kt + k−3)z8 where t−1 and k−3 are
the inverses of t and k3 in Z

∗
pm respectively. Thus, Zpm can be generated by z8 and by

Proposition 3.2, one may assume that z8 = 1 and z2 = kt + k−3. If β1 lifts then the
arc-transitive subgroup 〈α1, β1, β2〉 of K4,4 lifts, contradicting half-arc-transitivity
of ˜X. Thus, β1 cannot be extended to an automorphism of Zpm by Proposition 3.1.

Assume that p is an odd prime. Then t2 = 1 implies that t = 1 or −1 because
Z

∗
pm is cyclic. Let t = 1. Then tz3 = −z3 means that z3 = 0. Since z8 = 1, Eq. 2

implies k = 1. Thus, z2 = 2. By Eqs. 1–7, z1 = z9 = 2, z3 = z6 = 0, z5 = −1 and
z4 = z7 = 1. By Table 1, β1 can be extended to the automorphism of Zpm induced by
1 	→ −1, a contradiction. Let t = −1. Then tz6 = z8 −z7 means that z6 +z8 = z7 and
substituting Eqs. 5 and 6 to z6 + z8 = z7, one has (k − 1)(k3 + 1) = 0 because z2 =
−k + k−3 and z8 = 1. Thus, k = 1 or k3 = −1 because the oddness of p implies that
(k − 1,pm) = 1 or (k3 + 1,pm) = 1. If k = 1 then z2 = 0 and z8 = 1. By Eqs. 1–7,
z1 = z3 = z6 = z9 = 0 and z4 = z5 = z7 = 1. By Table 1, β1 can be extended to the
identity automorphism of Zpm , a contradiction. If k3 = −1 then (k − 1,pm) = 1 and
by Eq. 8, z2 = 0. Since z2 = −k + k−3, one has k4 = 1 and so k = −1 because k3 =
−1. Thus, z2 = 0 and z8 = 1. By Eqs. 1–7, z1 = z3 = z6 = −2, z4 = z5 = z7 = −1
and z9 = 0. By Table 1, β1 can be extended to the automorphism of Zpm induced by
1 	→ −1, a contradiction.

Assume that p = 2. Then k and t are odd because k, t ∈ Z
∗
2m . Since the smallest

1
2 -arc-transitive graph has order 27, one has m ≥ 2 and so t2 = 1 implies that t = δ+1
or δ − 1, where δ = 0 or 2m−1. Suppose t = δ + 1. Then z2 = kt + k−3 = k + k−3 + δ

because k is odd. By Eq. 2, z3 is even and tz3 = −z3 implies that 2z3 = 0. It follows
that z3 = δ1 where δ1 = 0 or 2m−1. Again by Eq. 2, z8 = 1 implies that k = δ1 + 1.
Thus, z2 = δ + 2 and z8 = 1. By Eqs. 1–7, z1 = δ + δ1 + 2, z3 = δ1, z4 = δ1 + 1,
z5 = δ+δ1 −1, z6 = δ1, z7 = δ1 +1 and z9 = δ+2. By Table 1, β1 can be extended to
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the automorphism of Z2m induced by 1 	→ δ+δ1 −1, a contradiction. Thus, t = δ−1.
Then z2 = kt + k−3 = −k + k−3 + δ, implying that z2 is even. By Eq. 1, z1 is even.
Since tz1 = z2 − z3, one has z1 + z2 = z3. Substituting Eqs. 1 and 2 to z1 + z2 = z3,
(k2 − 1)(k3 + k + 1) = 0 because z2 = −k + k−3 + δ and z8 = 1. Since k3 + k + 1
is odd, k2 = 1. Thus, z2 = δ and z8 = 1. By Eqs. 1–7, z1 = k + δ − 1, z3 = k − 1,
z4 = k, z5 = k + δ, z6 = k − 1, z7 = k and z9 = δ. By Table 1, β1 can be extended to
the automorphism of Z2m induced by 1 	→ k + δ, a contradiction. Thus, ˜X cannot be
1
2 -arc-transitive when G2 lifts. �

Lemma 5.4 If G3 lifts then ˜X is not 1
2 -arc-transitive.

Proof Suppose to the contrary that ˜X is 1
2 -arc-transitive. Since G3 = 〈α2, β1〉 lifts,

α∗
2 and β∗

1 exist. Let 1α∗
2 = 	 for some 	 ∈ Z

∗
pm . By Table 2, 	z2 = z

α∗
2

2 = z8 − z7,
that is, z7 = −	z2 + z8. Similarly, by considering the images of z6, z8, z7, z1 and
z5 respectively, one may obtain that z6, z3, z4, z5 and z9 are combinations of z1, z2
and z8. Thus, we have the following equations

z3 = z1 + 	z2 + (	 − 1)z8 (9)

z4 = 	−1z1 − (	−1 + 	2 + 	)z2 + z8 (10)

z5 = (	−1 − 	)z1 − (	−1 + 	2)z2 + z8 (11)

z6 = 	−1z1 − 	−1z2 (12)

z7 = −	z2 + z8 (13)

z9 = (	2 − 1)z1 + (	3 − 	 + 1)z2 + (1 − 	)z8. (14)

which implies that Zpm can be generated by z1, z2 and z8. Since (α∗
2)4 = 1, one has

	4 = 1.
Recall that 1β∗

1 = s for s ∈ Zpm and s2 = 1. By Table 1, sz1 = −z1, sz2 = z3 − z1,
sz3 = z2 − z1, sz4 = z5 − z6, sz5 = z4 − z6, sz6 = −z6, sz7 = z8 − z9, sz8 = z7 − z9
and sz9 = −z9. By Table 2, 	z4 = z4 and since 	4 = 1, one has 	3 = 	−1. Substituting
Eqs. 9–14 to the equations 	z4 = z4, sz2 = z3 − z1, sz4 = z5 − z6 and sz8 = z7 − z9,
one may obtain

(	3 − 1)z1 + (1 − 	)z2 + (1 − 	)z8 = 0 (15)

(s − 	)z2 = (	 − 1)z8 (16)

(s	3 + 	)z1 + (	2 − s	3 − s	2 − s	)z2 = (1 − s)z8 (17)

(	2 − 1)z1 + (	3 + 1)z2 = (	 − s)z8. (18)

Based on Eqs. 9–18, we shall determine the voltages z1, z2, . . . , z9, which corre-
spond to four columns for odd prime p and three columns for p = 2 in Table 3, where
t2 = −1 and δ1, δ2 = 0 or 2m−1. For each column of values of z1, . . . , z9, it will be
shown that one of β2, γ1 and γ3 lifts. Thus, 〈α2, β1, γ1〉, 〈α2, β1, γ3〉 or 〈α2, β1, β2〉
lifts and since these groups are arc-transitive on K4,4, ˜X is arc-transitive. This is
impossible because ˜X is 1

2 -arc-transitive and hence the proof will be completed.
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Table 3 Voltages and corresponding lifts

p odd odd odd odd 2 2 2

z1 0 −1 − t 1 1 δ1 1 1

z2 0 −t 0 1 δ1 + δ2 δ1 δ1 + 1

z3 0 −1 1 0 δ2 δ1 + 1 δ1

z4 1 0 1 0 δ2 + 1 δ1 + δ2 + 1 δ1 + δ2

z5 1 t 0 0 1 δ2 δ2

z6 0 t 1 0 δ2 δ1 + 1 δ1

z7 1 0 0 1 δ1 + δ2 + 1 δ1 + δ2 δ1 + δ2 + 1

z8 1 1 0 0 1 δ2 δ2

z9 0 1 0 1 δ1 + δ2 δ1 δ1 + 1

Lift β2 γ1 γ3 γ3 γ3 γ3 γ3

First assume that p is odd. Then s2 = 1 implies that s = 1 or −1. Let s = 1. Then
sz1 = −z1 and sz6 = −z6 imply that z1 = z6 = 0, and by Eq. 12, z2 = 0. Thus, Zpm

can be generated by z8 and by Proposition 3.1, one may assume z8 = 1. By Eq. 15,
	 = 1 and by Eqs. 9–14, z3 = z6 = z9 = 0 and z4 = z5 = z7 = 1. By Table 2, β2 can
be extended to the automorphism of Zp3 induced by 1 	→ −1, which corresponds to
column 2 of Table 3. Let s = −1. As 	4 = 1, the oddness of p implies that 	2 = 1 or
	2 = −1. If 	2 = −1 then (1 + 	)(1 − 	) = 2. Since 2 ∈ Z

∗
pm , we have 1 + 	,1 − 	 ∈

Z
∗
pm . Furthermore, (1 + 	)−1 = 2−1(1 − 	). By Eq. 16, z2 = 2−1(1 − 	)2z8 = −	z8

and Eq. 15 implies that z1 = −2	(1 + 	)−1z8 = −(1 + 	)z8 because 	2 = −1. It
follows that Zpm can be generated by z8 and one may assume z8 = 1. Thus, z1 =
−1 − 	 and z2 = −	. By Eqs. 9–14, z3 = −1, z4 = 0, z5 = 	, z6 = 	, z7 = 0 and
z9 = 1. By Table 1, γ 1 can be extended to the automorphism of Zpm induced by
1 	→ 	, which corresponds to column 3 of Table 3. If 	2 = 1 then Eq. 17 implies
(	 + 1)z2 = z8 because 2 ∈ Z

∗
pm and s = −1, and by Eq. 16, one has 	z8 = 0, that

is, z8 = 0. Clearly, 	2 = 1 implies that 	 = 1 or −1. If 	 = 1 then z2 = 0 by Eq. 16
and if 	 = −1 then z1 = z2 by Eq. 15. Since Zpm is generated by z1, z2 and z8, by
Proposition 3.2, one may assume that z1 = 1 for 	 = 1 and z1 = z2 = 1 for 	 = −1.
By Eqs. 9–14, if 	 = 1 then z1 = z3 = z4 = z6 = 1 and z2 = z5 = z7 = z8 = z9 = 0,
and if 	 = −1 then z1 = z2 = z7 = z9 = 1 and z3 = z4 = z5 = z6 = z8 = 0. In these
two cases, γ 3 can be extended to the automorphisms of Zpm induced by 1 	→ −1 and
1 	→ 1 respectively, which correspond to columns 4 and 5 of Table 3.

Now assume that p = 2. Then Z
∗
2m consists of odd numbers in Z2m . One may

further assume m ≥ 2 because the smallest 1
2 -arc-transitive graph has order 27 and

so s2 = 1 implies that s = δ + 1 or δ − 1, where δ = 0 or 2m−1. Note that s = ±1
when m = 2. Thus, we have two cases, namely, case I: s = δ +1 where δ = 0 or 2m−1

when m ≥ 3 and δ = 0 when m = 2, and case II: s = δ −1 where δ = 0 or 2m−1 when
m ≥ 3 and δ = 0 when m = 2.
Case I: s = δ + 1 where δ = 0 or 2m−1 when m ≥ 3 and δ = 0 when m = 2.

In this case, δ/2 + 1 is odd, that is, δ/2 + 1 ∈ Z
∗
2m . Since sz1 = −z1, one has

2(δ/2 + 1)z1 = 0 and so 2z1 = 0. Similarly, 2z6 = 0. It follows that z1, z6 = 0 or
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2m−1. For convenience, write z1 = δ1 and z6 = δ2, where δ1, δ2 = 0 or 2m−1. By
Eq. 12, z2 = z1 − 	z6 = δ1 + δ2 because 	 is odd. Thus, Zpm can be generated by
z8 because z1 and z2 are even, and by Proposition 3.2, one may assume that z8 = 1.
Since 	3 − 1 and 1 − 	 are even, one has (	3 − 1)z1 = (1 − 	)z2 = 0 and by Eq. 15,
	 = 1. Since z1 = δ1, z2 = δ1 + δ2 and z8 = 1, by Eqs. 9–14, one has z3 = δ2, z4 =
δ2 + 1, z5 = 1, z6 = δ2, z7 = δ1 + δ2 + 1 and z9 = δ1 + δ2. By Table 2, γ 3 can be
extended to the automorphism of Z2m induced by 1 	→ −1, which corresponds to
column 6 of Table 3.
Case II: s = δ − 1 where δ = 0 or 2m−1 when m ≥ 3 and δ = 0 when m = 2.

First we claim δ = 0. Clearly, one may assume that m ≥ 3. Suppose to the contrary
that δ = 2m−1. Since 	4 = 1, one has 	 = ±1, 2m−1 ±1, 2m−2 ±1 or 2m−2 +2m−1 ±1.
It follows that 	2 = σ + 1, where σ = 0 or 2m−1 when m ≥ 4 and σ = 0 when
m = 3. Clearly, 	3 = 	 + σ because 	 ∈ Z

∗
2m is odd. Since s = δ − 1, sz1 = −z1 and

sz6 = −z6, one has δz1 = 0 and δz6 = 0. Then z1 and z6 are even because δ = 2m−1.
By Eq. 12, z2 is even. Substituting 	2 = σ + 1 and s = δ − 1 to Eq. 17, one has
2z8 = (δ +σ)z1 + (2	+2+σ +δ)z2 +δz8, of which the right-hand side is a multiple
of 4 because m ≥ 3. This implies that if z8 is odd then 2 ∈ 〈4〉 that is impossible.
Thus, z8 is even. It follows that Z2m is generated by three even elements z1, z2 and
z8, a contradiction. Thus, δ = 0, as claimed.

We now have s = −1 and m ≥ 2. Note that each element in Z
∗
2m has order 2 or 1

when m = 2 or 3 because Z
∗
2m

∼= Z2 × Z2m−2 . Then 	4 = 1 implies that 	2 = σ + 1,
where σ = 0 or 2m−1 when m ≥ 4 and σ = 0 when m = 2 or 3. Since 	 is odd it
follows that 	3 = σ + 	 and by Eq. 17, one has

2z8 = σz1 + (2	 + 2 + σ)z2. (19)

The right-hand side of Eq. 19 is a multiple of 4, implying that z8 is even. Since Z2m

cannot be generated by three even elements, z1 or z2 is odd. Substituting (1 − 	)z8 =
(1 + 	)z2 (obtained by Eq. 16 and s = −1) to Eq. 15, one has

2z2 = (1 − 	3)z1 = (1 + σ − 	)z1. (20)

If z1 is even then the right-hand side of Eq. 20 is a multiple of 4, implying that z2 is
even, a contradiction. Thus, z1 is odd and so z1 generates Z2m . By Proposition 3.2,
one may assume that z1 = 1.

We now claim that σ = 0. Since (1 + 	)z2 = (1 − 	)z8 (Eq. 16), by Eq. 18 one has
(	+1)z8 = σz1 + (σ +	+1)z2 = σz1 +σz2 + (	+1)z2 = σz1 +σz2 + (1−	)z8. It
follows that 2z8 = σz1 + σz2 because 	 is odd, and by Eq. 19, 2(	 + 1)z2 = 0. Thus,
Eq. 20 implies that 0 = (	 + 1)(1 + σ − 	) = 1 − 	2 = σ because z1 = 1.

So far we have proved that s = −1 and 	2 = 1. Since z1 = 1 and σ = 0, by Eqs. 19
and 20 one has 2z2 = 1−	 and 2z8 = (	+1)(1−	) = 0. Since (1+	)z2 = (1−	)z8,
one has (1 + 	)z2 = 0 because 2z8 = 0 and 1 − 	 is even. Note that 	2 = 1 implies
that 	 = ±1 or 2m−1 ± 1 because m ≥ 2. Using 2z2 = 1 − 	 and (1 + 	)z2 = 0,
one may easily show that 	 
= 2m−1 ± 1. It follows that 	 = 1 or −1. If 	 = 1 then
2z2 = 2z8 = 0 and if 	 = −1 then 2(z2 − 1) = 2z8 = 0. Thus, one may assume that
z2 = δ1 and z8 = δ2 for 	 = 1, and z2 = 1 + δ1 and z8 = δ2 for 	 = −1, where
δ1, δ2 = 0 or 2m−1. Recall that z1 = 1. By Eqs. 9–14, one has if 	 = 1 then z3 = δ1 +1,
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z4 = δ1 + δ2 + 1, z5 = δ2, z6 = δ1 + 1, z7 = δ1 + δ2 and z9 = δ1, and if 	 = −1 then
z3 = δ1, z4 = δ1 + δ2, z5 = δ2, z6 = δ1, z7 = δ1 + δ2 + 1 and z9 = δ1 + 1. By Table 2,
γ 3 can be extended to the automorphisms of Z2m induced by 1 	→ −1 for 	 = 1 and
by 1 	→ 1 for 	 = −1, which correspond to columns 7 and 8 of Table 3. �
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26. Malnič, A., Marušič, D., & Potočnik, P. (2004). Elementary abelian covers of graphs. J. Algebr. Comb.,

20, 71–97.
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